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BOOLEAN ALGEBRAS OF PROJECTIONS IN
(DF)- AND (LF)-SPACES

J. BONET AND W.J. RlCKER

Conditions are presented which ensure that an abstractly cr-complete Boolean algebra
of projections on a (DF)-space or on an (LF)-space is necessarily equicontinuous
and/or the range of a spectral measure. This is an extension, to a large and important
class of locally convex spaces, of similar and well known results due to W. Bade
(respectively, B. Walsh) in the setting of normed (respectively metrisable) spaces.

1. INTRODUCTION AND MAIN RESULTS

The theory of Boolean algebras of projections in Banach (and more general) spaces

is a natural extension of the notion of "resolution of the identity" for normal operators

in Hilbert space. An underlying principle is to realise the Boolean algebra (whenever

possible) as the range of some spectral measure defined on a a-algebra of sets. The well

developed theory of vector and projection-valued measures and integration with respect

to them can then be invoked; see [3, 4, 5, 6, 10, 15, 17] and the references therein, for

example. To make this realisation possible, there are two minimal but essential properties

required of the Boolean algebra; it should be at least a-complete as an abstract Boolean

algebra and it should be uniformly bounded (that is, equicontinuous) as a family of con-

tinuous linear operators. In the setting of Banach (respectively Frechet) spaces these two

properties are intimately connected since abstract ^-completeness ensures automatically

the uniform boundedness, [1], (respectively, equicontinuity, [19]) of the Boolean algebra

of projections. For locally convex Hausdorff spaces which are non-metrisable, this is no

longer the case in general, [11]. Accordingly, in this setting it becomes useful to identify

properties of the underlying locally convex Hausdorff space or classes of such spaces,

which lead to the conclusion that (certain) Boolean algebra's of projections on these

spaces are automatically either equicontinuous and/or the range of a spectral measure;
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see [16, Section 3] for such a result. The aim of this note is to present some further

results of this kind within the classes of (DF)-spaces and (LF)-spaces. It is time to be

more precise.

Let AT be a locally convex Hausdorff space and L(X) be the space of all continuous

linear operators of X into itself. To stress when L(X) is equipped with the topology of

uniform convergence on the finite (respectively, bounded) subsets of X we write LS(X)

(respectively, L),(X)). The zero and identity operators on X are denoted by 0 and / ,

respectively. The continuous dual space of X is written as X'. A family ^ C L(X) of

commuting projections which contains 0 and / is a Boolean algebra if it contains I — Q\

and QiAQ2:= Q\Q2 and Qi VQ2 = Qi + Q2 -Q1Q2 whenever Qx,Q2 € JC. The partial

order ^ in ^ is given by Qx ^ Q2 (that is, Q\Q2 = Qi) if and only if QXX C Q2X.

THEOREM 1 . 1 . Let X be a quasibarrelled (DF)-space. Then every Boolean alge-

bra of projections on X which is a-complete as an abstract Boolean algebra is necessarily

equicontinuous.

For certain classes of locally convex Hausdorff spaces X, particular types of Boolean

algebra's of projections on X can be identified as equicontinuous. For instance, B. Walsh

proved that if X is a strict inductive limit of Frechet spaces (briefly, s(LF)-space) and

^ C L(X) is an abstractly cr-complete Boolean algebra of projections having the prop-

erty that each set {Qx : Q € ^}, for x G X, is contained in one of the limitands in the

inductive limit making up the space X, then ^ is necessarily equicontinuous, [19, pp.

298-299].

THEOREM 1 . 2 . Let X = indn Xn be an (LF)-space and JZ C L(X) be an ab-

stractly a-complete Boolean algebra of projections.

(i) If, for every x € X, there exists n(x) € N such that

(1) Jt{x) := {Qx : Q € ^ } C Xn{x),

then M is necessarily equicontinuous.

(ii) Suppose that X is regular. ifJt is equicontinuous then, for every x € X,

there exists n(x) € N such that (1) holds.

Since not every (LF)-space is an s(LF)-space (see Section 3) this is a genuine

strengthening of Walsh's result.

A Boolean algebra of projections ^ C L(X) is called Bade a-complete if it is cr-

complete as an abstract Boolean algebra and if, for every sequence {Qn}%Li Q -dP, we

have {AnQn)X = H Q*x a n d (VnQn)X = span (\J Qnx), where the bar denotes
n = l V n = l '
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closure in X. This notion was introduced by W. Bade (without the term "Bade") for

Banach spaces [1, 6]. By a spectral measure in X is meant a cr-additive map P : E

-¥ LS(X), defined on a cr-algebra of subsets E of some non-empty set f2, satisfying

P(fi) = / and P(E n F) = P(E)P(F), for every E,F € E. The range P ( E ) , of P, is

always a Bade u-complete Boolean algebra of projections on X. In metrisable spaces X,

the converse is also known to be true; see [6, p. 2204] for Banach spaces and [19] for the

non-normable case. For non-metrisable locally convex Hausdorff spaces X the situation

is far more subtle; see [12], for instance, and the references therein. The following result

makes a further contribution in this direction.

THEOREM 1 . 3 . Let X be a (DF)-space. Then every Bade a-complete Boolean

algebra of projections on X is the range of some spectral measure.

Since X is not required to be quasibarrelled, the equicontinuity of Boolean algebra's

of the kind in Theorem 1.3 is not guaranteed by Theorem 1.1.

2. P R O O F O F T H E O R E M S

Recall that a locally convex Hausdorff space X possesses a fundamental sequence of

bounded sets, if there exist bounded sets B\ c Bi C . . . in X such that every bounded

subset of X is contained in.some Bn. This is equivalent to the strong dual X'0 being

metrisable; [13, p. 250] or [7, p. 257].

LEMMA 2 . 1 . Let X bea locally convex Hausdorff space such that X'p is metrisable.

Then every abstractly a-complete Boolean algebra of projections on X is a bounded

subset of Lb(X).

PROOF: Let ^ C L(X) be an abstractly cr-complete Boolean algebra of projections.

Then the collection of adjoint operators JZ' := {Q' : Q € ̂ } is a subset of L{X'p), [18,

p. 130], and again forms a Boolean algebra of projections. The abstract u-completeness

of M' follows from that of J&\ see [14, p. 290]. Moreover, the metrisability of X'B then

ensures that ./#' is equicontinuous in L(X'p), [19, Proposition 1.2].

A neighbourhood basis of 0 in X'p is given by the polars

A°:={x'eX':\{x,x')\^l, x e A],

as A varies through the closed, absolutely convex, bounded subsets of X. Fix such a set

A. By equicontinuity of ~dt' there is another closed, bounded, absolutely convex subset

BCX such that Q'{B°) C A" for all Q € ̂ . Since B = B°°, we have

\(Qx,x')\ = \(x,Q'x')\^l, xeA, x'eB°,
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for every Q e M, that is, Q{A) C B for every Q e M. This is precisely the statement

that JJZ is bounded in Lb(X). D

Recall that a locally convex Hausdorff space X is a (DF)-spoce if it possesses a fun-

damental sequence of bounded sets and has the property that every bounded subset of X'0
which is the union of countably many equicontinuous subsets is itself equicontinuous; see

[7, p. 253] or [18, p. 154], for example. This latter property is also called H0-barrelledness,

[7, pp. 251-252]. In particular, every quasibarrelled locally convex Hausdorff space X

such that X'p is metrisable is a (DF)-space.

P R O O F OF THEOREM 1.1: Let ^ C L(X) be an abstractly cr-complete Boolean

algebra of projections. By Lemma 2.1, ^ is bounded in Lb(X). The quasibarrelledness

of X then ensures that ^ is equicontinuous, [9, p. 137]. D

Let ^ C L(X) be a Boolean algebra of projections. A monotonic sequence

{Qn}??=i C ^ is called a-small, [12], if given any neighbourhood U of 0 in X there exists

another neighbourhood V of 0 in X such that, for each x E V, there exists n(x) 6 N

with the property that Qnx € U for all n ^ n(x). In particular, if {Qn}£Li is either a

convergent sequence in LS(X) or an equicontinuous subset of L(X), then it is necessarily

a-small. We say that ^ itself is cr-small if every monotonic sequence in <rfl is a-small.

LEMMA 2 . 2 . Let X be a (DF)-space. Then every abstractly a-complete Boolean

algebra of projections on X is necessarily o -small.

PROOF: Let JZ C L(X) be an abstractly a-complete Boolean algebra of projections.

By Lemma 2.1, ^ is a bounded subset of Lb(X). In particular, if {Qn}%Li C ^ is any

monotonic sequence, then it is a bounded subset of Lb{X). By [7, Theorem 12.2.1],

{Qn}%Li is an equicontinuous part of L(X) and hence, as noted above, it is then cr-

small. D

P R O O F OF THEOREM 1.3: Since every Bade a-complete Boolean algebra of projec-

tions is also abstractly ^-complete, the conclusion follows immediately from Lemma 2.2

and [12, Theorem 2]. D

So, it remains to establish Theorem 1.2.

An inductive limit X = indnXn, of increasing subspaces {Xn}™_, of X is an (LF)-

space if each Xn is a Frechet space (for a locally convex Hausdorff topology rn), if the

inclusion pn : (Xn,Tn) •-> (Xn+i,rn+1) is continuous for each n € N, and where the lc-

topology r on X is the finest making the inclusions {Xn,Tn) «-> (X,T), for each n G N,

continuous. It is assumed that (X, r) is Hausdorff; this is not always so, [13, Observa-

tion 8.1.2(b)]. The (LF)-space X — indn Xn is called strict (that is, s(LF)) if pn is an

isomorphism of Xn into Xn+i, for each n e N. An (LF)-space X = indnXn is called

regular, [13, p. 285], if every bounded subset of (X, r) is contained and bounded in some
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(Xn, rn). For an (LF)-space X = indn Xn, if Xn is a Banach space, for each n € N, then

X is called an (LB)-spoce.

PROOF O F T H E O R E M 1.2: To establish part (ii), fix x-£ X. The equicontinuity

of ^ ensures that ^(x) is a bounded subset of X and then regularity of X guarantees

the existence of n(x) € N such that (1) holds.

To prove (i), notice that X is barrelled, [8, p. 368] and so it suffices to show that M

is bounded in LS(X). Suppose not. Then there exists x € X and a continuous seminormp

in X such that sup{p(Qrr) : Q € ^} = oo. Arguing as in the proof of Proposition 1.2. in

[19], with B := {\x : |A| < l } , there exist mutually disjoint projections {Hjje}^1 C Ji',

for each j € N, and projections Fj := VJijif^t in JZ (because of abstract cr-completeness)

such that

lim p (HtfFjx) = oo, j e N.
fc—*oo

For more details of such a construction see [15, pp. 43-45], where "property (a)" as

defined there, for any E € ^', now becomes a(E) := sup{p(Qa:) : Q e M', Q ^ E} = oo.

Let n(x) satisfy (1) and let {Uj}^.1 be a basis of neighbourhoods of 0 in the Frechet

space Xn(x). For each j € N, let a, € (0, (1/j)) satisfy CLJFJX e Uj and then select k(j)

such that p (Hjtk(j)Fjx) > {j/a,j). For each j € N define Xj := ajFjX, in which case

Xj € Uj. Then {xj}fLx is a null sequence in Xn(x) and hence, also in X. On the other

hand, the element F := V^.1Hj[ic(j) of ^ satisfies

p (FXj) = p (ajFjFx) = ajP (HjtkU)FjX) > j , j e N.

Since F € L(X) this is impossible and the proof is complete. D

3. CONCLUDING REMARKS

The class of locally convex Hausdorff spaces X such that X'^ is metrisable, which

is relevant for Lemma 2.1, is quite extensive. It includes all (DF), (gDF) and df-spaces.

Indeed, the df-spaces X are precisely those for which X'p is a Frechet space, [7, 12.4

Theorem 1]. The inclusion for the classes of spaces (DF) C (gDF) is proper, [13, p. 251],

as in the inclusion (gDF) C df, [7, p. 258]. Spaces X also exist for which X'0 is metrisable

but not complete, [13, Example 8.6.12].

In Lemma 2.2 and Theorem 1.3 the (DF)-space X is not required to be quasibarrelled

(as is the case for Theorem 1.1). Many such (DF)-spaces exist; see [13, Observation 8.3.6],

for example. Of course, if the (DF)-space is separable or has a fundamental sequence of

metrisable bounded sets, then it is necessarily quasibarrelled, [13, Proposition 8.3.13].

Finally some comments in relation to Theorem 1.2 are in order. Every s(LF)-space

is a regular (LF)-space, [8, Section 19.5], but not conversely; see the discussion prior
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to Proposition 8.5.18 of [13]. Since every s(LF)-space is complete, [8, p.255], there is

also an abundance of (LF)-spaces which are not strict, [13, Corollary 8.7.10]. There also

exist complete (LF)-spaces which are not s(LF), [13, Example 8.8.6]. The space $ of

test functions for distributions and the strong dual of the space of real analytic functions

are classical examples of regular (LF)-spaces. For further (natural) examples and details

about inductive limits we refer to [2].

Since every (LB)-space is both a (DF)-space, [13, Observation 8.3.6(a) and Propo-

sition 8.3.16], and barrelled, [13, Proposition 4.2.6], it follows from Theorem 1.1 that

every abstractly cr-complete Boolean algebra of projections on an (LB)-space is neces-

sarily equicontinuous. If, in addition, the (LB)-space is regular, then (1) holds for every

x £ X. To summarise, we have

PROPOSITION 3 . 1 . Let X = indnJYn be a reguiar (LB)- space. Then every

abstractly o-complete Boolean algebra of projections M C L(X) necessarily has property

(1), for every x € X.

As noted above (even for s(LF)-spaces), every s(LB)-space is regular. The converse

is not always valid, [13, Example 8.5.23(a)]. There also exist (LB)-spaces which are

not regular; see [13, Example 7.3.6 and Observation 8.5.14(d)]. The strong duals of

distinguished Frechet spaces exhibit a large class of regular (LB)-spaces, [13, Observation

8.5.14(e)]. Classical examples of regular (LB)-spaces are the space of distributions of

compact support and the Schwartz space of tempered distributions; see also [2] for further

examples.
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