ON A SINGULAR MEASURE OF D. M. CONNOLLY AND J. H. WILLIAMSON

by P. M. LUDVIK
(Received 5th August 1974)

In (1) a measure $\lambda \in M(\mathbb{R})$ is constructed and shown to satisfy the following:
(i) $\lambda * \tilde{\lambda}$ is absolutely continuous, where $\tilde{\lambda}$ denotes the measure with $\tilde{\lambda}(E)=\overline{\lambda\left(E^{-1}\right)}$ for all Borel sets E,
(ii) $\lambda * \lambda=\lambda^{2}$ is singular,
(iii) $\lambda^{k}=\lambda^{k-1} * \lambda$ is absolutely continuous for $k \geqq 6$.

The purpose of this note is to show that (iii) can be sharpened to read " for $k \geqq 3$ ".

Let us now fix some notation and show how the measure λ has been constructed. Denote by G the complete direct product $\prod_{r=1}^{\infty} G_{r}$, where G_{r} are finite cyclic groups $\simeq \mathbb{Z}\left(q_{r}\right)$. There is a natural continuous map from G into \mathbb{R} (or T) given by $g \rightarrow \sum_{r=1}^{\infty} g_{r} \cdot d_{r}^{-1}$, where $d_{r}=q_{1} q_{2}, \ldots, q_{r}$. This map, ϕ say, gives rise to a map between $M(G)$ and $M(\mathbb{R})(M(T))$ by $\phi(\mu)[f]=\mu[f \circ \phi]$ for $f \in C_{0}(\mathbb{R}), \mu \in M(G)$.

In (1) the authors have chosen $q_{r}=a_{r}^{2}+a_{r}+1, a_{r}$ is a power of a prime p_{r}, and Singer's theorem shows the existence of sets $X_{r} \subset G_{r}$ such that
(i) card $X_{r}=a_{r}+1$,
(ii) $X_{r}-X_{r}=\left\{x_{1}-x_{2} \mid x_{1} \in X_{r}, x_{2} \in X_{r}\right\}=G_{r}$,
(iii) $\sum_{r=1}^{\infty} a_{r}^{-1}<\infty$.

If we now take μ_{r} to be the uniform probability measure supported on X_{r}, i.e.

$$
\begin{array}{lll}
\mu_{r}\{x\}=\left(a_{r}+1\right)^{-1} & \text { for } & x \in X_{r} \\
\mu_{r}\{x\}=0 & & x \notin X_{r}
\end{array}
$$

and take $\mu \in M(G)$ to be $\mu=\bigotimes_{r=1}^{\infty} \mu_{r}$, the unique product measure corresponding to $\left\{\mu_{r}\right\}_{r=1}^{\infty}$, then λ is just the image $\phi(\mu)$ of μ.
G. Brown and W. Moran have established the following remarkable result (2, lemma 5, p. 12):

Let $\mu_{r}=m_{r}+\rho_{r}, m_{r}$ is the normalised Haar measure on G_{r}, μ_{r} a probability measure on G_{r}. Let $\mu=\bigotimes_{r=1}^{\infty} \mu_{r}$ and let $\phi(\mu)=v \in M(T)$. Write

$$
\alpha_{r}(k)^{2}=\int_{G_{r}}\left|\frac{d \rho_{r}^{k}}{d m_{r}}\right|^{2} d m_{r}=\int_{G_{r}}\left|\left(\rho_{r}^{k}\right)^{\wedge}(\gamma)\right|^{2} d \gamma=\sum_{\gamma \in G_{r}}\left|\left(\rho_{r}^{k}\right)^{\wedge}(\gamma)\right|^{2}
$$

Then, if $\sum_{r=1}^{\infty} \alpha_{r}(k)^{2}<\infty, v^{k}$ is absolutely continuous, i.e. $v^{k} \in L^{1}(T)$.
Let us now come back to the results of (1). Then $\lambda=\phi(\mu)$, where $\mu=\otimes \mu_{r}$ and μ_{r} are as specified above. Despite the fact that we do not know much about the sets X_{r} we can give a very precise description of $\mu_{r} * \tilde{\mu}_{r}$. It is trivial to see that

$$
\mu_{r} * \tilde{\mu}_{r}=\frac{1}{\left(a_{r}+1\right)^{2}}\left\{\left(a_{r}+1\right) \delta_{0}+\sum_{g \neq 0} \delta_{g}\right\},
$$

where δ_{g} is the unit mass of point g. So

$$
\begin{aligned}
\mu_{r} * \tilde{\mu}_{r} & =\frac{1}{\left(a_{r}+1\right)^{2}}\left\{a_{r} \delta_{0}+\sum_{g \in G_{r}} \delta_{g}\right\} \\
& =\frac{1}{\left(a_{r}+1\right)^{2}}\left\{a_{r} \delta_{0}+\left(a_{r}^{2}+a_{r}+1\right) m_{r}\right\} \\
& =m_{r}+\left\{\frac{a_{r}}{\left(a_{r}+1\right)^{2}} \delta_{0}-\frac{a_{r}}{\left(a_{r}+1\right)^{2}} m_{r}\right\} \\
& =m_{r}+\rho_{r} * \tilde{\rho}_{r}
\end{aligned}
$$

when $\mu_{r}=m_{r}+\rho_{r}$.
Thus

$$
\rho_{r} * \tilde{\rho}_{r}=\frac{a_{r}}{\left(a_{r}+1\right)^{2}} \delta_{0}-\frac{a_{r}}{\left(a_{r}+1\right)^{2}} m_{r}
$$

and so

$$
\begin{aligned}
\left(\rho_{r} * \tilde{\rho}_{r}\right)^{\wedge}(\gamma)=\left|\hat{\rho}_{r}(\gamma)\right|^{2} & =\frac{a_{r}}{\left(a_{r}+1\right)^{2}} & & \text { if } \gamma \neq 0 \\
& =0 & & \text { if } \gamma=0 .
\end{aligned}
$$

Hence the criterion of Brown and Moran takes the form

$$
\alpha_{r}(k)^{2}=\sum_{\gamma \in G_{r}}\left|\left(\rho_{r}^{k}\right)^{\wedge}(\gamma)\right|^{2}=\sum_{\gamma \in G_{r}}\left(\left|\hat{\rho}_{r}(\gamma)\right|^{2}\right)^{k}=\left(a_{r}^{2}+a_{r}\right) \cdot a_{r}^{k} /\left(a_{r}+1\right)^{2 k}
$$

since card $\hat{G}_{r}=$ card G_{r}. So $\alpha_{r}(k)^{2} \sim a_{r}^{2-k}$ and since by (iii) $\sum_{r=1}^{\infty} a_{r}^{-1}<\infty$ we have that $\sum_{r=1}^{\infty} \alpha_{r}(k)^{2}<\infty$ for $k \geqq 3$, which implies that λ^{k} is absolutely continuous for $k \geqq 3$.

REFERENCES

(1) D. M. Connolly and J. H. Williamson, An application of a theorem of Singer, Proc. Edinburgh Math. Soc. 19 (1974), 119-123.
(2) G. Brown and W. Moran, Coin tossing and powers of singular measures, Proc. Cambridge Philos. Soc., to appear.

University of York

