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Abstract
Regardless of whether or not all fast radio bursts (FRBs) repeat, those that do form a population with a distribution of rates. This work
considers a power-law model of this population, with rate distribution �r ∼ Rγr between Rmin and Rmax. The ZDM code is used to model
the probability of detecting this population as either apparently once-off or repeat events as a function of redshift, z, and dispersion mea-
sure, DM. I demonstrate that in the nearby Universe, repeating sources can contribute significantly to the total burst rate. This causes an
apparent deficit in the total number of observed sources (once-off and repeaters) relative to the distant Universe that will cause a bias in FRB
population models. Thus instruments with long exposure times should explicitly take repetition into account when fitting the FRB popula-
tion. I then fit data from The Canadian Hydrogen Intensity Mapping Experiment (CHIME). The relative number of repeat and apparently
once-off FRBs, and their DM, declination, and burst rate distributions, can be well explained by 50–100% of CHIME single FRBs being
due to repeaters, with Rmax > 0.75 d−1 above 1039 erg, and γr = −2.2+0.6

−0.8. This result is surprisingly consistent with follow-up studies of
FRBs detected by the Australian Square Kilometre Array Pathfinder (ASKAP). Thus the evidence suggests that CHIME and ASKAP view
the same repeating FRB population, which is responsible not just for repeating FRBs, but the majority of apparently once-off bursts. For
greater quantitative accuracy, non-Poissonian arrival times, second-order effects in the CHIME response, and a simultaneous fit to the total
FRB population parameters, should be treated in more detail in future studies.
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1. Introduction

Of the many mysteries surrounding fast radio bursts (FRBs; mil-
lisecond duration radio signals arising from cosmological dis-
tances Lorimer et al. 2007; Thornton et al. 2013) the question
of whether or not they all repeat remains one of the greatest
(e.g. Caleb et al. 2019). Since the discovery of the first repeat-
ing FRB, FRB 20121102A (Spitler et al. 2016), its localisation
to a dwarf galaxy and association with a persistent radio source
(PRS; Chatterjee et al. 2017), combined with its complex time–
frequency burst structure (Hessels et al. 2019), have distinguished
it from populations of apparently once-off FRBs, which arise from
a plethora of galaxy types (Bhandari et al. 2020; Heintz et al. 2020;
Bhandari et al. 2022; Gordon et al. 2023), and are more likely to
exhibit broadband, single-component morphologies (Pleunis et al.
2021). Further discoveries of repeating FRBs have somewhat mud-
dled this simple dichotomy however—while FRB 20190520B is
similar in both its bursts and its host galaxy to FRB 20121102A
(Niu et al. 2022), FRB 20180916B is located in a large spiral
galaxy, close to—but offset from—a star-forming region (Marcote
et al. 2020), while FRB 20200120E arises from a globular cluster
(Bhardwaj et al. 2021b; Kirsten et al. 2022), which as is typical for
such clusters, has no apparent star-forming activity.
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Models of the FRB population paint a similarly ambiguous pic-
ture. Very early FRB data was shown to be consistent with all
FRBs being similar to FRB 20121102A (Lu & Kumar 2016). As
more data became available, Caleb et al. (2019) was able to rule
out that all FRBs could repeat as rapidly as FRB 20121102A, while
James (2019) showed that the number of strong repeaters similar
to FRB 20121102A must be at most 27 Gpc−3 with 90% confi-
dence. Strong limits on the repetition rate of individual FRBs now
demonstrate that at least some repeat at most very rarely (James
et al. 2020b; Lin et al. 2023). More recently, Gardenier et al. (2021)
used FRBPOPPY (Gardenier et al. 2019) to match a population of
repeating FRBs to the dispersion measure (DM) distribution from
the Canadian Hydrogen Intensity Mapping Experiment (CHIME;
CHIME/FRB Collaboration et al. 2018). They confirm that for a
given population of repeating FRBs, those in the nearby Universe
will preferentially be detected as repeaters, while those in the dis-
tant Universe will more likely be viewed as once-off bursts. This
effect is qualitatively present in the CHIME data: repeaters at low
DM have a higher rate (as noted by D. Good at the FRB 2021
online conference, using data from CHIME/FRB Collaboration
et al. 2021), and the mean DM of repeaters is lower than that of
once-off bursts (CHIME/FRB Collaboration et al. 2023). However,
no quantitative analysis has attempted to fit this effect, whichmust
be present in the data. Thus the degree to which this is evidence
for repeating FRBs and intrinsically once-off bursts being distinct
populations remains unknown.

Another result from FRB population analysis is the all-
burst luminosity function, which is usually modelled as either a
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power-law or a Schechter function (e.g. Luo et al. 2020a; James
et al. 2022b; Shin et al. 2023). This is generally fitted to have a
comparable slope to original measurements of the FRB 20121102A
burst energy distribution (Law et al. 2017), indicating that the all-
burst spectrum could be built up as the sum of repeating FRBs.
More detailed measurements of burst energy spectra of repeaters
has shown behaviour much more complex than a single power-
law however (Li et al. 2021; Hewitt et al. 2022; Zhang et al. 2023,
2022), making comparisons difficult, though there are indications
that the very high-energy tail might remain consistent with results
from population models (Li et al. 2021; Hewitt et al. 2022; Zhang
et al. 2023, 2022), Again, the evidence for or against an FRB
population dominated by intrinsically repeating FRBs or once-off
events is ambiguous.

Results from both host galaxy and population modelling there-
fore indicate that FRB progenitors either come from multiple
populations, or if they do all repeat, must come from a broad dis-
tribution of repetition rates. The different morphologies observed
for repeating and once-off bursts is consistent with both pictures
(Pleunis et al. 2021); as is the observation of PRSs associated with
some of the brightest and most rapid repeating objects (Chatterjee
et al. 2017; Niu et al. 2022), since it is not implausible PRSs dis-
sipate and pulse morphologies change as the progenitor ages.
Even if some FRBs arise from intrinsically cataclysmic events,
such as black hole formation following a binary neutron star
merger (Zhang 2014; Falcke & Rezzolla 2014; Moroianu et al.
2023), it should be expected that the portion of the population
that does intrinsically repeat has a broad distribution of proper-
ties. And from an observational or modelling perspective, there
is no practical difference between FRBs which repeat very rarely,
and those that are intrinsically once-off. This motivates studies
which attempt to fit the properties of an intrinsically repeating
FRB population to observational data.

FRB observations however give a biased picture of the
true underlying FRB population. This is particularly the case
with repeaters, which make better targets for host galaxy
identification—of the 492 distinct FRBs published by CHIME/FRB
Collaboration et al. (2021) four repeaters have been localised to
their host galaxies (Marcote et al. 2020; Bhardwaj et al. 2021a;
Michilli et al. 2022), with a further single burst in that catalogue
since identified as a repeater and localised to its host (Ibik et al.
2023). However, only a single once-off CHIME FRB has a tenta-
tive host galaxy identification (Panther et al. 2022). Furthermore,
once trends in FRB behaviour become identified, these result in
preferential targeting with follow-up observations, for example,
the identification of FRB 20180301A as a repeater from its time–
frequency structure (Price et al. 2019; Luo et al. 2020b), or the
targeting of FRB 20121102A during its identified activity phase
(Rajwade et al. 2020; Li et al. 2021). Thus once a trend is identified,
follow-up observations will naturally reinforce them. It is impor-
tant to note that CHIME detects repeat bursts from FRBs in an
almost unbiased manner (CHIME/FRB Collaboration et al. 2019;
Fonseca et al. 2020)—the only other repeating FRB to be identi-
fied as such is FRB 20190520B (Niu et al. 2022), while all other
identifications have been through targeted follow-up observations.

Observational biases thus limit the use of repeating FRBs
in FRB population analyses, which model their cosmological
source evolution, burst energy distribution, spectral properties,
and local/cosmological/host DM contributions (e.g. Luo et al.
2020a; James et al. 2022b). When they are included, only the first
burst of a repeating FRB tends to be used (e.g. Shin et al. 2023), in

order to make the analysis as insensitive to their repeating nature
as possible.

We are only aware of one work which fits the intrinsic prop-
erties of the repeating FRB population. James et al. (2020a) use
results from follow-up observations of CRAFT FRBs with the
Murriyang (Parkes) and Robert C. Byrd Green Bank Telescope
(GBT) (James et al. 2020b), and assuming a power-law distribution
of FRB repetition rates R, dN(R)/dR∝ Rγr , the authors placed lim-
its on the power-law index γr < −2, and the maximum repetition
rate Rmax. The data fit however incorporated only one observed
repeater, FRB 20171019A (Shannon et al. 2018; Kumar et al. 2019),
and 19 non-repeaters, in particular FRB 20171020A (Mahony et al.
2018), the proximity of which rules out repetition rates greater
than 0.011 d−1 above 1039 erg (James et al. 2020b; Lee-Waddell
et al. 2023). Another work, Law, Connor, & Aggarwal (2022), uses
CHIMEdata tomodel themean apparent (i.e. not intrinsic) repeti-
tion rate, finding of 25–440 yr−1. The lower limit was calculated by
assuming that only sources observed to repeat were true repeaters,
while the upper limit assumed singly observed FRBs were also due
to repeaters. Interestingly, the authors note the potential of using
the population of PRS to constrain the repeating FRB population,
and vice versa.

The aim of this paper is to incorporate a model for repeating
FRBs into the framework of the ZDM code (James et al. 2021,
2022b), as described in §2. Example FRB populations are then
used to estimate the biasing effects of FRB repetition on the z–
DMdistribution of the FRB population in Section 3. In Section 4, a
model of CHIME is described, and in Section 5, it’s shown how the
model compares to CHIME FRBs from Catalogue 1 (CHIME/FRB
Collaboration et al. 2021). In Section 6, a fit is performed of FRB
repetition parameters to CHIME data, and use the results to make
predictions for future experiments in Section 7. Potential system-
atic effects are discussed in Section 8. The results are compared
to those from FRB follow-up observations with the Australian
Square Kilometre Array Pathfinder (ASKAP), and estimates of the
number density of PRS, in Section 9; findings are summarised in
Section 10.

Throughout, I use the nomenclature of ‘burst’ to refer to a
single FRB (which nonetheless may have multiple components,
typically onms or sub-ms scales); while ‘FRB’ or ‘progenitor’ refers
to the progenitor objects, such that a single repeating FRB emits
multiple bursts.

A standard Planck cosmology (Planck Collaboration et al.
2020) with H0 = 67.4 km s−1 Mpc−1 is used throughout. The
Kolmogorov–Smirnov (‘KS’; Kolmogorov 1933; Smirnov 1948)
test is used to assess consistency between observed and expected
distributions. This is a somewhat arbitrary choice, with no strong
preference compared to, for example, the Anderson-Darling test
(‘AD’; Anderson & Darling 1954), though the extra sensitivity of
the AD test to the tails of the distributions analysed herein may
not be desirable.

2. Modelling repeating FRBs

I begin by characterising repeating FRBs solely by their time-
averaged burst rate R, which is defined as their intrinsic rest-frame
rate of producing bursts above 1039 erg. All FRBs are treated as
repeating according to a Poissonian distribution (see Section 8.1
for a discussion of this assumption), such that the probability of
them producingN observed bursts given an expectation λ = RobsT
(for some time interval T) is
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P(N) = λN exp (−λ)
N! . (1)

It is assumed that each repeating FRB has an identical energy
distribution, with cumulative probability described by an upper
incomplete Gamma (Schechter) function. Thus the observable
rate Robs above some energy Eth (itself a function of z, DM, and
position in the telescope beam) scales as

Robs(Eth)= R
1+ z

∫ ∞
Eth

(E/Emax)γ e−E/EmaxdE∫ ∞
1039 (E/Emax)γ e−E/EmaxdE

, (2)

where γ is the cumulative power-law index, and Emax some cut-off
energy.

The population density of repeating FRBs, �r (progenitors
Mpc−3), is modelled with repetition rates above some rate R via
a power-law distribution of their intrinsic repetition rates R,

Cr (R< Rmin) (3)
�r(R)= 0 (R> Rmax)

Cr

(
R

Rmin

)γr+1−
(

Rmax
Rmin

)γr+1

1−
(

Rmax
Rmin

)γr+1 otherwise,

between minimum and maximum rates Rmin and Rmax respec-
tively, with differential power-law index γr , and constant popu-
lation density Cr . The differential rate is more commonly used,
which is defined as

d�r(R)
dR

= C′
rR

γr (4)

C′
r = (γr + 1)Cr

Rγr+1
min − Rγr+1

max
.

In this model, the total burst density above 1039 erg, C (bursts
Mpc−3 yr−1), is related to the population of repeaters via

C =
∫ Rmax

Rmin

RC′
rR

γr dR

= C′
r

γr + 2

[
Rγr+2
max − Rγr+2

min

]
. (5)

As per previous work, both C and Cr are defined as the number
of bursts and FRB progenitors respectively observed at 1.3GHz at
z = 0. Both are treated as evolving with the star-formation rate,
such that Cr evolves as

Cr(z) = Cr

(
SFR(z)

SFR(z = 0)

)nsfr
. (6)

nsfr is used to scale smoothly between a non-evolving population
(nsfr = 0), one evolving with the star-formation rate (nsfr = 1), and
a population with a stronger peak at high redshift, such as AGN
activity (nsfr > 1). In the case of C, an additional factor of (1+ z)−1

is included on the right-hand side of (6), due to the time dilation
effect. However, the number of FRB progenitors is unaffected by
time dilation; rather, the time dilation effect is instead included
when scaling between the rate seen by an observer and the intrinsic
rate.

2.1. Implementation in the ZDM code

The ZDM code was originally developed for the analysis of James
et al. (2022b), and has since been extended as per James et al.
(2022c) and Baptista et al. (2023). It calculates the expected num-
ber of FRBs from an FRB survey as a function of their redshift

z, dispersion measure DM, and relative fluence F compared to
threshold fluence Fth. The key parameters of the code, and their
current best-fit values, are given in Table 1.

For this analysis, only the measured values of z and DM for
an FRB are considered—unlike previous works, where signal-to-
noise ratio (SNR) is also used. I add an additional observable:
whether or not an FRB is observed as a repeater. This is treated
as a boolean, that is, the number of observed repeats is not used.
Furthermore, only repetition information obtained through ini-
tial blind surveys is considered, that is, this analysis is not suited
to modelling FRBs determined to repeat or not through tar-
geted follow-up observations. While CHIME remains the only
FRB instrument to observe repeat bursts by this definition, the
non-observation of repeaters in other blind surveys can still be
included.

The total number of repeaters in any given z–DM bin is given
by:

N(z, DM) = Cr(z)
dV
dzd�

�zfz(DM)�DM��, (7)

where �� is the solid angle observed by the beam, �z and �DM
are the bin sizes of the z–DM grid, dV(dzd�)−1 is the size of the
cosmological volume element, and fz(DM) is the distribution of
DMs of FRBs at that redshift (itself a function of cosmological and
host galaxy contributions, as given in James et al. 2022b).

The distribution of intrinsic FRB rates within that volume ele-
ment is given by (4), which for any given threshold energy Eth,
produces a distribution in Robs as per (2). Thus the expected
number of once-off FRBs from that volume becomes

〈N1(z, DM)〉 = dV
dzd�

�zfz(DM)�DM�� (8)

·
∫ Rmax

Rmin

RobsTobse−RobsTobs
d�r(R)
dR

dR
dRobs

dRobs.

Here, I have left off the dependence of R on Robs, expressed
through (2). Similarly,

〈N0(z, DM)〉 = dV
dzd�

�zfz(DM)�DM�� (9)

·
∫ Rmax

Rmin

e−RobsTobs
d�r(R)
dR

dR
dRobs

dRobs

calculates the number of progenitors for which no bursts are
detected. Thus, the expected number of repeating FRBs can be
deduced as

〈Nreps〉 =N − 〈N1〉 − 〈N0〉. (10)

This therefore allows a likelihood to be assigned to both once-
off and repeating FRBs as a function of redshift z and dispersion
measure DM.

3. The effects of repetition on FRB redshift distributions

To qualitatively illustrate how the presence of FRB repetition
affects the measured FRB redshift distribution, I perform example
calculations for the CRAFT incoherent sum (ICS; Bannister et al.
2019) survey parameters as described in James et al. (2022b). Since
this observingmode is mostly commensal, total time per field Tf to
the end of 2022 has been at most ∼37 d (Shannon et al. in prepa-
ration). For illustrative purposes however, Tf is varied between 10,
100, and 1000 d, and a central frequency of 1.3GHz is used.
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Table 1. FRB population parameter sets used in this work. Shown are the best-fit parameter sets from Shin et al. (2023) and James et al. (2022c), and a set
of 12 parameter sets from James et al. (2022c) when each parameter takes the minimum/maximum value within its 90% confidence interval. The p-values
from KS tests against the observed rate of CHIME single bursts is given as pKS for different sets of FRB population parameters.

Scenario Emaxa αb γ c nsfrd log10 μhost
e σhost

f log10 Cg pdist
h

DM pstrong
i

DM

log10 [erg] pc cm−3 Gpc−3yr−1

Shin et al. (2023) 41.38 -1.39 -1.3 0.96 1.93 0.41 4.99 0.0028 10−12

James et al. (2022c) 41.26 -1.0 -0.95 1.13 2.27 0.55 4.47 10−22 10−54

Emax min 41.0 -1.0 -0.7 1.0 2.3 0.6 4.63 10−21 10−38

max 41.8 -1.0 -1.1 1.25 2.2 0.5 4.57 10−80 10−100

α min 41.3 -1.91 -0.9 0.75 2.2 0.6 5.00 0.56 10−23

max 41.3 0.24 -0.9 0.75 2.2 0.6 4.94 10−7 10−26

γ min 41.8 -1.5 -1.18 1.75 2.2 0.5 4.35 10−125 10−138

max 41.2 -1.0 -0.66 1.0 2.2 0.6 4.40 10−40 10−61

nsfr min 41.3 0.0 -0.8 0.49 2.2 0.6 4.87 10−8 10−27

max 41.4 -1.9 -1.0 1.91 2.2 0.6 4.13 10−126 10−135

μhost min 41.5 -1.0 -0.9 1.25 1.98 0.6 4.40 10−60 10−78

max 41.3 -1.0 -0.9 1.0 2.45 0.6 4.69 10−53 10−74

σhost min 41.5 -1.0 -1.0 1.25 2.2 0.43 4.56 10−54 10−74

max 41.4 -1.0 -0.9 1.25 2.2 0.82 4.50 10−65 10−83
aDownturn (∼‘maximum’) FRB energy, assuming a 1GHz rest-frame emission bandwidth.
bFrequency scaling of rate: C ∝ να .
cCumulative power-law index of the FRB luminosity function.
dScaling of FRB density with star-formation: C ∝ SFRnsfr .
eLog-mean of host galaxy DM contribution.
fLog-standard deviation of host galaxy DM contribution.
gAbsolute total burst rate above 1039 erg at 1.3 GHz at z = 0.
hp-value from the KS test assuming the distributed repeaters scenario.
ip-value from the KS test assuming the strong repeaters scenario.

For repeating FRB parameters, I consider two scenarios. The
first is strong repeaters only, setting Rmax = Rmin = 4 d−1 (thus
making γr irrelevant), which is approximately the time-averaged
rate observed above 1039 erg for FRB 20121102A by Li et al. (2021),
divided by four to account for the off part of the activity cycle
(Rajwade et al. 2020); this is also consistent with the time-averaged
rate observed by Law et al. (2017). The second is a more realistic
scenario, with a distribution of repeaters with Rmax=10 d−1 (i.e.
slightly above FRB 20121102A), Rmin = 10−3 d (slightly below FRB
20171020A), and an index of γr = −2.2, which is consistent with
the results of James et al. (2020a).

For the remaining properties of the FRB population, note that
most previous models have analysed only once-off FRBs, or alter-
natively, included only the first burst of repeating FRBs. Several
authors have derived values constraining (2), typically obtain-
ing a cumulative fluence index γ ∼ −1, Emax ∼ 1041−42 erg, with
O ∼ 105 FRBs Mpc−3 yr−1 in the local Universe, and finding no
evidence for a minimum energy (Luo et al. 2020a; James et al.
2022a,c; Shin et al. 2023). For now, the best-fit values from James
et al. (2022c)—given in Table 1—are used, and other possibilities
are considered in Section 5.

The results for strong and distributed repeaters are shown in
Fig. 1, in units of expected bursts per day. The total number of
expected detected bursts is identical in all scenarios. However, all
other measurable quantities depend on Tf and the nature of the
repeating FRB population. In all scenarios, intrinsically repeat-
ing FRBs (dotted lines) are more likely to be detected as such
in the nearby Universe, which is the expected result. Necessarily,
this decreases the expected number of once-off bursts in the local
Universe (thin solid lines), since each FRB detected to repeat

removes its first detected burst from the once-off distribution. The
standard method of including repeating FRBs in population mod-
els, that is, counting them only once using the first measured burst
and adding apparently once-off bursts, is shown as ‘Total progen-
itors’ (dashed lines). This method still results in a deficit of the
modelled population in the local Universe compared to the total
burst population. Only when including all bursts from measured
repeaters (dot-dashed lines) as well as single bursts will the bias
against low-redshift FRBs disappear.

The effect of Tf is evident from Fig. 1. As Tf increases (shown
via changing colour), more intrinsically repeating FRBs in the
nearby Universe are detected with multiple bursts. Thus, all dis-
tributions are pushed to higher z, with repeating FRBs taking an
increasingly large fraction of the measured population. For the
distributed repeaters scenario, this effect is small, and even after
1000 d on a single field, by far the majority of FRBs are detected
as once-off bursts, though the redshift peak for single bursts has
shifted from 0.19 to 0.26 (with the unbiased peak for all bursts
being at 0.15). For strong repeaters however, this effect is very
important, with single bursts peaking at z = 0.41, 0.67, and 0.95
respectively—and even repeating sources peaking at higher red-
shifts than the true underlying total burst population. This latter
effect is due to the small number of repeaters at low redshift being
expected to produce a very large number of bursts, whereas for
the distributed repeaters scenario, repetition remains dominated
by rarely repeating objects at low redshift.

Repeating FRBs also introduce significant cosmic variance into
FRB surveys. Since the volume of the nearby Universe is small,
there is a small chance for a strongly repeating FRB to be located
in that volume—however, if there is, many bursts will be detected
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(a)

(b)

Figure 1. Effects of the repeating FRB population on the redshift distributon of FRBs
expected from the CRAFT/ICS survey. Top: repeating FRBs with a broad distribution of
rates; bottom: repeating FRBs identical to FRB 20121102A; observation times Tf , with
lines appearing from left to right, are 10 d (red), 100 d (green), 1000 d (blue).

from it due to its proximity. To illustrate this effect, a Monte
Carlo sample of 100 instances of a 100-d ASKAP/ICS observation
is generated, in a Universe consisting only of FRBs as strong as
FRB 20121102A. The mean number of bursts detected, 〈Nbursts〉, is
shown as a function of redshift in Fig. 2. As expected, it follows
the shape of Fig. 1. For a Poisson distribution, the standard devi-
ation σ would be expected to scale with 〈Nbusts〉0.5—therefore, I
normalise σ by this value. At high redshift, it tends towards this
expected value. However, this variance increases rapidly at low
redshift. The number of bursts in the 90% upper limit over all 100
simulations increases even more rapidly. The most extreme exam-
ple of this variance is that in 99 of the 100 simulations, no bursts
were simulated in the redshift interval 0≤ z ≤ 0.1—however, in
a single instance, 86 bursts from a single repeating FRB were
simulated.

This presents a problem for populationmodelling. The require-
ment to include all bursts from repeating FRBs to avoid a bias
will result in large stochastic fluctuations in population statistics,
dominated by the small population of strongly repeating FRBs.
The choice to do so, or not, represents a trade-off between bias

Figure 2. Burst statistics from 100 Monte Carlo simulations of an ASKAP/ICS 100 d
pointing. Shown are the expected number of bursts 〈Nbursts〉, 90%upper limit, and stan-
dard deviation normalised by the square root of 〈Nbursts〉, histogrammed as a function
of redshift.

and accuracy. I therefore proceed with the approach of modelling
single bursts, and the number of repeaters, in this work, and do
not directly model the number of bursts per repeater (though the
distribution is fit via Monte Carlo in Section 6.3). This results in
zero bias, and only a small reduction in accuracy.

4. Modelling CHIME Catalogue 1 data

The CHIME/FRB experiment is described by CHIME/FRB
Collaboration et al. (2018). Not only does CHIME have the
largest published sample of both repeating and non-repeating
FRBs (CHIME/FRB Collaboration et al. 2021), but since CHIME
is not re-pointed to target specific sources, CHIME FRBs are
detected in an unbiased manner. The downside however is that
CHIME’s angular resolution is relatively poor (approximately 1’–
10’; Michilli et al. 2021), so that the vast majority of FRBs are not
localised with sufficient precision to identify their host galaxy. This
makes CHIME data ideal for modelling the repeater versus non-
repeater fraction, even if it is difficult to use it to model the FRB
distribution in zDM space. The CHIME experiment is modelled as
below.

4.1. Data sample

Data is taken from CHIME/FRB Collaboration et al. (2021)
(hereafter, ‘Cat1’), consisting of 536 FRBs. Nominally, this is
divided into 474 once-off bursts, and 62 bursts from 18 repeaters.
However, two repeaters—FRB 20190417A, and FRB 20181119D
from FRB 20121102A—are only identified as such from observa-
tions external to Cat1. Thus it is more proper to say that Cat1
identifies 16 repeaters and 476 non-repeaters, which is the statistic
used in this work.

CHIME have also recently published a search for repeating
FRBs in an updated dataset, announcing the discovery of 25
new sources based on coincidences in DM–localisation space
(CHIME/FRB Collaboration et al. 2023). I denote this the ‘Gold25’
sample, and discuss this in detail—including why it is not used for
fitting—in Section 8.3.
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The analysis in Cat1 used three data quality cuts which are not
implemented here, for the following reasons:

1. Cut removing events with SNR< 12. This is implemented
due to human inspection falsely rejecting low-SNR events.
Since this work is primarily concerned with the ratio of
repeaters to non-repeaters, rather than absolute FRB num-
bers, such a cut is not used. Repetitions were searched for
at a slightly lower (but undocumented) threshold than initial
bursts (CHIME/FRB Collaboration et al. 2021,; see Section 8.3
for further discussion of this effect) and using the SNR≥ 12
cut would eliminate this effect. However, implementing it
would leave only 7 of 16 repeating FRBs. I believe that the
resulting loss of precision will be worse than the associated
systematic error.

2. Cut removing events with DM< 1.5 max(DMNE2001,
DMYMW16). Here, such events are retained—it is true
that DMMW is poorly known, but this also means that the
effect of such a cut is equally unknown.

3. Far-sidelobe events. These will have poor localisation, and are
identified using the FRB spectrum. However, this work is not
concerned with localisation accuracy, but rather the number
of FRBs detected, for which precise sidelobe details are not as
important. Thus such a cut is not implemented.

In the following analysis, the declination δ of each FRB, its DM,
and whether or not it has been observed to repeat is used.

4.2. Beamshape

The CHIME beamshape is both unique and complex, with a broad
primary beamwith full-width at half-power of approximately 60◦–
120◦ in the N–S direction and 1.3◦–2.5◦ in the E–W direction
(CHIME/FRB Collaboration et al. 2018, 2021). Within this enve-
lope are 1024 coherently formed beams used for FRB detection,
with full-width, half-max (FWHM) of 20’–40’. I use the frequency-
dependent beamshape given in CHIME/FRB Collaboration et al.
(2021), averaged over XX and YY polarisations, and implemented
in the GitHub library CHIME-FRB-BEAM-MODEL.a This is sam-
pled at 16 frequencies in a 300× 1000 grid in RA, DEC, taking
points within 8◦ of the meridian. The final beamshape is taken
as the envelope over all 1024 formed beams after averaging over
frequency. I discuss an alternative method in Appendix A.

In James et al. (2022b), a telescope’s beam pattern on sky is
described via the ‘inverse beamshape’, �(B), being the solid angle
of sky viewed at any given sensitivity. The total time observing
that solid angle is then a simple scaling constant between rate and
the number of observes FRBs. When considering the response of a
transit instrument such as CHIME to repeating FRBs, the relevant
metric is T(B), being the time spent observing a given sky position
at beam sensitivity B (relative to the nominal sensitivity at beam
centre, where B= 1). For a source at a given declination, T(B) can
be calculated from the RA-dependence of the beam pattern—this
is similar to the approach used by Gardenier et al. (2021).

4.2.1. Declination dependence

I calculate the declination dependence of CHIME’s beamshape by
calculating T(B) for 1000 declinations between −11◦ and +90◦.

ahttps://github.com/chime-frb-open-data/chime-frb-beam-model.

(a)

(b)

Figure 3. Top: declination-dependent exposure of the CHIME experiment—simulation
from this work based on the beamshape described in CHIME/FRB Collaboration et al.
(2021) and scaled using a total of 220 d’s observation time, ‘CHIME’ taken directly from
CHIME/FRB Collaboration et al. (2021). Bottom: T(B), calculated from the simulated
beam pattern, and averaged over the indicated declination ranges.

The effective exposure, Teff, is defined as the sum of times spent
observing the source Ti, weighted by beam sensitivity b, assuming
a Euclidean distribution of event rates:

Teff =
∑
i

TiB1.5. (11)

It is calculated for each declination as above, using discrete sam-
ples of source position (hence a sum, rather than an integral, in
(11)), and is shown in Fig. 3. The oscillatory behaviour is due
to the 256 rows of tied beams, with sources passing over beam
centre having significantly more exposure than those passing
between beams. In the region δ � 70◦, the exposure is addition-
ally increased by CHIME viewing sources transiting twice daily,
both sides of the North Celestial Pole (NCP). Also plotted is the
CHIME exposure, taken from CHIME/FRB Collaboration et al.
(2021), defined as the time in which a source is within the full-
width half-max (FWHM) of a tied beam at 600 MHz. This is used
to normalise the total effective observation time to 311 d. by using
CHIME’s simulation of the 600 MHz tied beam, measuring the
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time a source spends within the FWHM, and fitting to the pub-
lished CHIME exposure. This total effective time is less than the
342 d duration of the catalogue, which is expected when allow-
ing for equipment down-time. Since CHIME’s total exposure is
a function only of the tied beamshape, it is therefore significantly
greater than Teff at low declinations where the primary beam is less
sensitive.

For calculation purposes, declination is divided into six
regions, spanning the full [−11◦, 90◦] range. The bounds of each
region are chosen so that the change in exposure between regions
is not too large (at most a factor of three), while preserving reason-
able statistics in each region. The mean exposures in each region
are also shown as histograms in Fig. 3.

4.3. Sensitivity

The ZDM code by default uses a two-dimensional function of FRB
width w and DM to calculate the effective threshold Fth to an
FRB with those properties. An important input into this is the
telescope’s time- and frequency resolution used for FRB searches:
in the case of CHIME, 0.983 ms, and 0.0244 MHz respectively
(CHIME/FRB Collaboration et al. 2021). Integrating over a mod-
elled distribution of intrinsic FRB widths w (James et al. 2022b)
and intrinsic scattering measures τ (CHIME/FRB Collaboration
et al. 2021; James et al. 2022c), this produces an efficiency function
ε that acts to decrease measured SNR or equivalently, increase the
effective detection threshold Fth above a nominal threshold F0 in a
DM-dependent manner. Including the effects of the beam B, Fth is
given by

Fth = F0
Bε(w, τ , DM)

. (12)

CHIME/FRB Collaboration et al. (2021) extend this to a more
complicated selection function, P(SNR|F,DM, τ ,w, γ , r), giving
SNR as a function of DM, τ ,w, F, and also including spectral shape
parameters γ and r. This is based on a sophisticated pulse injec-
tion system (Merryfield et al. 2022), and thus accounts for not only
the dedispersion code, BONSAI, but also the full detection pipeline,
including RFI rejection. The full selection function P is not pub-
lished, although it can presumably be inferred from the published
library of injected pulses. Rather, one-dimensional selection func-
tions, integrated over all other variables and modelled population
probability distributions in those variables, are given.

The DM selection function, s(DM), gives the relative fraction
of FRBs passing selection cuts as a function of DM—which is pre-
cisely what is required tomodel CHIME’s DM distribution. To use
CHIME’s bias selection function, it is fit with a 4th-order polyno-
mial as shown in Fig. 4. It is then corrected to a peak value of unity,
such thatNobs ≤Ntrue, and converted to amodifier to themeasured
burst SNR by assuming a Euclidean relationship between event
number and SNR, that is, SNRbias ∼ s2/3(DM). This is compared to
the efficiency function ε produced by the ZDM code, normalised
such that the two efficiencies are equal at a DM of 1500 pc cm−3.

There are two clear regimes present in Fig. 4. Above 1000
pc cm−3, the CHIME SNR bias agrees well with that estimated
by ZDM, which is indicative of sensitivity being fundamen-
tally limited by the time–frequency resolution of the instrument.
Below 1000 pc cm−3, ZDM flattens to represent efficient detec-
tion, while the efficiency of CHIME decreases. This is likely due
to the effects of CHIME’s system for mitigating RFI (CHIME/FRB
Collaboration et al. 2021; Merryfield et al. 2022).

Figure 4. DM bias correction for CHIME data. Shown are values of s(DM) from
CHIME/FRB Collaboration et al. (2021) (red points), a cubic spline fit (blue solid line),
the 4th order polynomial fit from this work (orange solid line), the renormalised fit
(orange dashed line), and implied SNR bias (green dotted line).

To estimate the fluence threshold at beam centre and peak DM
efficiency, F0, CHIME quotes a 95% completeness threshold of 5
Jy ms, compared to a theoretical minimum detection threshold of
∼1 Jy ms (CHIME/FRB Collaboration et al. 2021). The factor of
five between these thresholds is comparable to the factor of 6.6
by which the ZDM efficiency had to be increased to match the
CHIME efficiency in Fig. 4. Thus the fitted SNR bias of CHIME’s
selection function has been implemented in the ZDM code, such
that it acts in (12) as an efficiency factor; and F0 = 5 Jy ms to a 1ms
burst is used. The value of the beam B is parameterised according
to Sections 4.2 and 4.2.1, so that repeating FRBs in each declina-
tion bin are modelled as being exposed to sensitivity thresholds Fth
for times Tobs.

5. Preliminary results—initial comparison

I begin by comparing the results of previous population mod-
elling to CHIME single-burst data. While the aim of the present
manuscript is to model the relative once-off and repeat burst rates
by varying the repeater properties of the population, the prop-
erties of the total FRB population—luminosity function, source
evolution etc.—will be correlated. Furthermore, if a good fit for
the single-burst population cannot be obtained, it will be impos-
sible to determine whether goodness of fit for repeat bursts is a
function of repeating or total population parameters.

FRB population parameters from Shin et al. (2023) and James
et al. (2022c), hereafter S22 and J22c respectively, are considered.
In the former case, only the best-fit set is used, since the allowed
ranges are very broad. In the latter case, both the best fit, and sets
compatible with the 90% upper and lower limits of each param-
eter, are considered. To obtain these, the parameter in question
is first set to its min/max value at 90% confidence, and then a
search is performed over all evaluated parameter sets with a similar
parameter value for the best-fitting set of other parameters. These
parameter sets are listed in Table 1.

Fig. 5 shows fits to the single-burst population for both the
strong repeaters (top) and distributed repeaters (bottom) scenar-
ios, for all considered population parameters. The most striking
comparison is that models generally have difficulty fitting the large
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(a)

(b)

Figure 5. Observed rates of CHIME FRBs, showing sources observed as single and
repeating, summed over declination. These are compared to estimates for the num-
ber of single bursts using the best-fit results from Shin et al. (2023) (solid, blue) and
James et al. (2022c) (dashed, green), and 90% extreme (dotted, grey) values of pop-
ulation parameters from Table 1, and assuming a population of repeating FRBs with
‘strong’ (top) and ‘distributed’ (bottom) repetition rates. Predicted singles rates are
normalised to observed singles rates.

number of low-DM FRBs observed by CHIME, especially given
the strong bias against low-DM events from the CHIME selec-
tion function. Performing 1-sample KS tests (Kolmogorov 1933;
Smirnov 1948) of the CHIME data against the predicted curves
using SCIPY’s ‘stats’ package, no parameter set provided a good fit
to the strong repeater distribution. This is not surprising, since as
discussed in Section 1, other analyses have already ruled out that
all FRBs are strong repeaters. In the distributed repeaters scenario,
only the minimum value of α = −1.91 from James et al. (2022c)
was compatible, with a p-value of 0.27.

The fact that the parameters of S22 provide a reasonable fit (p-
value of 0.0028), but not the best fit, is a measure of the small
but non-negligible systematic differences in the modelling. One
possible cause is the use of F0 set at the 95% completion thresh-
old, which is likely high. Reducing it would make CHIME more
sensitive, and push the expected DM distribution to higher val-
ues, making it compatible with measurements. The model using
the S22 parameter set also predicts a low number of singles bursts
(131), though reducing the threshold to 2.5 Jy ms to produce the
correct number results in a poor fit to the DM distribution.

Figure 6. Critical value of repetition,R∗, as a function of the fraction Fsingle of apparently
once-off bursts that are attributed to repeaters.

Another possibility is the complex interaction between burst
shape and CHIME response, which is imperfectly captured here
with the one-dimensional selection function s(DM), but which S22
model explicitly using injected pulses. A third possibility is that
S22 fit to all progenitors (i.e. single and repeat FRBs). However,
performing the same comparison here, the difference between the
S22 predictions and data becomes greater.

Lastly, I also check that the fitting is not strongly affected by
errors in DMMW at low Galactic latitudes. Such an error would
smear the DMEG distribution, creating excess low-DM events. Re-
doing the above analysis to include only FRBs with estimated
Galactic contributions of less than 50 pc cm−3 changes the p-
values by factors of order two, but this is minor compared to the
different predictions between models. Thus this effect is ignored
from hereon, and the entire sample is used to allow for greater
precision and little cost of accuracy.

I therefore conclude that using the α ‘min’ parameter set from
Table 1 in the ZDM code is likely to provide a reasonable fit to the
CHIME single burst rate, and hence it is used to fit to the repeating
FRB population in the following Section.

6. Fitting results

To find a best-fit set of repeating FRB parameters (Rmin,Rmax,γr),
I first find the critical value of repetition rate, R∗, such that when
Rmin = Rmax = R∗ (and thus the value of γr is irrelevant), the cor-
rect number of repeating FRBs (in this case, 16) is reproduced. If
Rmin > R∗, then inevitably themodel will produce toomany repeat-
ing FRBs in the case that all bursts originate from repeaters; if Rmax
< R∗, then the model will not produce sufficiently many repeaters.

To illustrate, in Fig. 6, R∗ is plotted as a function of Fsingle,
being the fraction of all apparently once-off CHIME FRBs that
are produced by true repeaters. Reducing the number of once-off
bursts attributed to repeaters, while keeping the observed number
of repeaters in Cat1 constant at 16, means that a higher frac-
tion of true repeaters get detected as such, that is, they must be
stronger. Indeed, for Fsingle = 0.1, the average repeater must repeat
about 6 times per day above 1039 erg. For now, I continue with the
case Fsingle = 1 (i.e. all FRBs are repeaters), and revisit Fsingle < 1 in
Section 6.5.
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Figure 7. Value of Rmin producing the observed number of 17 repeating FRBs in the
CHIME catalogue (CHIME/FRB Collaboration et al. 2021) as a function of γr and Rmax.
Also shown are limits on Rmax (white dashed) from FRB 20180916B, and the region
excluded as producing toomany repeaters (orange dot-dash curve). The total ‘allowed’
region is also indicated. Cases a–d used for §6.1 and onwards are indicated in red.

For any two values in the set (Rmin<R∗,Rmax>R∗,γr), and fixed
Fsingle, the third value can be found such that the number of repeat-
ing FRBs observed by CHIME is reproduced exactly. For reasons
to do with code optimisation, calculations varying γr proceed very
slowly, so γr is held fixed to a small number of values. Since reason-
able estimates of Rmax from observations of strong repeaters exist,
it can be constrained to a sensible range. Therefore, I vary γr and
Rmax > R∗, and for each, calculate the value Rmin.

The resulting values of Rmin as a function of Rmax and γr are
shown in Fig. 7. For steep γr and for values of Rmax not much
above R∗, Rmin must also be close to R∗ (here, about 0.02 d−1),
while for flat γr and large Rmax (the lower part of Fig. 7), Rmin must
be very small. For very flat γr , the contribution of low-R repeaters
to the apparently once-off burst rate becomes sufficiently negligi-
ble that it cannot ‘dilute’ the number repeaters observed as such
when Rmax is large. This excludes the region in the lower right
of the figure. For calculation purposes, Rmin is set to 10−8 in this
region—even though this over-produces the number of repeaters,
it allows calculations to compare their DM, declination, and repeat
rate distributions.

The lower limit on Rmax given by FRB 20180916B is also
shown—at a distance of approximately 150 Mpc (Marcote et al.
2020), its observed repetition rate above 5 Jy ms of 0.448+0.1

−0.086
h−1 (CHIME/FRB Collaboration et al. 2023) approximately trans-
lates to a rate above 1030 erg Hz−1 (i.e. 1039 erg assuming a 1GHz
bandwidth) of 0.5 d−1 when using a cumulative fluence index
γ = −1.5.

An upper limit on Rmin can be estimated from the lowest
estimated rate for a low-DM FRB observed by CHIME. FRB
20190518D (CHIME/FRB Collaboration et al. 2021) has a DM
of 202.2 pc cm−3, with an estimated contribution by the Milky
Way’s interstellar medium (ISM) of 53.7 pc cm−3 according to the
NE2001 model (Cordes & Lazio 2002). Conservatively assuming a
low combined halo and host DM contribution of 35 pc cm−3, sim-
ilar to that found for FRB 20200120E (Bhardwaj et al. 2021b), and
using a simplistic model of z ∼ 10−3 DMEG, produces an approx-
imate maximum redshift of z ∼ 0.11. Again using γ = −1.5, this
produces an upper limit on Rmin of 0.05 d−1.

Figure 8. Predicted DM distribution of repeating FRBs compared to that from CHIME
Catalogue 1 (CHIME/FRB Collaboration et al. 2021), calculated using cases a–d from
Fig. 7, and the golden sample of repeaters from CHIME/FRB Collaboration et al. (2023)
(renormalised to 16). Note that b and c overlap.

The combination of these three constraints produces the
allowed region shown in Fig. 7. Note that in all cases, Rmin is below
(i.e. compatible with) the limit from FRB 20200120E.

6.1. Dispersionmeasure distribution

Within the range allowed by Fig. 7, the z–DM distribution pre-
dicted for each will in general be different. To illustrate, I take four
scenarios, a–d, from the corners of the allowed region. In each
case, the predicted DM distribution of repeating FRBs is plotted
in Fig. 8.

From Fig. 8, it can immediately be seen that strong repeaters
are more likely to be found at large distances (higher DMEG). Case
d has a significantly higher distribution of DMs compared to the
other three, and it is the only case with a significant number of
strong repeaters (cases a and b have low Rmax, while case c has such
a steep γr that the number of strong repeaters is negligible).

I also compare these DM distributions with those found from
the Cat1 and Gold25 samples. While formally the DM distribution
of the Gold25 sample is statistically consistent with that of Cat1
(CHIME/FRB Collaboration et al. 2023), the distribution is biased
(see Section 8.3). That case d well reproduces the Gold25 sample
DM distribution therefore should not be taken as evidence for it.

This comparison highlights a prediction of all repeating FRB
models, which is the stronger upward skew of the DM distribution
compared to single FRBs. This effect is seen in CHIME data, with
two (one) high-DM repeaters in the Cat1 (Gold25) samples.

To quantify agreement in DM space, a KS test using the
Cat1 FRBs and predicted DM distributions over Rmax, γr space is
performed. The results are shown in Fig. 9.

An implicit assumption of the above analysis is that the intrin-
sic distribution of DMhost is identical regardless of the repetition
rate of repeaters. The observation of PRSs at the locations of at
least two bright repeaters (Marcote et al. 2017; Niu et al. 2022) sug-
gests that these presumably young objects would be more likely to
have a larger DMhost, bearing inmind that this term includesmate-
rial in the vicinity of the progenitor, as well as the host galaxy’s ISM
and halo contributions. This could then be responsible for observ-
ing repeating FRBs (which are on-average intrinsically stronger
repeaters) to have slightly more DM than expected, and would not
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Figure 9. P-values from a KS test of the DM distribution of Cat1 repeating FRBs,
pks(DMr ), against predictions from models with different values of Rmax and γr . Other
features are identical to Fig. 7, including cases b and c overlapping.

constitute hard evidence against the model. This might be the case
for the γr �−2.4 region of Fig. 9, which is slightly disfavoured
because it over-predicts the number of low-DM repeating FRBs.
However, should observed repeaters have less DM than expected,
this is clear evidence to reject the model. This is the case for
the already ruled-out lower region of Fig. 9, which predicts more
high-DM repeating FRBs than observed.

6.2. Declination distribution

The declination distribution of CHIME FRBs also holds infor-
mation that allows us to discriminate between scenarios. For
repeating FRBs, the difference between observing a small patch of
the sky around the NCP almost continuously, and surveying sev-
eral steradians near the equator for only a few minutes each day, is
very important. Near the equator, only the strongest repeaters will
be detected as such, while near the Pole, the small probed volume
makes observations subject to cosmic variance.

In Fig. 10, I plot the declination distribution of CHIME once-
off and repeating FRBs, and compare this against model predic-
tions. For this plot, the number of declination bins into which
CHIME was divided was increased to 30, whereas six declina-
tion bins was found to be sufficient to model the total number of
repeaters, and their DM distribution.

Since the x-axis of Fig. 10 is increasing linearly with δ, most
of the solid angle is concentrated on the left-hand-side of the fig-
ure. Despite this, the number of repeaters—both observed and
predicted—increases as fast as, or faster, than linearly with δ. That
the Gold25 sample shows the least steep rise with δ is likely because
of the previously discussed bias against high declinations due to
the increased background rate. This is evidence that the repeating
population is dominated by progenitors with low apparent repeti-
tion rates that are best probed with deep observations (i.e. at high
declinations), rather than sources with high apparent rates that are
best detected in broad shallow surveys (i.e. at low declinations).

Of the four cases analysed, a–c show good agreement with Cat1
in the δ � 60◦ range, while not even d can match the rapid rise in
repeater rates above this range. This suggests a simple fluctuation
in the data, either a deficit at low declinations, or an excess at high

Figure 10. Cumulative histogram of the CHIME repeating FRB declination (δ) distribu-
tion, for both the Cat1 andGold25 samples, compared toMonte Carlo predictions from
four example cases.

Figure 11. Results of the KS test against the declination distribution of identified
repeating FRBs. Shown is the p-value as a function of Rmax and γr .

declinatons—though an alternative explanation is the influence of
non-Poissonian repetition (see Section 8.1).

I characterise the agreement in declination distributions via
a KS test, with associated p-values given in Fig. 11. The great-
est discrepancy with data is the aforementioned excess of high-δ
repeaters, and the upper region of the figure is disfavoured because
it reproduces this particularly poorly. The lower right region is dis-
favoured because this predicts mostly bright repeaters that should
be found in the greater region of sky viewed at low declinations.

6.3. Repetition rate distribution

Most repeating CHIME FRBs are not localised, so that scaling
between intrinsic and apparent repetition rates, which requires the
luminosity distance to be known, is not possible. This precludes a
direct fit to the rate distribution. Nonetheless, different combina-
tions of Rmin, Rmax, and γr lead to more/less repeating FRBs being
observed with different apparent repetition rates.

Directly computing the number of FRBs with any given repe-
tition rate is highly inefficient however—the algorithm currently
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Figure 12. Top: histogram of observed number of repetitions in CHIME repeating FRBs
fromCat1, compared toMonte Carlo predictions from four example cases, a–d (points).
A power-law fit (lines) is given for each. Bottom: the same data, but shown as a
cumulative distribution.

estimates the number of repeaters by explicitly calculating N0 and
N1 only. Extending this to a large number of Nburst values is com-
putationally prohibitive. A Monte Carlo sampling algorithm was
therefore implemented that generates repeating FRBs according
to their underlying modelled distribution in z–DM–R space, and
simulates the number of observed bursts assuming a Poissonian
distribution.

To overcome Monte Carlo fluctuations, at least 1000 times as
many repeating FRBs as expected are simulated, and a histogram
produced in terms of the observed number of bursts by CHIME.
This is then fit with a power-law distribution, and for histogram
bins with less than 10 simulated repeaters, the observed num-
ber is replaced with the fitted number for purposes of evaluating
likelihoods. An example of this procedure is shown in Fig. 12.

Since the data are discrete (integer numbers of bursts only),
a KS test to assign a goodness of fit is inapplicable. Instead, the
likelihood of the observed histogram of Nburst values for the 16
CHIME repeating FRBs from the Cat1 sample is calculated, given
predictions from theMonte Carlo histogram. This is then repeated
for at least 1000 sets of 16 Monte Carlo FRBs, and the fraction
of likelihoods that are lower than that observed is determined.

Figure 13. Maximum-likelihood estimates of FRB repeat parameters based on the
distribution of the number of observed bursts from each repeater in the Cat1 sample.

Figure 14. Posterior probability of repeating FRB parameters assuming that all FRBs
repeat. Shown are 68% (red dotted lines) and 95% (white dot-dash lines) confidence
intervals.

This produces a p-value, pbursts, under the null hypothesis that the
Monte Carlo sample is the truth. Results are plotted in Fig. 13.

The repeat-rate distribution is best-reproduced by models with
a large number of bright FRBs, since the two CHIME FRBs
with high repetition rates in Cat1—FRB20180814A (11 bursts),
and FRB20180916B (19 bursts)—are difficult to reproduce with
models of low Rmax and/or steep γr .

6.4. Combined likelihood

Combining the evidence from the DM, δ, and Nburst probabilities
derived above, the combined probability ptot is constructed as

ptot = pN pδ pDM pbursts, (13)

where pN is a Poissonian probability of observing 16 repeaters,
which suppresses the region of the parameter space that over-
produces repeaters. The probabilities are renormalised to sum
to unity over the investigated range, excluding Rmax < 0.5 d−1,
and confidence intervals assuming flat priors in γr and log Rmax
are constructed. This results in the probability distribution, and
confidence intervals (CIs), shown in Fig. 14.
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Figure 15. Maximum value of the joint probability Ptot over all analysed γr , Rmax, as a
function of the fraction of all CHIME single bursts explained by repeating FRBs, Fsingle.

The 95%CI encompasses almost the entire allowed region from
Fig. 7, showing that DM, δ, and Nburst are not strong discrimina-
tors between different models of the repeating FRB population.
However, a preference for γr = −2.2+0.6

−0.8 (68% CI), and Rmax ≥
0.75, is found.

The above formulation for ptot ignores correlations between
variables: closer (low DM) FRBs, and those viewed closer to the
zenith, will be more likely to have more bursts detected. A bet-
ter analysis would use the full 3D distribution of p(DM, δ,Nbursts),
similarly to the use of redshift, DM, and burst energy in standard
z–DM analyses. However, generating the distribution of Nbursts is
computationally intensive, and thus it is only performed in one
dimension. This method should be revisited once other systematic
effects, as discussed in Section 8, are treated.

6.5. What if not all FRBs are repeaters?

It is of course possible that repeating FRBs do not constitute
the total FRB population. Evidence for this comes from the
different spectro-temporal properties of repeaters compared to
non-repeaters (Pleunis et al. 2021), and a tentative association
of FRB 20190425A with binary neutron star merger GW190425
(Moroianu et al. 2023). If such a population exists, it is likely
subdominant—most cataclysmic events, which would produce
intrinsically once-off FRBs, have a rate which is much too low
to explain the total FRB rate (Ravi 2019). Therefore, observations
of the total FRB population still serve as good constraints on the
total repeating population, and the predictions made here remain
valid. Nonetheless, in this section, the case where repeating FRBs
are responsible for a sub-dominant fraction of the total number of
bursts observed by CHIME is investigated.

The above analysis is repeated by first optimising Rmin to
produce 16 CHIME repeaters and some fraction Fsingle of the
total singles burst rate, and calculating the joint probability
Ptot(γr , Rmax, Fsingle). The peak likelihood over γr and Rmax for each
Fsingle, Max[Ptot(γr , Rmax)](Fsingle), is then plotted in Fig. 15.

In the range 0.5≤ Fsingle ≤ 1, the peak probability is essen-
tially identical, with fluctuations likely due to the coarse gridding
in γr–Rmax space. The likelihood decreases for lower values of
Fsingle—this is driven almost entirely by pDM, since decreasing
Fsingle increases the fraction of true repeaters detected as such,

Figure 16. Number of repeaters, Nrep, normalised by total observation time T, in units
(and as a function) of the exposure from Cat1, for cases b and d.

which requires on-average stronger repeaters that are invariably
detectable at greater distances. This pushes the predicted DM
distribution to higher values, inconsistent with CHIME data.

A note of caution is warranted however: if a small fraction of all
single bursts are produced by repeaters, then the assumption that
repeating FRB population parameters are the same as that of the
total population is a bad one. Therefore, while it can be concluded
that these results are consistent with a best-fit of all FRBs being
from repeaters, it cannot be concluded that this excludes a large
fraction of FRBs being from intrinsically once-off events.

7. Future prospects

Now that an estimate of the parameters of the repeating FRB
population has been made, I make predictions for the effects
of repetition on future observations. In the following, cases d
(close to the best-fit values found in Section 6) and b (marginally
excluded at the 90% level, albeit when considering random error
only) are considered as two significantly different, but plausible,
cases.

7.1. Rate of new repeater discoveries with CHIME

As time spent observing a particular field increases, the num-
ber of repeating FRBs should eventually saturate, as essentially all
such objects in the field are detected. Seeing the rate of detected
repeaters plateau at a level where a large number of once-off bursts
have no associated repeater would be a clear indication of two pop-
ulations. This raises the question: how long might CHIME have to
wait until the rate of new repeating FRB detections decreases?

The answer is a very long time. Regardless of the scenario
under consideration, the number of repeating FRB progenitors at
high redshifts will vastly outnumber those at low redshifts due
to the increased volume of the Universe. As observation time
increases, the number of repeating FRBs in the nearby Universe
will saturate, but the rate of repeater discoveries—both as single
and repeat bursts—in the distant Universe increases. This effect is
seen in Fig. 1—in Fig. 16, this is simulated for CHIME, by simply
increasing the observation time in units of Cat1, TCat1 (which is
approximately a year’s worth of exposure). In case b, there are rel-
atively few strong repeaters, and saturation is expected to be seen
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(a) (b)

(c) (d)

Figure 17. Predicted z–DM distribution of left: repeating and right: single FRBs for cases b (top) and d (bottom). Contours enclose 50% (dotted), 90% (dot-dash), and 99% (dashed)
of the probability space. Repeating CHIME FRBs identified in Cat1 with host galaxies are shown as red circles; repeater hosts not from Cat1 are shown as blue stars; and repeating
FRBswith no firmhost association fromCat1 have their 0–99%probable redshift range indicatedwith red lines at their knownDMEG, calculated assuming the Cordes &McLaughlin
(2003) model for DMISM, and a value of 50 pc cm−3 for DMhalo.

after ∼300 yr. In case d, with many strong repeaters, saturation
will not occur in the next thousand years, and a steadily increasing
repeat rate is expected.

7.2. z–DM distribution

Only six repeating CHIME FRBs have been localised to their host
galaxies (Marcote et al. 2020; Bhardwaj et al. 2021b,a; Fong et al.
2021; Ibik et al. 2023), though three more associations are highly
likely (Michilli et al. 2022; Ibik et al. 2023); and only one once-
off CHIME FRB has a tentative host association (Panther et al.
2022). Of these repeaters, four were identified as such in Cat1.
Furthermore, these have only been localised either because they
are nearby, and hence CHIME’s angular resolution—effectively
enhanced when using multiple bursts (Michilli et al. 2022)—is suf-
ficient to identify the host; or because they repeat rapidly, allowing
follow-up observations with arrays with a better angular resolu-
tion to identify the host. Thus these represent a highly biased
sample, and are unsuited to fitting to data. Nonetheless, the full
z–DM distribution of repeating FRBs observed by CHIME can be
predicted by the models. These distributions are given in Fig. 17

for cases b and d, and are compared to the distribution of singly
detected FRBs.

Fig. 17 illustrates how the large tail of the DM distribution
arises: it is almost entirely from objects lying well above the
Macquart relation. Since repeating FRBs tend to only be detected
as such in the nearby Universe, those repeating FRBs lying on
the Macquart relation have a smaller range of DMs—using the
90% contours, up to ∼400 pc cm−3 in case b, and ∼800 pc cm−3

in case d. Thus the high-DM tail of low-z FRBs doesn’t become
over-ridden by the larger number of FRBs lying on the Macquart
relation in the more-distant Universe, as it is for singly detected
FRBs.

This closer proximity of repeating FRBs means that the
reduced DMEG of the CHIME repeater sample (436± 49
pc cm−3for repeaters, 597± 24 pc cm−3for apparently once-off
bursts; CHIME/FRB Collaboration et al. 2023), which has been
suggested to be evidence for two populations (Woods 2023), is
entirely consistent with expectations from the models. These pre-
dict mean repeater DMEG values in the range 460–540 pc cm−3,
and mean single DMs in the range 640–660 pc cm−3. While
the mean DMs of both samples are slightly over-predicted, the
difference is a very good match with expectations.
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Figure 18. Fraction of Monte Carlo iterations in which trial values of γr , Rmax fall within
the 3σ confidence interval (CI), using a sample of simulated repeating FRBs with truth
values γr = −2., Rmax = 31.62. The contours correspond to regions that fall within the 1
(red, dotted) 2 (white, dash-dot) and 3 (black, dashed) confidence intervals 50% of the
time.

Even more importantly for future observations, models b and
d predict different z distributions. Case b has more low-rate
repeaters, from which repeat bursts are only likely at low z; while
case d has a significant population of high-rate repeaters, which
can be detected as repeaters from the more-distant Universe. The
z–DM values of repeaters with likely or confirmed host galaxies
matches observations for both cases, but this has only been probed
in the low-z, low-DM region. However, case d predicts redshifts
will continue to increase with DMEG, while case b predicts z� 0.5
for all repeaters. Thus, if a large fraction of repeating CHIME FRBs
could be localised, this would enable much more powerful tests of
the repeating FRB population.

I illustrate this using a toy example, using simulated true values
γr = −2.2, Rmax = 30, and 100 Monte Carlo instances of repeat-
ing FRBs from Cat1. All FRBs detected as repeaters are assumed
to be localised to their host galaxies, yielding their correct z and
DM values. For each Monte Carlo sample, the likelihood p(z, DM)
is calculated for all values on the γr , Rmax grid. I do not calculate
p(Nreps), that is, only the position in z, DM is accounted for, not the
number of repeating FRBs or bursts per repeater. Bayesian 1-, 2-,
and 3-σ confidence intervals are then constructed for each sam-
ple, and the number of MC iterations in which any given value lies
in each interval is counted. The result is shown in Fig. 18, which
shows the expected confidence intervals at each of the three levels.
This shows the power of being able to localise repeating FRBs: if all
Cat1 repeating FRBs could be localised, the expected 1σ accuracy
on γr would be ±0.2, and Rmax would be determined to within a
factor of ∼ 10.

7.3. Predicted effects on other instruments

I now use cases b and d to estimate the relative rates of sin-
gle and repeat observations for a sample of other FRB-hunting
instruments. Four systems are considered: ASKAP, in Fly’s Eye
(FE), ICS, and coherent (CRACO) mode at 1.3GHz; and the Five-
hundred-metre Aperture Spherical Telescope (FAST). ASKAP/FE
and ASKAP/ICS are modelled as per James et al. (2022b), while
the model of the CRAFT Coherent Upgrade (CRACO) system
is described in James et al. (2022c). The parameters for FAST

FRB searches are taken from Niu et al. (2021), namely a detec-
tion threshold of 0.0146 Jy ms for a 1 ms pulse width at a central
frequency of 1.25GHz, and time and frequency resolutions of
196.608µs and 0.122 MHz respectively. The FAST receiver is a
19-beam multibeam (Li et al. 2018), similarly designed to the 13-
beam Parkes multibeam (Staveley-Smith et al. 1996). I therefore
take the inverse beamshape �b used for Parkes, scale up by the
ratio of the number of beams (19/13≈ 1.46), and down by the
ratio of effective collecting areas (642/3002 ≈ 0.0456).

All these instruments have searched for FRBs with differ-
ent dwell times. Here, I consider the longest time spent on any
given field for each instrument, which will prove most sensi-
tive to the repeating FRB population: 1338.9 h for ASKAP/FE
(James et al. 2020b), 879.1 h for ASKAP/ICS to the end of 2022
(Shannon et al. in preparation), and for ASKAP/CRACO predic-
tions, the expected on-source time of 800 h for each of the Deep
Investigation of Neutral Gas Origins (DINGO; Rhee et al. 2023, see
also https://dingo-survey.org/) fields is used. For FAST, it is 59.5
h when performing follow-up observations on FRB 20121102A
(Li et al. 2021). The normalised estimates are given in Fig. 19,
as a function of DM for surveys with poor localisations, and as
a function of z for those that typically identify host galaxies.

Qualitatively, all predictions are very similar. The total num-
ber of single bursts ranges from 27% of the total burst distribution
(FAST, case b) to 70% (ASKAP/FE, case d). The difference between
case b, which models a repeating FRB population spread over a
narrow repetition rate, and case d, with a very broad distribution
of rates, is marked, predicting 16% (case b) and 6% (case d) of FRB
progenitors to repeat for all ASKAP models, and 31% and 10% for
cases b and d for FAST.

The deficit between total burst number and total progenitors
in the low-DM range for ASKAP/FE is not sufficient however
to explain the observed deficit that has been previously noted
by James et al. (2022b), especially when accounting for the aver-
age pointing time for that survey being less than that modelled
here. Thus I conclude this effect—which originally motivated this
work—is most likely a statistical fluctuation.

Jankowski et al. (2023) have noted that the FAST FRB rate is
much lower than predicted. Here, the progenitor rate is predicted
to be 40–60% of the burst rate, which certainly accounts for some,
but not all, of the deficit. However, this would have no influence on
the observations in drift-scan mode reported by Niu et al. (2021)
due to the very short dwell times (∼13 s). Thus this deficit must
have some other explanation.

A single FRB (20220531A; Shannon et al. in preparation) has
been discovered in the ASKAP field with 879.1 h of observations,
against a mean ASKAP detection rate of 350 h FRB−1. This could
simply be a Poissonian under-fluctuation (p-value of 0.285 on a
one-sided test), but repetition offers a partial explanation, which
would reduce the expected number of progenitors from 2.5 to
1.75–1.86.

Overall, I expect that correct modelling of repeating FRBs will
be important for these observations to account for repeater bias in
the observed z–DM distribution.

8. Discussion of systematic effects

8.1. Non-Poissonian repetition

All FRBs with sufficiently many detected bursts to allow stud-
ies of their repetition rates show non-Poissonian behaviour. On
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(a) (b)

(c) (d)

Figure 19. Predictions of the z or DM distributions of repeating FRBs for a selection of past and future FRB surveys for their longest pointing times (see Section 7.3), for cases (b)
and (d). Shown are the distributions of those repeating FRBs detected as single bursts, as repeaters, the total progenitor distributions, and the total burst distributions, as per
Fig. 1.

timescales of order seconds to hours, bursts from repeaters tend
to be clustered (e.g. Gajjar et al. 2018; Zhang et al. 2021; Nimmo
et al. 2023), in a process which is often modelled as a Weibull dis-
tribution (Oppermann, Yu, & Pen 2018). On longer timescales
(∼16–160 d), two repeating FRBs appear to have activity cycles
(CHIME/FRB Collaboration et al. 2020; Rajwade et al. 2020), with
evidence for frequency dependence in the timing of the windows
(Pastor-Marazuela et al. 2021). Other behaviours include a rapidly
increasing/decreasing event rate (Zhang et al. 2022), or ‘turning
on’ despite several years of monitoring (see the time dependence
of bursts in CHIME/FRB Collaboration et al. 2023). What the true
underlying nature of the time distribution of repeat rates of FRBs
is is still under debate—what is sure is that they are most certainly
not Poissonian.

Thus it should be asked: what effect does this have on the mod-
elling? On sufficiently long timescales, FRBs will become inactive,
and new repeating FRBs will be born. Therefore, the repeating
FRB population studied here can only refer to those FRBs which
have been active during the approximate year (three years) cor-
responding to the CHIME Cat1 (Gold25) samples. However, FRB
20121102A has now been studied for over a decade since its first

detection (Spitler et al. 2014), and while its properties (DM, RM
etc.) do vary (Michilli et al. 2018), no evidence of a systematically
reducing rate has been published. Therefore, these considerations
likely won’t be relevant to current or near-future studies.

Of more relevance are FRBs with inactive windows com-
parable to, or longer than, the current survey. CHIME/FRB
Collaboration et al. (2023) shows that at least three FRBs—
20201130A, 20200929C, and 20201124A—have numerous bursts
in the latter six months studied, but none in the first two years.
While some of this may be reflective of a changing search sensitiv-
ity and analysis methods (it would be useful for CHIME to release
a time-dependent sensitivity to account for this), it is also sugges-
tive that these objects have very long inactive phases. By generating
either many bursts or none, a larger population of such objects
would mimic a flatter value of γr than the true long-term rate, with
repeaters being found at larger distances/DM values. Conversely,
for a fixed observation, the fitted value of γr will be flatter than the
true value. Since the observedDMdistribution of repeaters already
favours Fsingle ≥ 0.5 and γr ≤ −1.4, allowing for such behaviour
would constrain Fsingle to higher, and γr to lower, values. That
is, the limits from this work are sensitive to activity windows on
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Figure 20. Probability of an FRB being detected as a repeater given its true expected
rate R, as a function of the fractional observation time fobs = Tobs/T, for a Weibull burst
time distribution with shape index k= 0.34; and for a Poissonian distribution.

yearly timescales. Activity windows significantly shorter than a
year however will have no consequence, since CHIME’s coverage
is spread uniformly in time, unless the period of these windows
lies extremely close to a sidereal day.

Finally, the effect of bursty behaviour in general is to reduce
the number of singly detected FRBs, and increase the likelihood
of viewing zero or many bursts. The effect of time correlation in
bursts will bemost pronounced when observations occur all in one
block—when observations are individually very short and spaced
far apart in time, any intrinsically bursty distribution will exhibit a
Poissonian distribution of burst numbers.

To gauge the impact of this effect, I simulate aWeibull distribu-
tion of arrival times, using a shape parameter k= 0.34, as found for
FRB 20121102A by Oppermann et al. (2018). CHIME detections
are simulated at three declinations: near the NCP, with sources
observed continuously (fobs = 1); approximately 7◦ away from the
NCP, where sources will be observed a fraction fobs = 10% of the
time; and∼30◦ from the NCP, which is modelled as a source being
observed fobs = 1% of the time. The expected repetition rates are
modelled relative to the total time on-source in a calendar year,
and this rate Robs is varied from 0.1 to 10. I simulate 1000 Weibull
sequences over 365 sidereal days, beginning each sequence well
before the start of the year to ensure the sequence start time does
not influence results. If a burst occurs in the first fobs fraction of a
day, it is counted as detected. The number of simulations resulting
in none, one, or multiple detections are recorded.

The results are given in Fig. 20. As predicted, the fraction of
FRBs detected to repeat twice or more is greater than Poissonian
for low expected rates, and less for high expected rates. However,
only very near the NCP is this effect large, where a deficit of ∼30%
of repeating FRBs relative to Poisson rates are found.

A more accurate estimate of the effect of burstiness on these
results however is the ratio of single to repeat bursts. Weighting
the results by R−2, to represent there being less rapidly repeating
FRBs than rarely repeating ones, fobs = 0.01, 0.1, and 1 respectively
produces 30%, 120%, and 310% more repeating FRBs relative to
single bursts than expected for a Poissonian distribution. This
effect would also alter the z–DM distribution of repeating FRBs,
with bursty distributions favouring discoveries in themore-distant
Universe; and flatten the distribution of observed burst rates,

undermining the fitting of Section 6.3. It is quite possible that the
excess of repeating FRBs in Cat1 at high declinations, while not
statistically significant, is due to this effect.

Nonetheless, I do not wish to over-emphasise this effect. For
the majority of the sky seen by CHIME, the increase in observed
repeaters due to burstiness with k= 0.34 is tens of percent.
Furthermore, this choice of k= 0.34 is an extreme example—
analysis of FRB 20121102A has shown that at timescales of seconds
to hours, the wait time distribution is close the Poissonian, with a
best-fit Weibull index of k= 0.79 (Nimmo et al. 2023).

Given the complexity of the issue, I defer an analysis of rep-
etition that includes bursty behaviour to a future work—which
should also include a fit of such behaviour to CHIME arrival time
data.

8.2. Time-frequency structure of bursts

CHIME has shown that FRBs identified to repeat tend to
have bursts which are broader in time by a factor of approxi-
mately two, with complex time-frequency structure (CHIME/FRB
Collaboration et al. 2021; Pleunis et al. 2021). Whether this is due
to two intrinsically different FRB populations, or a smooth tran-
sition in the properties of one population (e.g. an ageing effect
whereby less active—and presumably older—objects have modi-
fied emission physics, perhaps due to a change in beaming angle,
as suggested by Connor, Miller, & Gardenier 2020) is still up
for debate. What is clearly true is that the increased time width
of FRBs more likely to be detected as repeating will make them
harder to detect for a given fluence. This effect is not included in
the current work.

There are two methods of analysing this effect. The first is to
modify the simulated burst width to increase with FRB repetition
rate. This will act to suppress the number of repeating FRBs in
the z� 1 range where intrinsic FRB width, rather than dispersion
smearing, dominates the apparant FRB width, and hence sensi-
tivity. The result will be that more active repeaters—which are in
any case only observed as such at low z—become less detectable.
Including this effect would require direct use of the CHIME pulse
injection sample, since the published efficiency function analysed
in Section 4.3 has already been averaged over the burst width
distribution.

The second method to tackle this problem is to note that repe-
tition rate R can be thought of as an effective repetition rate. After
all, R can only ever be defined as the rate above a given energy
threshold (here, 1039 erg), which must also be coupled to some
assumption about the time–frequency properties of those bursts
which affects their detectability. If more-strongly repeating FRBs
tend to produce wider bursts, this reduces their detectability, and
hence their apparent rate will decrease. In other words, this will
cause γr to steepen slightly from its true value. In the regime where
detectability is limited by intrinsic widthw, SNR∼w0.5, and hence
for a burst luminosity function with cumulative slope γ = −1, the
detection rate will reduce as w−0.5. If the width w scales linearly
with the intrinsic rate R (and the real effect is unlikely to be this
strong), this would then steepen the apparent value of γr by an
extra factor of −0.5.

Since either method requires an accurate estimate of the rela-
tionship between intrinsic FRB rate and measured width w, and
this is not currently possible, I consider the second method appro-
priate, which means that a little care must be taken in interpreting
the estimate of γr found in this work.
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8.3. Systematic effects in CHIME data

I conclude the discussion of systematics with an analysis of the
data being used. As noted in Section 4.1, the threshold for identi-
fying a repeat burst in Cat1 was lower than for an initial burst. The
best way of removing this effect would be for CHIME to publish
an FRB catalogue with those repeat bursts that passed threshold
only because they were repeaters removed or otherwise identi-
fied as such. The dependence on SNR should be overcome by
use of the CHIME pulse injection data (Merryfield et al. 2022),
or a publication of the parameterised multi-dimensional selec-
tion function used in CHIME/FRB Collaboration et al. (2021). It
has been checked that excluding FRBs with high Galactic DMs
does not significantly change the DM fits, but future analyses with
ZDM should in any case include an uncertainty term for this con-
tribution. Overall, I do not think that this analysis is currently
constrained by such systematic effects.

I have been reluctant to make quantitative comparisons in this
work with CHIME’s new Gold25 sample of 25 repeating FRBs
however. There are several reasons why interpretation is diffi-
cult. Firstly, note that this work is in fact a discovery of 34 new
repeating FRBs, given that the ‘gold’ sample of 25 sources has an
estimated contamination of 0.5 from coincidences between two or
more unrelated FRBs, and the authors also publish a ‘silver’ sample
of 14 repeaters, with a total contamination rate in the combined
gold and silver samples of 5. It is unknown whether or not CHIME
have detected two or more bursts from a true repeater which has
a higher contamination fraction and is thus not included in any
sample. This measurement therefore has a 50.5 = 2.2 systematic
uncertainty reflecting the uncertainty in the expected contami-
nation, and a 340.5 = 5.8 statistical deviation from the expected
mean number of repeater discoveries, for a total uncertainty of
(5+ 34)0.5 = 6.2, or 18%.

The time period used for the search, from 2019 September 30
to 2021 May 1 (579 d), is approximately 70% longer than and does
not overlap with, the period of 2018 July 25 to 2019 July 1 used
for Cat1 (342 d) where 16 repeating FRBs were identified. Hence,
the detection rate has increased by a factor of 1.26± 0.23, con-
sistent both with the predictions of an increasing discovery rate
in Section 7.1 and with a constant rate. Aside from Poisson error,
this increase could also be due to a higher efficiency of CHIME
data-taking, or a lower threshold for including bursts in the anal-
ysis. This question should be revisited once it becomes possible to
normalise the two samples, for an accurate rate comparison.

Secondly, the identification of repeating FRBs in Gold25 placed
a cut on the chance coincidence probability. This cut is strictest
where the rate of FRBs in DM–δ space is highest: at high decli-
nations and intermediate DMs. Therefore, the gold sample of 25
repeating FRBs is biased towards very low or high DMs at low
declinations. Conversely, the silver sample may have the opposite
bias, both because repeaters at high declinations and intermedi-
ate DMs will preferentially be placed there and because this region
has more chance coincidences. CHIME/FRB Collaboration et al.
(2023) do not publish estimates of the contamination probability
in δ-DM space, which would be required to account for this effect.

9. Comparison with literature results

9.1. ASKAP follow-up observations

The only other result of which I am aware that has limited Rmin,
Rmax, γr James et al. (2020a). Those authors used the observation

Figure 21. Bayesian posterior likelihoods, pASKAP, from follow-up observations of
ASKAP repeaters (James et al. 2020a) for the parameter values investigated here.

of repetition in only one of 27 FRBs detected by ASKAP (Kumar
et al. 2019; James et al. 2020b) to constrain γr < −1.94 (those
authors use ζ for γr) and Rmin < 10−2.9 d−1. Limits on Rmax are
not published, though values of Rmax ≤ 100 are investigated.

The values of Rmin and Rmax used in that work are applicable
to 1.3GHz observations and are measured relative to an energy
threshold of 1038 erg. I therefore scale to a threshold of 1039 erg
by reducing those rates by a factor of 10γ ≈ 0.13, and to the mean
CHIME frequency of 600 MHz by increasing the rates by a factor
of (600/1300)α ≈ 4.4, for a total adjustment factor of 0.55.

I extract the likelihoods from that work at the values of Rmin,
Rmax, and γr used here and plot the Bayesian posterior in Fig. 21.
The best-fit region agrees remarkably with results from CHIME
FRB data, but has a much tighter constraint on γr . That two
very different measurements with very different instruments con-
verge to the same properties of the repeating FRB population is
strong evidence that this model is a reasonable approximation to
the underlying truth. This has implications for FRB progenitor
models, as discussed in James et al. (2020a).

The one major discrepancy between the results which is hid-
den by Fig. 19 however is that the best-fit values of Rmin found by
James et al. (2020a) are a factor of ∼100 lower than that found
for CHIME. Equivalently, the results of James et al. (2020a) would
under-predict the number of repeating CHIME FRBs. There may
be several causes for this.

Firstly: the results for James et al. (2020a) assumed a Weibull
distribution with k= 0.34. As discussed in Section 8.1, a bursty
distribution requires less-rapid repeaters to produce the same
number of repeating FRBs and could therefore allow the values
of Rmin found here to be lower and more consistent with the
ASKAP results. Secondly: the results here are only weakly con-
straining on Rmin, and only the probabilities at the best-fit values
have been used, rather thanmarginalising overRmin. Thirdly: repe-
tition behaviour at 1.3GHz and 600 MHz might be more different
than the simple scaling above would suggest. A fuller investigation
will require an improved model of FRB time–frequency structure.
Fourthly: the limits from James et al. (2020a) used non-localised
repeaters, with conservatively large distance estimates from the
Macquart relation assuming no host contribution, thus introduc-
ing a bias in those results (albeit one which would push Rmin and
Rmax to lower values). Fifthly and finally, not all FRBs may repeat.
The upper limit on Rmin found by James et al. (2020a) is driven
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Figure 22. FRB progenitor population density Cr , as a function of Rmax and γr with 68%
and 95% contours from Fig. 14 overplotted.

primarily by the lack of observed repetition from FRB 20171020A.
If this FRB is intrinsically a once-off event, then those results
weaken significantly, allowing higher values of Rmin.

The current implementation of repetition in the ZDM code
does not allow for easy estimation of FRB repetition parameters
from follow-up observations. It would be useful to develop such a
method to allow the results of follow-up observations to also be fit
in a self-consistent manner.

9.2. Absolute number of repeaters and persistent radio
sources

The total number of repeating FRBs, Cr , is a function of their
rate of birth and active lifetime. Estimates of their birth rate vary
greatly according to their progenitor model and range from 105
Gpc−3 yr−1 for core-collapse supernova (Taylor et al. 2014), to 0.02
Gpc−3 yr−1 for NS-NS binarymergers in globular clusters (Ye et al.
2020). Their lifetime is also unknown: while magnetar fields are
expected to decay on timescales of order 104 yr (Colpi, Geppert,
& Page 2000), precisely how this relates to their time as an active
emitter of FRBs will depend on the microphysics of emission.

Fig. 22 plots the implied value of Cr as a function of Rmax and
γr , compared to limits on those parameters from Fig. 14. By far
the largest number of FRB progenitors are found near γr = −2.
At flatter (less negative) values of γr , the repeater distribution is
dominated by so many rapidly repeating FRBs that very few are
required, while at steep (more negative) values, Rmin must be rela-
tively high (and hence Cr not too large) to prevent singly detected
objects overwhelming the total FRB rate. That this region is just
allowed within the current limits means that the total uncertainty
on Cr is huge, ranging approximately between 10−5 and 10 Mpc−3

at z = 0. Assuming a lifetime of 104 yr, this corresponds to birth
rates of 1–106 Gpc−3 yr−1, which is compatible with most FRB
progenitor models.

The total number of strong repeating FRBs is also of inter-
est. Aside from their obvious identification via detection of their
bursts, these objects might be identified via their association with
PRS, which can be identified in radio surveys. There is some
evidence that PRS are more likely to be associated with strong
repeaters (Chatterjee et al. 2017; Niu et al. 2022), though this
evidence is not conclusive (Law et al. 2022).

In this context, Law et al. (2022) estimate the total number den-
sity, and differential power-law slope, of the observed repeating
FRB population using CHIME data, as in Section 6.3. Assuming all
CHIME FRBs come from intrinsic repeaters, they use the observed
distribution of the number of bursts to have a power-law slope
of = −1.5, calculated via the maximum-likelihood estimator of
Crawford, Jauncey, &Murdoch (1970). This method thus deter-
mines the slope of the ‘source counts’ distribution of repeaters,
which is largely insensitive to the intrinsic value of γr (see Fig. 12).
They also estimate the mean number of observed repeat bursts
per source, 〈Robs〉 = 1.2 d−1, assuming a minimum repetition
rate equal to the inverse of T−1

Cat1. Again, this estimate is based
on the observed repetition rates, rather than the intrinsic rates,
which explains why the derived mean rate is somewhat higher
than the values of R∗ found here. Their derived number density
of repeaters, being between 22 and 5.2 · 103 Gpc−3 in the no-
beaming case, are both more constraining and on-average lower
than derived here. Law et al. (2022) estimate that the fraction of
FRB sources with associated PRS is between 0.06 and 0.36: the
much higher uncertainty on the intrinsic source density found
in this work suggests that surveys identifying PRS independently
of FRBs might be a better tracer of the intrinsic number of FRB
sources.

It should be noted that the estimates above assume isotropic
emission. However, to first order, beaming should have no effect.
Including beaming means that the intrinsic number of bursts per
repeater is greater by 4π/�frb, where �frb is the solid angle sub-
tended by each FRB. However, so is the intrinsic single-burst
emission rate. Hence, the implied number of repeaters to repro-
duce the detected rate is identical, and beaming angle has no effect.
Only in the case that�frb varies with repetition rate R, as suggested
by Connor et al. (2020), is this scaling broken.

10. Conclusions

I have implemented a model for repeating FRBs in the ZDM code,
allowing for a power-law distribution of intrinsic FRB repetition
rates. A population of repeating FRBs will result in an appar-
ent deficit of progenitors (single and repeat FRBs) in the nearby
Universe, with the effect becoming increasingly strong with obser-
vation time per pointing. I show that this effect is significant for
current observations with ASKAP, FAST, and CHIME, and hence
that future FRB population modelling should include a simultane-
ous fit to FRB repetition parameters as well as the current set of
cosmological parameters, host galaxy properties, population evo-
lution, and the luminosity function. Such a fit is computationally
infeasible with current methods implemented in the ZDM code,
and hence nested sampling techniques should be implemented in
the future.

I have therefore fit a power-law model of repeating FRB rates,
with differential slope γr between rates Rmin and Rmax (defined as
bursts per day above 1039 erg, with a Poissonian distribution of
arrival times), to CHIMECatalog 1 data. Themodel of the CHIME
experiment includes beamshape, DM response, and declination-
dependent exposure. This model can accurately reproduce the
distribution of singly detected CHIME FRBs when using FRB
population parameters with a steep dependence of FRB rate on
frequency (rate∝ ν−1.91), consistent with previous fits to ASKAP
and Parkes data at the 90% confidence level. Holding this param-
eter set fixed, I find that the distribution of repeating FRBs in DM,
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δ, and Nburst space, as well as their number compared to appar-
ently once-off bursts, is well reproduced when assuming the entire
FRB population is explained by a single population of repeating
FRBs with γr = −2.2+0.6

−0.8 (68% CI), and Rmax ≥ 0.75. Limits on
Rmin are less well constrained. In particular, results are consis-
tent with the DM deficit of repeating FRBs found by CHIME/FRB
Collaboration et al. (2023). This remains the case unless less than
50% of all CHIME single FRBs are due to intrinsic repeaters, at
which point the predicted DMs of CHIME repeaters become too
high to be consistent with data.

I also make predictions for the effects of repetition in cur-
rent and future experiments. Localising CHIME repeating FRBs
to obtain their redshifts would provide strong constraints on the
repeating FRB population, and I urge that optical follow-up obser-
vations preferentially target these sources. Furthermore, I predict
that the number of repeating FRBs identified by CHIME will con-
tinue to increase for at least the next hundred years’ worth of
observations and potentially for a much longer timespan. This is
currently consistent with the new sample of repeaters released by
CHIME/FRB Collaboration et al. (2023), but systematic effects in
that dataset make more precise comparisons difficult.

An estimate is made of the systematic effects of correlations
between repetition rates and FRB width, non-Poissonian arrival
times, and differences between the full CHIME response to FRBs
described by Merryfield et al. (2022) and used by Shin et al. (2023)
and the method used here. Thus burstiness may be responsible for
the apparent excess of repeating FRBs at high declinations, but that
other effects are likely small, though may alter the best-fit value
of γr away from its true value. Improved modelling of CHIME
may be required in the future, though this current implementa-
tion already accounts for most effects described by CHIME/FRB
Collaboration et al. (2023).

The most significant outcome is that limits on repetition
parameters derived here agree with estimates of repeating FRB
parameters produced from follow-up observations to ASKAP
FRBs, despite the large differences in detection systems and
method of estimation.

In conclusion, I emphasise that while this work is not conclu-
sive evidence for the entire FRB population being explained by
a single population of intrinsically repeating progenitors with a
broad distribution of repetition rates, it certainly shows that cur-
rent observations of repeating and single FRBs by CHIME are
completely consistent in terms of DM, declination, number of
bursts from repeaters, and the relative number of FRBs observed
once and multiple times with this scenario.

Acknowledgement. I thank Evan Keane and J. Xavier Prochaska for helpful
comments made on the manuscript, Keith Bannister for the motivation for
Section 7.1, and Casey Law for the motivation for Section 9.2.

This research has made use of the NASA/IPAC Extragalactic Database
(NED), which is operated by the Jet Propulsion Laboratory, California Institute
of Technology, under contract with the National Aeronautics and Space
Administration. This research made use of Python libraries MATPLOTLIB
(Hunter 2007), NUMPY (van derWalt, Colbert, & Varoquaux 2011), and SCIPY
(Virtanen et al. 2020).

This research was partially supported by the Australian Government
through the Australian Research Council’s Discovery Projects funding scheme
(project DP210102103).

Data availability statement. The code used is this work is available at
https://github.com/FRBs/zdm.

Funding statement. I acknowledge support by the Australian Government
through the Australian Research Council’s Discovery Projects funding scheme
(project DP210102103).

Competing interests. None.

References

Anderson, T. W., & Darling, D. A. 1954, JASA, 49, 765
Bannister, K. W., et al. 2019, Sci, 365, 565
Baptista, J., et al. 2023, arXiv e-prints, arXiv:2305.07022
Bhandari, S., et al. 2020, ApJ, 895, L37
Bhandari, S., et al. 2022, AJ, 163, 69
Bhardwaj, M., et al. 2021a, ApJ, 919, L24
Bhardwaj, M., et al. 2021b, ApJ, 910, L18
Caleb, M., Stappers, B. W., Rajwade, K., & Flynn, C. 2019, MNRAS,

484, 5500
Chatterjee, S., et al. 2017, Natur, 541, 58
CHIME/FRB Collaboration, et al. 2018, ApJ, 863, 48
CHIME/FRB Collaboration, et al. 2020, Natur, 582, 351
CHIME/FRB Collaboration, et al. 2021, ApJS, 257, 59
CHIME/FRB Collaboration, et al. 2019, ApJ, 885, L24
CHIME/FRB Collaboration, et al. 2023, ApJ, 947, 31
Colpi, M., Geppert, U., & Page, D. 2000, ApJ, 529, L29
Connor, L., Miller, M. C., & Gardenier, D. W. 2020, MNRAS, 497, 3076
Cordes, J. M., & Lazio, T. J. W. 2002, ArXiv Astrophysics e-prints, astro-

ph/0207156
Cordes, J. M., & McLaughlin, M. A. 2003, ApJ, 596, 1142
Crawford, D. F., Jauncey, D. L., & Murdoch, H. S. 1970, ApJ, 162, 405
Falcke, H., & Rezzolla, L. 2014, A&A, 562, A137
Fong, W.-F., et al. 2021, ApJ, 919, L23
Fonseca, E., et al. 2020, ApJ, 891, L6
Gajjar, V., et al. 2018, ApJ, 863, 2
Gardenier, D. W., Connor, L., van Leeuwen, J., Oostrum, L. C., & Petroff, E.

2021, A&A, 647, A30
Gardenier, D. W., van Leeuwen, J., Connor, L., & Petroff, E. 2019, A&A,

632, A125
Gordon, A. C., et al. 2023, ApJ, 954, 40
Heintz, K. E., et al. 2020, ApJ, 903, 152
Hessels, J. W. T., et al. 2019, ApJ, 876, L23
Hewitt, D. M., et al. 2022, MNRAS, 515, 3577
Hunter, J. D. 2007, CSE, 9, 90
Ibik, A. L., et al. 2023, arXiv e-prints, arXiv:2304.02638
James, C. W. 2019, MNRAS, 486, 5934
James, C. W., Prochaska, J. X., & Ghosh, E. M. 2021, zdm, https://

zenodo.org/record/5213780#.YRxh5BMzZKA
James, C. W., et al. 2022 a, MNRAS, 510, L18
James, C. W., et al. 2022 b, MNRAS, 509, 4775
James, C. W., et al. 2020 a, ApJ, 895, L22
James, C. W., et al. 2020 b, MNRAS, 495, 2416
James, C. W., et al. 2022 c, MNRAS, 516, 4862
Jankowski, F., et al. 2023, MNRAS, 524, 4275
Kirsten, F., et al. 2022, Natur, 602, 585
Kirsten, F., et al. 2023, arXiv e-prints, arXiv:2306.15505
Kolmogorov, A. 1933, G. Ist. Ital. Attuari. 4, 83
Kumar, P., et al. 2019, ApJ, 887, L30
Law, C. J., Connor, L., & Aggarwal, K. 2022, ApJ, 927, 55
Law, C. J., et al. 2017, ApJ, 850, 76
Lee-Waddell, K., et al. 2023, PASA, 40, e029
Li, D., et al. 2018, IEEE MM, 19, 112
Li, D., et al. 2021, Natur, 598, 267
Lin, H.-H., et al. 2023, arXiv e-prints, arXiv:2307.05261
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F.

2007, Sci, 318, 777
Lu, W., & Kumar, P. 2016, MNRAS, 461, L122

https://doi.org/10.1017/pasa.2023.51 Published online by Cambridge University Press

https://github.com/FRBs/zdm
https://doi.org/10.1080/01621459.1954.10501232
https://doi.org/10.1126/science.aaw5903
https://ui.adsabs.harvard.edu/abs/2019Sci...365..565B
https://arxiv.org/abs/2305.07022
https://doi.org/10.3847/2041-8213/ab672e
https://ui.adsabs.harvard.edu/abs/2020ApJ...895L..37B
https://doi.org/10.3847/1538-3881/ac3aec
https://ui.adsabs.harvard.edu/abs/2022AJ....163...69B
https://doi.org/10.3847/2041-8213/ac223b
https://ui.adsabs.harvard.edu/abs/2021ApJ...919L..24B
https://doi.org/10.3847/2041-8213/abeaa6
https://ui.adsabs.harvard.edu/abs/2021ApJ...910L..18B
https://doi.org/10.1093/mnras/stz386
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.5500C
https://doi.org/10.1038/nature20797
http://adsabs.harvard.edu/abs/2017Natur.541...58C
https://doi.org/10.3847/1538-4357/aad188
https://ui.adsabs.harvard.edu/abs/2018ApJ...863...48C
https://doi.org/10.1038/s41586-020-2398-2
https://ui.adsabs.harvard.edu/abs/2020Natur.582..351C
https://doi.org/10.3847/1538-4365/ac33ab
https://ui.adsabs.harvard.edu/abs/2021ApJS..257...59C
https://doi.org/10.3847/2041-8213/ab4a80
https://ui.adsabs.harvard.edu/abs/2019ApJ...885L..24C
https://doi.org/10.1086/312448
https://ui.adsabs.harvard.edu/abs/2000ApJ...529L..29C
https://doi.org/10.1093/mnras/staa2074
https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.3076C
https://doi.org/10.1086/378231
https://ui.adsabs.harvard.edu/abs/2003ApJ...596.1142C
https://doi.org/10.1086/150672
http://adsabs.harvard.edu/abs/1970ApJ...162..405C
https://doi.org/10.1051/0004-6361/201321996
http://adsabs.harvard.edu/abs/2014A%\gdef &{%}\gdef no{no}\gdef yes{yes}26A...562A.137F
https://doi.org/10.3847/2041-8213/ac242b
https://ui.adsabs.harvard.edu/abs/2021ApJ...919L..23F
https://doi.org/10.3847/2041-8213/ab7208
https://ui.adsabs.harvard.edu/abs/2020ApJ...891L...6F
https://doi.org/10.3847/1538-4357/aad005
https://ui.adsabs.harvard.edu/abs/2018ApJ...863....2G
https://doi.org/10.1051/0004-6361/202039626
https://ui.adsabs.harvard.edu/abs/2021A&A...647A..30G
https://doi.org/10.1051/0004-6361/201936404
https://ui.adsabs.harvard.edu/abs/2019A&A...632A.125G
https://doi.org/10.3847/1538-4357/abb6fb
https://ui.adsabs.harvard.edu/abs/2020ApJ...903..152H
https://doi.org/10.3847/2041-8213/ab13ae
https://ui.adsabs.harvard.edu/abs/2019ApJ...876L..23H
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H
https://arxiv.org/abs/2304.02638
https://doi.org/10.1093/mnras/stz1224
https://ui.adsabs.harvard.edu/abs/2019MNRAS.486.5934J
https://zenodo.org/record/5213780#\gdef  \ignorespaces {#}\gdef no{no}\gdef yes{yes}.YRxh5BMzZKA
https://zenodo.org/record/5213780#\gdef  \ignorespaces {#}\gdef no{no}\gdef yes{yes}.YRxh5BMzZKA
https://doi.org/10.1093/mnrasl/slab117
https://ui.adsabs.harvard.edu/abs/2022MNRAS.510L..18J
https://doi.org/10.1093/mnras/stab3051
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.4775J
https://doi.org/10.3847/2041-8213/ab8f99
https://ui.adsabs.harvard.edu/abs/2020ApJ...895L..22J
https://doi.org/10.1093/mnras/staa1361
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.2416J
https://doi.org/10.1093/mnras/stac2524
https://ui.adsabs.harvard.edu/abs/2022MNRAS.516.4862J
https://doi.org/10.1038/s41586-021-04354-w
https://ui.adsabs.harvard.edu/abs/2022Natur.602..585K
https://arxiv.org/abs/2306.15505
https://doi.org/10.3847/2041-8213/ab5b08
https://ui.adsabs.harvard.edu/abs/2019ApJ...887L..30K
https://doi.org/10.3847/1538-4357/ac4c42
https://ui.adsabs.harvard.edu/abs/2022ApJ...927...55L
https://doi.org/10.3847/1538-4357/aa9700
https://ui.adsabs.harvard.edu/#\gdef \protect \unhbox \voidb@x \penalty \@M \ {}{#}\gdef no{no}\gdef yes{yes}abs/2017ApJ...850...76L
https://doi.org/10.1109/MMM.2018.2802178
https://ui.adsabs.harvard.edu/abs/2018IMMag..19..112L
https://doi.org/10.1038/s41586-021-03878-5
https://ui.adsabs.harvard.edu/abs/2021Natur.598..267L
https://arxiv.org/abs/2307.05261
https://doi.org/10.1126/science.1147532
http://adsabs.harvard.edu/abs/2007Sci...318..777L
https://doi.org/10.1093/mnrasl/slw113
https://ui.adsabs.harvard.edu/abs/2016MNRAS.461L.122L
https://doi.org/10.1017/pasa.2023.51


20 C.W. James

Luo, R., et al. 2020a, MNRAS, 494, 665
Luo, R., et al. 2020b, Natur, 586, 693
Mahony, E. K., et al. 2018, ApJ, 867, L10
Marcote, B., et al. 2017, ApJ, 834, L8
Marcote, B., et al. 2020, Natur, 577, 190
Merryfield, M., et al. 2023, AJ, 165, 11
Michilli, D., et al. 2018, Natur, 553, 182
Michilli, D., et al. 2021, ApJ, 910, 147
Michilli, D., et al. 2023, ApJ, 950, 12
Moroianu, A., et al. 2023, NatAs, 7, 579
Nimmo, K., et al. 2023, MNRAS, 520, 2281
Niu, C.-H., et al. 2021, ApJ, 909, L8
Niu, C. H., et al. 2022, Natur, 606, 873
Oppermann, N., Yu, H.-R., & Pen, U.-L. 2018, MNRAS, 475, 5109
Panther, F. H., et al. 2023, MNRAS, 519, 2235
Pastor-Marazuela, I., et al. 2021, Natur, 596, 505
PLANCK Collaboration, et al. 2020, A&A, 641, A6
Pleunis, Z., et al. 2021, ApJ, 923, 1
Price, D. C., et al. 2019, MNRAS, 486, 3636
Rajwade, K. M., et al. 2020, MNRAS, 495, 3551
Ravi, V. 2019, NatAs, 405
Rhee, J., et al. 2023, MNRAS, 518, 4646
Shannon, R. M., et al. 2018, Natur, 562, 386
Shin, K., et al. 2023, ApJ, 944, 105
Smirnov, N. 1948, AMS, 19, 279
Spitler, L. G., et al. 2014, ApJ, 790, 101
Spitler, L. G., et al. 2016, Natur, 531, 202
Staveley-Smith, L., et al. 1996, PASA, 13, 243
Taylor, M., et al. 2014, ApJ, 792, 135
Thornton, D., et al. 2013, Sci, 341, 53
van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, CSE, 13, 22
Virtanen, P., et al. 2020, NM, 17, 261
Woods, P. 2023, NatAs, 7, 374
Ye, C. S., et al. 2020, ApJ, 888, L10
Zhang, B. 2014, ApJL, 780, L21
Zhang, G. Q., et al. 2021, ApJ, 920, L23
Zhang, Y.-K., et al. 2022, RAA, 22, 124002
Zhang, Y.-K., et al. 2023, ApJ, 955, 12

Appendix A. Alternative beamshapemodelling

To evaluate the effect of different beam approximations on
CHIME’s response to repeating FRBs, I use the ‘strong repeaters’
model of Section 3, and assume a source at an example declina-
tion of δ = 30◦. Three methods of parameterising the beam are
considered. The first, and simplest, is to calculate a time-weighted
effective beam sensitivity using

t′eff =
∑
i

tiB
1.5
i (A1)

which weights each frequency-averaged beam value, B, by the
cumulative source counts index of 1.5. This reduces the time spent
observing a repeating FRB to a single effective time, t′eff, at beam
sensitivity B= 1. However, the characteristic sensitivity, Beff, is
better calculated by weighting these contributions by B, such that

Beff = t′−1
eff

∑
i

BtiB
1.5
i . (A2)

At that sensitivity, the effective time teff is greater than that at B=
1, that is,

teff = t′effB
−1.5
eff . (A3)

Figure A.1. Comparison of the total burst rate for three methods of calculating T(B):
a single effective value (Teff), using the frequency-averaged beam T(B), and averaging
the time after calculations at each frequency T(B).

The second method parameterises T(B) by histogramming the
frequency-averaged beamshape T(B), which is that standard
method used in this work. The third method first creates a his-
togram for each frequency and then averages those to produce
T(B). Here, 15 bins in B are used, equally log-spaced from 10−3

to unity.
The total expected number of bursts (per year per steradian)

is given in Fig. A.1. Systematic errors due to the discretisation of
T(B) and T(B) are less than the line widths in the figure, whereas
Teff differs from T(B) purely because of discretisation to a single
value. The difference between the latter two cases is clearly sig-
nificant, with the use of a single characteristic value of sensitivity
over-predicting the burst rate at high z, and underpredicting it at
low z. As noted in James et al. (2022b), this is simply because using
the Teff method (method 1) is an over-simplification. However, the
difference between T(B) and T(B) is more subtle. When bursts
are broadband, the instrumental response will be averaged over
the total bandwidth, and hence the frequency-averaged sensitivity,
T(B), applies. However, when bursts exhibit limited band occu-
pancy, the sensitivity at a specific frequency range is relevant.
The total burst rate would then be better predicted by first cal-
culating the time-average of the sensitivity in each fraction of
the total bandwidth, that is, T(B). This latter method also leads
to more bursts being detected when the slope of the cumulative
source-counts (‘logN-logS’) distribution is steeper than −1: in a
toy example of a beam with sensitivities 0.1 and 0.9 at two dif-
ferent frequencies and Euclidean source counts, the rate using
the T(B) method will be [0.5(0.1+ 0.9)]1.5 = 0.35, while using the
T(B) method, it will be 0.5(0.11.5 + 0.91.5)= 0.41.

CHIME/FRB Collaboration et al. (2021); Pleunis et al. (2021)
have found that the band occupancy varies significantly from
burst-to-burst, with some bursts exhibiting a broadbandmorphol-
ogy, and others—particularly those from observed repeaters—
being band-limited. However, the majority are not significantly
band-limited, and thus T(B) has been adopted as the default beam
parameterisation.
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Appendix B. Declination binning

In order to account for the declination-dependent exposure of
CHIME, six bins in declination have been chosen, and the CHIME
exposure averaged over each bin. The choice of the number of
bins is somewhat arbitrary—here, I characterise the error made
through averaging by comparing predictions made with a much
larger number of declination bins.

For this test, the ‘min α’ model with the CHIME exposure
from Table 1 is used, and calculations are performed using Nδ = 6
and 30. Predictions for the declination dependence of the CHIME
FRB populations are compared to data in Fig. B.1. Other models
produce qualitatively similar behaviour.

From Fig. B.1, it can be seen that while Nδ = 30 produces
quantitatively different predictions for the δ-dependence of the
repeating FRB population, differences between predictions and
observations are generally larger, such that using a small Nδ won’t
affect the conclusions here. Thus I have used Nδ = 30 only for
display purposes in Fig. 10. Figure B.1. Cumulative distribution of single (solid) and repeat (dashed) FRBs, as pre-

dicted from simulations with Nδ = 6 (blue) and Nδ = 30 (orange), with the ‘min α’
parameter set with CHIME’s DM selection function. This is compared to CHIME Catalog
1 single and repeat bursts (black), and also repeat bursts including the 3-yr sample
(purple).
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