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EXPLICIT CALCULATIONS OF AUTOMORPHIC FORMS
FOR DEFINITE UNITARY GROUPS

DAVID LOEFFLER

Abstract

I give an algorithm for computing the full space of automor-
phic forms for definite unitary groups over Q, and apply this
to calculate the automorphic forms of level G(Ẑ) and vari-
ous small weights for an example of a rank 3 unitary group.
This leads to some examples of various types of endoscopic
lifting from automorphic forms for U1 ×U1 ×U1 and U1 ×U2,
and to an example of a non-endoscopic form of weight (3, 3)
corresponding to a family of 3-dimensional irreducible �-adic
Galois representations. I also compute the 2-adic slopes of some
automorphic forms with level structure at 2, giving evidence
for the local constancy of the slopes.
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1. Introduction

If G is a reductive algebraic group over Q, then the spaces of automorphic forms
for G (of a given level and infinity-type) are well-known to be finite-dimensional
vector spaces with an action of the Hecke algebra. However, for the vast majority
of groups it is not known how to actually calculate the dimensions of these spaces
and how the Hecke operators act. For GL2, the case of classical modular forms,
there are well-known algorithms based on modular symbols (see e.g. [12]), but in
general little is known.

One case in which calculations are possible is where the group G satisfies the
condition that all arithmetic subgroups are finite. In this case, Gross has shown [7]
that the theory of automorphic forms can be set up entirely algebraically, without
analytic hypotheses. As has been observed by various authors [8, 4], Gross’s spaces
are (at least in theory) computable. In this article, I shall apply this to an example
of a definite unitary group over Q, and show how the full space of automorphic
forms may be calculated for various small weights and levels. We do not need to
assume that the class number of G is 1; we do assume that the underlying quadratic
extension of Q has class number 1, but this is more a calculational convenience than
a fudamental limitation of the algorithm.

The results of these computations give rise to some interesting specimens of
endoscopic liftings of automorphic forms arising from U2 × U1 and U1 × U1 × U1,
and also examples of non-endoscopic forms, which give nontrivial families of 3-
dimensional �-adic Galois representations.

The structure of this paper is as follows. Section 2 explains the algorithms used
to determine the class number of G and the coset decomposition of the Hecke oper-
ators; these depend on the choice of level group K but not the weight. In section 4,
we use the results of these computations to calculate the spaces of forms of various
small weights. In section 5, we shall see how to generalise this to non-maximal level
groups, and present some examples illustrating the 2-adic continuity of the Hecke
eigenvalues. In the final section, we discuss some implementation details.

2. Outline of the algorithm

2.1. Definitions
Recall that if E is an imaginary quadratic number field and n � 1, there is a

corresponding definite unitary group G = Un,E , which is the group scheme over Z

defined by

G(A) = {g ∈ GLn(A ⊗Z OE) | gg† = 1},
where A is an arbitrary commutative ring (and g† is the conjugate transpose of g).

The following properties of G are elementary.
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Proposition 2.1. G(R) is the usual real unitary group Un, which is connected
and compact. If p is any prime which splits completely in E, then G is split at p,
and moreover G(Qp) is isomorphic to GLn(Qp). There are two such isomorphisms,
corresponding to the two embeddings E ↪→ Qp, and they are interchanged by the
inverse transpose involution of GLn. The centre of G is the norm torus U(1) =
Res(1)E/Q

(Gm).

Since G is compact at infinity, it certainly satisfies the conditions of [7]; so the
space of automorphic forms for G of level K (where K is an open compact subgroup
of G(Af )) and weight V (where V is an irreducible algebraic representation of G
over any field F of characteristic 0) is the F -vector space of functions f : G(Af ) → V
such that

f(γgk) = γ ◦ f(g) ∀γ ∈ G(Q), k ∈ K.

For the rest of this paper, we shall fix n = 3; however, the methods can clearly be
applied to arbitrary n, and indeed to general totally definite Hermitian spaces over
OE (of any integral equivalence class). We shall, however, make the simplifying as-
sumption that E has class number 1. Initially, we shall take K = G(Ẑ) =

∏
� G(Z�),

so we obtain the automorphic forms of “level 1” in some sense.

Remark 2.2. If p is not ramified in E, the subgroup K is a hyperspecial maximal
compact subgroup of G(Qp). If p is ramified, then K is special maximal but not
hyperspecial, unless p = 2 in which case it is not even maximal [11, §1.10].

Theorem 2.3. The irreducible algebraic representations of G over E (or any field
containing it) are parametrised by triples of integers (a, b, c) with a, b � 0, where
the representation Va,b,c is the unique highest weight direct summand of Wa,b,c =
Syma V ⊗ Symb V ∗ ⊗ detc (where V = V1,0,0 is the standard representation). The
central character of Va,b,c is

⎛
⎝

z
z

z

⎞
⎠ �→ za−b+3c.

Proof. Since G is isomorphic to GL3 over E, this follows from standard results on
the representation theory of GL3, see e.g. [5, §15.5].

Remark 2.4. We can identify Va,b,c explicitly: there is a natural contraction map
Wa,b,c → Wa−1,b−1,c, and Va,b,c is the kernel of this map. We shall not use this
remark, however, as in the calculations below we will always have already calculated
automorphic forms of weight (a − 1, b − 1, c) when we come to deal with those of
weight (a, b, c); thus we can easily identify forms which we have seen before.

2.2. Hecke operators and K-classes
It is well known that the set of double cosets

G(Q)\G(Af )/K

is finite. We shall refer to these as K-classes. As shown in [7], if μ1, . . . , μr is a set
of representatives for the K-classes, then the space of automorphic forms for G of
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level K and weight V is isomorphic to
r⊕

i=1

V Γi ,

where Γi = G(Q) ∩ μiKμ−1
i , via the map f �→ (f(μ1), . . . , f(μr)). Note that the

groups Γg are arithmetic subgroups of G, and are thus finite.
If we know a set of class representatives μi and the associated groups Γi, then

it is elementary to calculate the Γi-invariants in Va,b,c for each i and thus read off
the dimension of the space of automorphic forms.

The other piece of information we are interested in is the action of the Hecke
algebra. This is the commutative algebra generated by double cosets KgK, with
the action of such a coset on automorphic forms being given by

([KgK]f) (x) =
∑

j

f(xgj)

where KgK =
⊔

gjK.
So we must decompose KgK into single cosets gjK. For each of these, we could

choose a coset representative in the form γjμc(j), for some c(j) ∈ {1 . . . r} and
γj ∈ G(Q). This would immediately allow us to calculate ([KgK]f) (1), if f is an
automorphic form given as an r-tuple f(μ1), . . . f(μr), since

([KgK]f) (1) =
∑

j

f(γjμc(j)) =
∑

j

γj ◦ f(μc(j)).

What we actually want, however, is ([KgK]f) (μi); so for each i ∈ {1, . . . , r} we
need to find elements γij ∈ G(Q) and c(i, j) ∈ {1, . . . , r} such that

μiKgK =
⊔
j

γijμc(i,j)K.

For any given element g ∈ G, finding these quantities is a finite search. In fact,
one has:

Algorithm A. Let r, s, t be given elements of G(Af ), which are integral outside
a finite set S of primes split in E. Then the following algorithm finds all elements
of G(Q) ∩ rKsKt.

1. Find some λ ∈ OE such that λrst, regarded as an element of GL3(Af,E), is
integral at all places of E.

2. Enumerate all matrices g ∈ M3(OE) such that gg† = Norm(λ).
3. For each g in the above list, set γ = λ−1g and calculate the elementary factors

of r−1γt−1 at each prime in S. If these coincide with those of s, output γ.

Calculating the elementary factors of a p-adic matrix is easy, but in practice
one can often short-cut this step, since if νpλ is small then there are very few pos-
sibilities for the elementary factors and these can be distinguished by calculating
the determinant. The most computationally intensive step is usually (2). For con-
venience, let us define an r-good matrix to be an element of M3(OE) such that
gg† = r. Enumerating all the r-good matrices for a given r is clearly a finite check,
but possibly a long one if r is large — an algorithm using lattices is described in
§6.1 below.
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As is well known, the Hecke algebra factorises into a restricted tensor product
of local Hecke algebras at each prime; if p is a prime split in E, and p is a choice
of prime above p in E, then the local Hecke algebra of K at p is generated by the
double cosets KηK, where η is one of the elements

ηp,1 =

⎛
⎝

1
1

p/p

⎞
⎠ , ηp,2 =

⎛
⎝

1
p/p

p/p

⎞
⎠ , ηp,3 =

⎛
⎝

p/p
p/p

p/p

⎞
⎠ .

These are the operators to which we shall apply the above method. We shall
write Tp,i for the operator on automorphic forms corresponding to the double coset
Kηp,iK. Note that Tp,3 is central, and acts on weight (a, b, c) forms as scalar mul-
tiplication by (p/p)a−b+3c.

2.3. A refinement
The above discussion assumes that the class representatives μi are known. How-

ever, we can use a sort of bootstrapping approach to find the class representatives
at the same time as the Hecke operators.

Lemma 2.5. The double cosets Kηp,1K and Kηp,2K both contain p2 + p + 1 single
cosets.

Proof. This is a purely local computation. We shall consider η = ηp,1; the other
case is very similar. Let H = G(Zp); then H acts transitively by right multiplication
on row vectors over Fp, and H ∩ ηHη−1 is the stabilizer of the line (0, 0, ∗). So this
subgroup has index |P2(Fp)| = p2 + p + 1; and thus HηH should decompose into
p2 + p + 1 single cosets (which can easily be written down explicitly).

Now, let us assume that we know a set of representatives for a subset of the class
set; we can always start with just the principal class G(Q)K, represented by the
element 1. Let us choose a prime p. Using Algorithm A above, we can find all of
the single cosets contained in Kηp,1K which have a representative of the form γμ
with γ ∈ G(Q) and μ one of the subset of class representatives we know about.

If we have found less than p2 + p + 1 cosets, then the lemma shows that we have
not found the full class set, and moreover, taking a local coset representative gives
an explicit element μ of G(Af ) (supported at p) which is not in any of the K-classes
previously found; so we can add this to the list, calculate the associated group Γ
(by applying Algorithm A again, with s = 1) and repeat.

Clearly, we need a criterion which will allow us to determine when we have found
the complete class set. To do this, we shall introduce the mass of K, which is a
quantity strongly related to the class number but in many ways better behaved;
this can be calculated via the special value of an appropriate L-function.

Definition 2.6. The mass of a compact open subgroup K of G(Af ), where G is
a connected reductive algebraic group compact at ∞, is the quantity

Mass(K) =
∑

[g]∈G(Q)\G(Af)/K

1
#Γg

.

A mass formula for unitary groups is given in [6]. This applies to a somewhat
more general class of unitary groups than we consider here, so we shall state a

330https://doi.org/10.1112/S1461157000000620 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000620


Definite unitary automorphic forms

special case: if G is the unitary group Un,E as defined above and n is odd, and
K = G(Ẑ), then

Mass(K) =
1
2n

· L(M) · τ(G) ·
∏
p

λp.

Here L(M) is the value at s = 0 of the L-function of the motive of G; τ(G) is the
Tamagawa number of G; and the local factors λp are 1 unless p is ramified in E, in
which case they are 1

2 . (For n even, there is a similar formula but the local factors
are all 1.)

Formulae for τ(G) and L(M) are known, and are given in [6]. For unitary groups
we have τ(G) = 2; and if χ is the Dirichlet character corresponding to the quadratic
extension E/Q, then

L(M) =
n∏

r=1

L(1 − r, χr).

which is easy to compute using generalised Bernoulli numbers as in [14, ch. 4].

Remark 2.7. Knowing the mass in advance allows one to determine whether the
full class set has been found; but it is not completely clear that this will ever
actually occur — that is, that every K-class occurs in the decomposition of some
Hecke operator. On the other hand, one can show (using the assumption that E has
unique factorisation and strong approximation for the derived subgroup SU3,E , cf.
[10, ch. 7]) that every K-class does have a representative supported at p for every
prime p. Hence if computing Tp,1 and Tp,2 for enough p does not find enough K-
classes, one can switch to computing multiple Hecke operators at some fixed small
prime. However, I am not aware of any case in which this is necessary.

3. Example: E = Q(
√−7)

To illustrate the algorithm above, we shall carry out the calculations in the case
E = Q(

√−7). This choice is convenient, as then G is split at 2, and O×
E = ±1, so

G(Q) ∩ K is small (it is the group of monomial matrices with entries in O×
E , and

thus has order 48). Let ω = 1+
√−7
2 , so OE = Z[ω].

We shall begin by calculating the mass of K. Here χ is the Kronecker symbol(−7
•

)
; using standard methods we find that L(0, χ) = 1, L(−1, χ2) = − 1

12 and
L(−2, χ3) = − 16

7 , so L(M) = 4
21 . Hence

Mass(K) =
1
8
· 4
21

· 2 · 1
2

=
1
42

.

Since 1
42 > 1

48 , the mass of the principal K-class, there must be other K-classes;
we shall find them by the bootstrapping argument explained above.

If p is any split prime and p a choice of factor of p in E, then we can apply
Algorithm A to find the set G(Q)∩Kηp,1K, taking λ = p. For instance, let us take
p = 2 and choose p to be the ideal generated by ω. Then we find 288 such matrices;
since G(Q)∩K has order 48, this gives us 6 right cosets γK, which are represented
by the three diagonal matrices with entries 1, 1, ω

1−ω in some order, and the three
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permutations of the rows of ⎛
⎝

1 0 0
0 ω

2 −ω
2

0 ω
2

ω
2

⎞
⎠ .

Lemma 2.5 tells us that there is one coset missing, and the proof of the lemma
constructs an element of this coset, namely the element α of G(Af ) that is 1 at all
primes p �= 2 and under the isomorphism G(Q2) ∼= GL3(Q2) corresponds to

⎛
⎝

1 0 0
0 1 0
−1 −1 2

⎞
⎠ .

The associated group Γα has order 336; indeed it is isomorphic to the direct
product of ±1 with a simple subgroup isomorphic to PSL2(F7). Conveniently, this
group contains G(Z) as a subgroup of index 7; it is generated by G(Z) and the
element

τ =

⎛
⎝
− 1

2
1−ω

2
1
2− 1

2
−1+ω

2
1
2

ω
2 0 ω

2

⎞
⎠ .

of order 7.
Since 1

48 + 1
336 = 1

42 = Mass(K), that’s all: the class number of G is 2.
We can now complete the calculation of the Hecke operator Tp,1 as follows. In

the notation of the previous section, we are taking μ1 = 1 and μ2 = α. We have
decomposed μ1KηK as a union of 6 cosets of the form γμ1K and 1 coset γμ2K.
Searching for rational elements of μ2KηK (using Algorithm A with λ = (1 − ω)2)
finds 7 cosets already, so we do not need to consider the fourth possibility, which is
whether there are any elements of G(Q) ∩ μ2KηKμ−1

2 .
Since we have now found the complete class set, it is clear how to calculate Tp,i

for any split prime p. Note that we need to apply Algorithm A four times, with
λ = p, ωp, ωp and 2p, so we need to enumerate r-good matrices for r = p, 2p and
4p.

Remark 3.1. Calculating Hecke operators at the inert primes is also possible, but
more awkward both theoretically and computationally. Since the maximal split
torus in G(Qp) for p inert has rank 1, there is only one Hecke operator to deal with,
but calculating its coset decomposition requires enumerating r-good matrices for
r = p2, which rapidly becomes computationally infeasible. Also, the eigenvalues of
these Hecke operators are rather more indirectly related to Galois representations.

4. Experimental results: level 1

In this chapter I will summarise the calculations I have made for various small
weights. Note that there are no forms of weight (a, b, c) if a + b + c is odd since the
level group contains −1; and changing c by a multiple of 2 just induces a twist, so
I shall restrict to the case where c = 0 if a + b is even and c = 1 if a + b is odd; this
is what is meant by ‘weight (a, b)’.
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4.1. Dimensions of spaces
These can be deduced from classical results of invariant theory for actions of

groups on polynomial algebras. See Table 1.

a
0 1 2 3 4 5

0 2 0 1 0 3 0
1 0 0 0 1 1 2

b 2 1 0 2 1 5 2
3 0 1 1 4 3 6
4 3 1 5 3 8 7
5 0 2 2 6 7 10

Table 1: Dimension of spaces of automorphic forms

Note that if a, b are small and a + b is odd, then the spaces are often zero. Thus
I will mostly restrict to the case of even weight.

4.2. Forms arising from Grössencharacters
For small weights, many of the forms that arise appear to have Tp,1 eigenvalues

of the form χ1(p) + χ2(p) + χ3(p), where χi(p) = prps for some (r, s). Note that
there exists an unramified Grössencharacter of E sending a uniformiser at p to prps

whenever r + s is even, as E has unique factorisation and unit group ±1; let us
write χ(r, s) for this character.

In all cases other than the constant function, we find that the characters arising
have r + s = 2. In Table 2 below I list these, based on calculating Hecke operators
at all split primes p � 60. (I have assigned arbitrary numbers to Gal(E/E)-orbits
of eigenforms, in order of discovery.)

Weight Form Character
(0,0) 1 χ(0, 0) + χ(1, 1) + χ(2, 2)
(0,0) 2 χ(2, 0) + χ(1, 1) + χ(0, 2)
(2,0) 1 χ(4,−2) + χ(1, 1) + χ(0, 2)
(4,0) 3 χ(6,−4) + χ(1, 1) + χ(0, 2)
(2,2) 2 χ(4,−2) + χ(1, 1) + χ(−2, 4)

Table 2: Forms arising from Grössencharacters

4.3. Forms arising from classical modular forms
Other forms of small weight appeared to have Tp,1 eigenvalues given by χ(r1, s1)+

χ(r2, s2)ap for ap the Hecke eigenvalue attached to a classical modular newform.
Note that this class includes all of the forms above (some in multiple ways), since
for each r there exists a CM-type modular form of weight r−1 with ap = χ(r,−r)+
χ(−r, r). The automorphic forms on U(3) that are associated with non-CM-type
forms are listed in Table 3 below.

In the third column of the table, I have reused letters when the same modular
form occurs more than once. The labels in the final column are those used in William
Stein’s online tables.
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Weight Form Character Modular weight Modular label
(4,0) 1 χ(1, 1) + χ(0,−4)ap 7 7k7B[3]1
(4,0) 2 χ(0, 2) + χ(1,−4)bp 6 49k6E1
(3,1) 1 χ(1, 1) + χ(−1,−3)ap 7 7k7B[3]1
(2,2) 1 χ(1, 1) + χ(−2,−2)ap 7 7k7B[3]1
(3,3) 1 χ(1, 1) + χ(−3,−3)cp 9 7k9B[3]1

Table 3: Forms arising from non-CM-type modular newforms

Note that above χ(r, s) was defined only for r + s even. If r + s is odd, there
is no unramified Grössencharacter sending a uniformiser at p to prps (indeed, this
is not well-defined as the choice of generator of the ideal p is only defined up to
±1) but there is a unique Grössencharacter which is unramified outside λ =

√−7,
whose restriction to O(Eλ) is the order 2 character of F×

7 , and whose restriction to
E∞ = C is z �→ z−rz−s; this character sends a uniformiser at p to

(
p
λ

)
prps, which

is independent of the choice of generator of p. This is what is meant by χ(1,−4) in
the above table.

4.4. Interpretation: Satake parameters
Recall that the Satake parameters of an unramified representation πp of GL3(Qp)

are the eigenvalues of the semisimple conjugacy class that is the Langlands param-
eter of the representation πp. These can be obtained as the roots of the Satake
polynomial

X3 − tp,1X
2 + ptp,2X − p3tp,3

where tp,i is the eigenvalue of Tp,i on the GL3(Zp)-invariants of πp. It is conjectured
that if πp is the local factor of a cuspidal automorphic representation, then (with
the normalisations we have chosen) the Satake parameters are algebraic numbers
whose complex absolute values are all equal to p.

The automorphic forms we have encountered are all (vacuously) cuspidal except
the constant form. For the forms in Table 2 and Table 3 above, the Satake param-
eters are easy to read off: for Table 2, the Satake parameters are the values at p of
the three characters listed, and for Table 3, the Satake parameters for χ1 +χ2ap are
{χ1(p), χ2(p)α, χ2(p)β} where α and β are the Satake parameters associated to the
form f . The normalisation that is conventional for classical modular forms of weight
k gives both α and β absolute value p(k−1)/2. Thus the characters χ(r, s) in Table 2
are forced to have r + s = 2; and for characters of the form χ(r1, s1) + χ(r2, s2)ap,
we’d better have r1 + s1 = 2 and r2 + s2 = 3 − k.

4.5. Galois representations
Let f be an eigenform of weight (a, b, c) and level G(Ẑ). By results of Blasius

and Rogawski [1], for each prime � there is a semi-simple representation

ρf : Gal(E/E) → GL3(Q�)

unramified outside 7� and crystalline at �, such that for p = pp any other prime
split in E not dividing 7� the characteristic polynomial of ρf(Frobp) should be the
Satake polynomial of f at p as defined above.
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(The proofs of this statement in the literature assume that the weight is ‘regular’,
i.e. a �= 0 and b �= 0. For non-regular weights, �-adic interpolation in the manner
of [3, ch. 1] gives a representation with values in GL3(C�) as long as � splits in
the field E, but it is not clear whether it is crystalline. It is, however, necessarily
Hodge–Tate.)

Here tp,i is the eigenvalue of Tp,i on f , so in particular tp,1 is the trace of
Frobenius. Thus if the formulae conjectured above for the Tp,1 eigenvalues of small
weight forms are correct, the associated representations ρf decompose as direct
sums of smaller-dimensional representations (sums of three characters, or of a char-
acter and a twist of a 2-dimensional modular representation).

If � is a prime split in E, then we can restrict the representation to a decom-
position group at either of the primes above �. Since this local representation
is crystalline, it is certainly Hodge–Tate, but the weights at these two different
primes are not generally the same: for one decomposition group the weights will be
−b+ c, c+1, a+ c+2 and for the other the weights will be −a− c,−c+1, b− c+2.
This fits the tables above, as χ(a, b) has weight a at one prime and b at the other,
and the representation associated to a modular form of weight k has weights 0 and
k − 1 (whichever prime is used).

4.6. Matching weights
Given a fixed weight (a, b, c) ∈ N × N × Z, the constraints of the valuations of

Satake parameters and the Hodge–Tate weights at the two primes above � leave
few possibilities for endoscopic forms at this weight.

We shall suppose c = 0; then it is clear that if a and b are both even, then the
character χ(a + 2,−a) + χ(1, 1) + χ(−b, b + 2) is the unique combination of χ’s
which gives the appropriate Hodge–Tate weights and satisfies the Satake condition
r + s = 2. This explains why we have seen one eigenform of this type when a, b are
both even and none otherwise.

The situation for automorphic inductions of modular eigenforms is more compli-
cated. The representation associated to a classical modular eigenform of weight k
has Hodge–Tate weights 0 and k− 1, and the Satake parameters at p have complex
absolute values p(k−1)/2, so characters of the form χ(r1, s1) + χ(r2, s2)ap can only
appear when r1 + s1 = 1 and r2 + s2 + (k − 1) = 2. Checking all the possible cases,
we find that there are potentially 3 families of automorphic eigenforms on U3, with
weights and Tp eigenvalues given by

χ(1, 1) + χ(−s, 3 − k + s)ap weight (k − 3 − s, s, 0)
χ(2 − r, r) + χ(1, 2 − k)ap weight (k − 2, r − 2, 0)
χ(r, 2 − r) + χ(2 − k, 1)ap weight (r − 2, k − 2, 0)

4.7. A non-endoscopic form
Weight (3, 3) is the first case where the action of the Hecke operators is not

diagonalisable over E. One obtains two Hecke-invariant subspaces of dimension 2,
corresponding to Galois orbits of eigenforms.

The first subspace splits over E(
√

46), and the Tp,1-eigenvalues are χ(1, 1) +
χ(−3,−3)cp, where cp is the unique Galois orbit of modular eigenforms of weight 9
for Γ1(7) such that c2 is defined over this field. In this case, Tp,2 coincides with Tp,1.
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The second space is more interesting. Here Tp,1 and Tp,2 commute with each other
and have the same eigenvalues, but are not identical; so for the two eigenforms in
the orbit, the Tp,1-eigenvalue of one form is the Tp,2-eigenvalue of the other form
and vice versa. The eigenvalues are all defined over Q(

√−259), and the Satake
polynomial for one of the primes above 2 is

X3 − −7 +
√−259
8

X2 +
−7 −√−259

4
X − 8.

Since the Satake polynomial is irreducible over E(
√−259), the Satake parameters

are all Gal(E/E)-conjugate; so none of them arise from Grössencharacters of E,
and thus the corresponding �-adic Galois representations must be irreducible of
dimension 3.

Let’s check the valuations of the Satake parameters. It can be shown [9] that
a cubic over C has all its roots of equal valuation if and only if, after scaling so
the constant terms is 1, it is of the form T 3 + aT 2 + aT + 1 with a lying inside a
deltoid in the complex plane with centre 0 and one cusp at 3; this is equivalent to
a = x + iy with x, y real such that

C(x, y) = (x2 + y2)2 − 8x(x2 − 3y2) + 18(x2 + y2) − 27 � 0.

In this case we find that C(x, y) = − 56727
4096 , so the condition is satisfied.

5. Some higher level examples

We shall now introduce some level structure at the prime 2. In preparation for
future work in which I intend to consider overconvergent automorphic forms, we
shall use a slightly different definition of automorphic forms in which the action
is twisted to the other side. We shall fix a prime p which is split in E and an
irreducible algebraic representation V of G (which will be defined over Qp), and
consider functions

f : G(Af ) → V such that f(γgk) = k−1
p f(g)

for all γ ∈ G(Q) and k ∈ K for some open compact K. This is isomorphic to the
previous space, via the map f(g) �→ gp ◦ f(g) (if we fix a choice of embedding of
E ↪→ Qp), but has the advantage that we only ever need to consider the action on
V of elements of Kp; this is useful when considering p-adic interpolation, as in [3]
or my University of London PhD thesis (in preparation).

The action of the Hecke algebra on this space is slightly different: we define
an action of a double coset KgK on automorphic forms of level K by writing
KgK =

⊔
giK, and defining

([KgK] ◦ f)(x) =
∑

i

(gi)pf(xgi).

It’s easily verified that this gives a well-defined linear endomorphism of the space
of automorphic forms.
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5.1. L-classes
We shall set p = 2; and we will define our level group L to be G(Z�) at all � �= 2,

and at 2 the subgroup Lp of GL3(Z2) which reduces mod 2 to
⎛
⎝
∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

⎞
⎠ .

This is the parahoric subgroup associated to a parabolic subgroup of GL3. We now
need to calculate L-classes and decompositions of Hecke operators for this case.

Lemma 5.1. Let U ′ ⊂ U be any finite index subgroups of G(Af ). Then we have
Mass(U ′) = [U : U ′] Mass(U).

Proof. This is an essentially trivial but fiddly manipulation.

Mass(U ′) =
∑

[v]∈G(Q)\G(Af)/U ′

1
|G(Q) ∩ vU ′v−1|

=
∑

[μ]∈G(Q)\G(Af)/U

∑
k∈U/U ′

1
|G(Q) ∩ μkU ′k−1μ−1| ·

1
size of orbit of k

(where we consider the action of U ∩ μ−1G(Q)μ on U/U ′ by left multiplication)

=
∑

[μ]∈G(Q)\G(Af)/U

∑
k∈U/U ′

1
|G(Q) ∩ μkU ′k−1μ−1| ·

|G(Q) ∩ μkU ′k−1μ−1|
|G(Q) ∩ μUμ−1|

= Mass(U) ·
⎛
⎝ ∑

k∈U/U ′
1

⎞
⎠

= Mass(U) · [U : U ′]

It’s readily seen that Lp is the subgroup of matrices in GL3(Z2) whose re-
duction mod p stabilises (∗, 0, 0)T under the left multiplication action on column
vectors; GL3(Z2) clearly acts transitively on these, so [K : L] = |P1(F2)| = 7. Hence
Mass(L) = 7

42 = 1
6 .

The proof of the above lemma indicates how to work out the L-classes, by cal-
culating, for each K-class G(Q)μK, how K ∩μ−1G(Q)μ acts by left multiplication
on K/L, which we can identify with P1(F2).

For the identity K-class, the group G(Q) ∩ K consists of a product of diagonal
±1’s (which all reduce to the identity and can be ignored) and permutation matrices.
So the action corresponds to permutation of coordinates on P1(F2), which has
exactly 3 orbits classified by the number of nonzero terms. Coset representatives
are given by: the identity (having stabiliser of order 16) and the matrices

⎛
⎝

1 0 0
1 1 0
0 0 1

⎞
⎠ and

⎛
⎝

1 0 0
1 1 0
1 0 1

⎞
⎠

(having stabiliser of order 16 and 48, respectively).
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For the nonidentity K-class, the extra generator τ of G(Q)∩αKα−1 conjugates
to an element of G(Af ) whose matrix reduces mod p to

⎛
⎝

1 1 1
1 0 1
1 0 0

⎞
⎠

This acts transitively on the elements of P2(F2), so G(Q)αK = G(Q)αL. The
stabilizer group must thus have size 48, and it is easy to enumerate its elements as
it is a subgroup of the finite group Γα of the previous two chapters.

5.2. The operator U
Motivated again by the theory of overconvergent automorphic forms, we consider

the action of the Hecke operator corresponding to the double coset Lηp,2L, where
p is the prime above 2 generated by ω. As the role it plays is roughly analogous to
the Atkin–Lehner Up-operator in Coleman’s theory, we shall denote it by the letter
U .

To decompose Lηp,2L into single cosets locally, we observe that if η = ηp,2,
then Lp ∩ ηLpη

−1 consists of those elements of Lp whose first column reduces to
(∗, 0, 0)T mod 4. This is an index 4 subgroup of Lp and coset representatives φi

may be obtained by taking the first column to be (1, 0, 0)T , (1, 2, 0)T , (1, 0, 2)T and
(1, 2, 2)T . We hence obtain a decomposition of LηL as

⊔4
i=1 φiηL.

As in the level K case, the final step is to write each single coset in terms of our
chosen L-class representatives μ1 . . . μ4, and more generally to do the same for the
products μrφsηL. This is easy using an adaptation of Algorithm A: we note that if
γ ∈ G(Q) satisfies γμt ∈ μrφsηL, then the largest denominator that can possibly
occur in γ has norm either 2, 4 or 8, depending on (r, s, t). We then generate lists
of the 2, 4 and 8-good matrices, and for each coset μrφsηL, we use these to find
a representative for this coset in the form γμt (testing each of the possible values
of t in turn until one works). Note that we must explicitly test φ−1

s μ−1
r γμ−1

t for
membership of L, rather than dodging this check using elementary factors as before.
The results of this computation are shown in Table 4.

Remark 5.2. Since the group Lp we have chosen is a parahoric subgroup, one can
attach invariants to double cosets LpgLp ⊂ GL3(Qp) (analogous to elementary
factors) using the Bruhat—Iwahori decomposition. One can probably use this to
calculate the Hecke operators more efficiently; but the slower method above is
more flexible and would apply to any group L for which we could compute K/L
and L/(L ∩ ηLη−1).

5.3. Automorphic forms and slopes
The coset representatives calculated in Table 4 can now be used to calculate

automorphic forms of level L using the same machinery as before. The choice of
level structure and of U operator should imply that the resulting objects interpolate
well 2-adically as the a component of the weight varies. See Table 5 for a table of
the 10 smallest 2-adic slopes of the U operator on forms of weight (a, 0, 0), for
various integers a (necessarily even). This table shows clear evidence of the 2-adic
local constancy of the slopes.
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μ1φ1ηL =

⎛
⎜⎝

1 0 0
0 1 − w

2 0
0 0 1 − w

2

⎞
⎟⎠μ1L μ3φ1ηL =

⎛
⎜⎝

w
2 −w

2 0
w
2

w
2 0

0 0 1

⎞
⎟⎠μ4L

μ1φ2ηL =

⎛
⎜⎝

1 0 0
0 1 − w

2 0
0 0 1 − w

2

⎞
⎟⎠μ2L μ3φ2ηL =

⎛
⎜⎝

w
2

w
2 0

−w
2

w
2 0

0 0 1

⎞
⎟⎠μ4L

μ1φ3ηL =

⎛
⎜⎝

1 0 0
0 0 1 − w

2

0 1 − w
2 0

⎞
⎟⎠μ2L μ3φ3ηL =

⎛
⎜⎝

1 0 0
0 w

2
w
2

0 w
2 −w

2

⎞
⎟⎠μ4L

μ1φ4ηL =

⎛
⎜⎝

1 0 0
0 1 − w

2 0
0 0 1 − w

2

⎞
⎟⎠μ3L μ3φ4ηL =

⎛
⎜⎝
−w

2
w
2 0

w
2

w
2 0

0 0 1

⎞
⎟⎠μ4L

μ2φ1ηL =

⎛
⎜⎝

w
2 −w

2 0
w
2

w
2 0

0 0 1 − w
2

⎞
⎟⎠ μ1L μ4φ1ηL =

⎛
⎜⎝
−w

2 −w
4 + 1

2 −w
4 + 1

2

0 −w
4 − 1

2
w
4 + 1

2
w
2 −w

4 + 1
2 −w

4 + 1
2

⎞
⎟⎠ μ1L

μ2φ2ηL =

⎛
⎜⎝

w
2

w
2 0

−w
2

w
2 0

0 0 1 − w
2

⎞
⎟⎠ μ1L μ4φ2ηL =

⎛
⎜⎝
−w

4 + 1
2 −w

2 −w
4 + 1

2
w
4 + 1

2 0 −w
4 − 1

2

−w
4 + 1

2
w
2 −w

4 + 1
2

⎞
⎟⎠ μ1L

μ2φ3ηL =

⎛
⎜⎝

0 w
2 −w

2

0 w
2

w
2

1 − w
2 0 0

⎞
⎟⎠ μ2L μ4φ3ηL =

⎛
⎜⎝
−w

2 −w
4 + 1

2 −w
4 + 1

2

0 −w
4 − 1

2
w
4 + 1

2
w
2 −w

4 + 1
2 −w

4 + 1
2

⎞
⎟⎠ μ3L

μ2φ4ηL =

⎛
⎜⎝

0 w
2

w
2

0 −w
2

w
2

1 − w
2 0 0

⎞
⎟⎠ μ2L μ4φ4ηL =

⎛
⎜⎝
−w

4 + 1
2 −w

2 −w
4 + 1

2

−w
4 − 1

2 0 w
4 + 1

2

−w
4 + 1

2
w
2 −w

4 + 1
2

⎞
⎟⎠ μ1L

Table 4: Decomposition of the double coset LηL

Note that the slopes of U are not remotely locally constant with regard to vari-
ation in the b direction in the weight lattice; indeed the dimension of its ordinary
subspace grows as b gets large (in the archimedean sense!). This is unsurprising, as
U does not define a compact endomorphism on the space of overconvergent forms
as defined in [3], but it is compact restricted to the smaller space of ‘semi-classical’
automorphic forms associated to the parabolic subgroup corresponding to the para-
horic Lp — see my forthcoming University of London PhD thesis for the definitions
and properties of these spaces. This space corresponds to allowing p-adic variation
in the a direction but not the b direction in the weight lattice.

A striking aspect of these tables of slopes is the fact that they are often non-
integral. This is very much contrary to the case of GL2 where slopes are “usually”
integral, at least for weights in the centre of weight space (Wan has conjectured
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a Slopes
0 0 1 2 2
2 0 1 3

2
3
2 3 4

4 0 1 2 5
2

5
2 3 3 4 5 5

6 0 1 3
2

3
2 3 3 7

2
7
2

11
2

11
2

8 0 1 2 2 2 4 4 9
2

9
2

9
2

10 0 1 3
2

3
2 3 5 5 5 5 11

2
12 0 1 2 8

3
8
3

8
3 3 4 5 6

14 0 1 3
2

3
2 3 3 7

2
7
2

11
2

11
2

16 0 1 2 2 2 4 4 14
3

14
3

14
3

Table 5: The 10 smallest slopes of U acting on forms of level L and weight (a, 0, 0),
for even a � 16.

that for any fixed weight k the denominators of the slopes of overconvergent forms
at weight k is bounded). Extending the computations above gave an example of a
form with slope 74

7 at weight (5, 5, 0).

6. Implementation details

6.1. Algorithms for r-good matrices

The time-consuming step in Algorithm A, which was used in several places, is
to calculate all elements of GL3(OE) satisfying mm† = r; to calculate the Hecke
operator at a split prime p one needs to consider r = p, 2p, and 4p, so to have a
reasonable supply of primes one needs to consider r ≈ 100. Clearly this is equiv-
alent to finding all orthogonal triples of vectors of length r in O3

E , regarded as a
6-dimensional Z-lattice. I experimented with two different algorithms, both of which
have the same first step of generating a complete list L of the vectors of length r.
This list is typically quite large — since the theta-function of the lattice O3

E is a
modular form of weight 3 and level Γ1(7), it is easily seen that for r = p, 2p, 4p with
p a prime split in E, there are Θ(p2) such vectors (with leading terms that can be
calculated precisely using Eisenstein series in each case).

The obvious algorithm is to regard this as a graph triangle enumeration prob-
lem: consider the graph whose vertices are the vectors in L and where vertices
u, v are joined by an edge if they are orthogonal. This graph is typically not very
dense, so from an appropriate sparse representation of its adjacency matrix one can
enumerate all triangles in it quickly by a vertex-iterator approach. The most com-
putationally difficult step is calculating the adjacency matrix: testing all possible
pairs of elements of L will take O(p4) steps.

A more devious alternative is to calculate, for each vector v of length r, a basis
for the orthogonal complement of v in O3

E , as a 4-dimensional Z-lattice; enumerate
vectors of length r in this; and find the orthogonal complement of these, to give
orthogonal triples. This option turns out to be very much quicker for large r, as the
orthogonal complement lattices typically have very few short vectors.
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6.2. Programs included with this paper
Accompanying this paper is a selection of computer programs that were used in

the calculations above; they can be downloaded from http://www.lms.ac.uk/jcm/
11/lms2008-002/. These use a combination of the Sage [13] and Magma [2] com-
puter algebra systems; users who do not have access to Magma can still use the
code for level 1 automorphic forms, but will be restricted to those primes for which
precalculated lists of r-good matrices are included.
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