ON A SINGULAR MEASURE OF D. M. CONNOLLY AND J. H. WILLIAMSON

by P. M. LUDVIK

(Received 5th August 1974)

In (1) a measure $\lambda \in M(\mathbb{R})$ is constructed and shown to satisfy the following:

- (i) $\lambda * \tilde{\lambda}$ is absolutely continuous, where $\tilde{\lambda}$ denotes the measure with $\tilde{\lambda}(E) = \overline{\lambda(E^{-1})}$ for all Borel sets E,
- (ii) $\lambda * \lambda = \lambda^2$ is singular,
- (iii) $\lambda^k = \lambda^{k-1} * \lambda$ is absolutely continuous for $k \ge 6$.

The purpose of this note is to show that (iii) can be sharpened to read "for $k \ge 3$ ".

Let us now fix some notation and show how the measure λ has been constructed. Denote by G the complete direct product $\prod_{r=1}^{\infty} G_r$, where G_r are finite cyclic groups $\simeq \mathbb{Z}(q_r)$. There is a natural continuous map from G into \mathbb{R} (or T) given by $g \to \sum_{r=1}^{\infty} g_r \cdot d_r^{-1}$, where $d_r = q_1 q_2, \ldots, q_r$. This map, ϕ say, gives rise to a map between M(G) and $M(\mathbb{R})$ (M(T)) by $\phi(\mu)[f] = \mu[f \circ \phi]$ for $f \in C_0(\mathbb{R}), \mu \in M(G)$.

In (1) the authors have chosen $q_r = a_r^2 + a_r + 1$, a_r is a power of a prime p_r , and Singer's theorem shows the existence of sets $X_r \subset G_r$ such that

(i) card $X_r = a_r + 1$, (ii) $X_r - X_r = \{x_1 - x_2 \mid x_1 \in X_r, x_2 \in X_r\} = G_r$, (iii) $\sum_{r=1}^{\infty} a_r^{-1} < \infty$.

If we now take μ_r to be the uniform probability measure supported on X_r , i.e.

$$\mu_r \{x\} = (a_r + 1)^{-1}$$
 for $x \in X_r$
 $\mu_r \{x\} = 0$ $x \notin X_r$

and take $\mu \in M(G)$ to be $\mu = \bigotimes_{r=1}^{\infty} \mu_r$, the unique product measure corresponding to $\{\mu_r\}_{r=1}^{\infty}$, then λ is just the image $\phi(\mu)$ of μ .

G. Brown and W. Moran have established the following remarkable result (2, lemma 5, p. 12):

P. M. LUDVIK

Let $\mu_r = m_r + \rho_r$, m_r is the normalised Haar measure on G_r , μ_r a probability measure on G_r . Let $\mu = \bigotimes_{r=1}^{\infty} \mu_r$ and let $\phi(\mu) = v \in M(T)$. Write

$$\alpha_r(k)^2 = \int_{G_r} \left| \frac{d\rho_r^k}{dm_r} \right|^2 dm_r = \int_{G_r} |(\rho_r^k)^{\wedge}(\gamma)|^2 d\gamma = \sum_{\gamma \in G_r} |(\rho_r^k)^{\wedge}(\gamma)|^2$$

Then, if $\sum_{r=1}^{\infty} \alpha_r(k)^2 < \infty$, v^k is absolutely continuous, i.e. $v^k \in L^1(T)$.

Let us now come back to the results of (1). Then $\lambda = \phi(\mu)$, where $\mu = \otimes \mu$, and μ , are as specified above. Despite the fact that we do not know much about the sets X, we can give a very precise description of $\mu_r * \tilde{\mu}_r$. It is trivial to see that

$$\mu_{r} * \tilde{\mu}_{r} = \frac{1}{(a_{r}+1)^{2}} \{ (a_{r}+1)\delta_{0} + \sum_{g \neq 0} \delta_{g} \},$$

where δ_g is the unit mass of point g. So

$$\mu_{r} * \tilde{\mu}_{r} = \frac{1}{(a_{r}+1)^{2}} \{ a_{r} \delta_{0} + \sum_{g \in G_{r}} \delta_{g} \}$$

$$= \frac{1}{(a_{r}+1)^{2}} \{ a_{r} \delta_{0} + (a_{r}^{2}+a_{r}+1)m_{r} \}$$

$$= m_{r} + \left\{ \frac{a_{r}}{(a_{r}+1)^{2}} \delta_{0} - \frac{a_{r}}{(a_{r}+1)^{2}} m_{r} \right\}$$

$$= m_{r} + \rho_{r} * \tilde{\rho}_{r}$$

when $\mu_r = m_r + \rho_r$. Thus

$$\rho_{r} * \tilde{\rho}_{r} = \frac{a_{r}}{(a_{r}+1)^{2}} \,\delta_{0} - \frac{a_{r}}{(a_{r}+1)^{2}} \,m_{r}$$

and so

$$(\rho_r * \tilde{\rho}_r)^{\wedge}(\gamma) = |\hat{\rho}_r(\gamma)|^2 = \frac{a_r}{(a_r + 1)^2} \quad \text{if } \gamma \neq 0$$
$$= 0 \qquad \text{if } \gamma = 0.$$

Hence the criterion of Brown and Moran takes the form

$$\alpha_r(k)^2 = \sum_{\gamma \in \mathcal{G}_r} |(\rho_r^k)^{\wedge}(\gamma)|^2 = \sum_{\gamma \in \mathcal{G}_r} (|\hat{\rho}_r(\gamma)|^2)^k = (a_r^2 + a_r) \cdot a_r^k / (a_r + 1)^{2k}$$

since card $\hat{G}_r = \text{card } G_r$. So $\alpha_r(k)^2 \sim a_r^{2-k}$ and since by (iii) $\sum_{r=1}^{\infty} a_r^{-1} < \infty$ we have that $\sum_{r=1}^{\infty} \alpha_r(k)^2 < \infty$ for $k \ge 3$, which implies that λ^k is absolutely continuous for $k \ge 3$.

60

REFERENCES

(1) D. M. CONNOLLY and J. H. WILLIAMSON, An application of a theorem of Singer, *Proc. Edinburgh Math. Soc.* 19 (1974), 119-123.

(2) G. BROWN and W. MORAN, Coin tossing and powers of singular measures, *Proc. Cambridge Philos. Soc.*, to appear.

UNIVERSITY OF YORK