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Abstract. In physical systems, interactions between phenomena of different nature, generally coupled to
each other, are often involved. Their comprehensive study requires the use of various physical models
sharing a unique set of physical quantities. In an effort to correctly model these systems, numerical methods
are frequently used. However, computational tools dedicated to such a specific scope of use are barely
available. Furthermore, unsuited numerical discretization and high memory costs are two major drawbacks
limiting the use of coupled numerical models. We present in this paper a global method which enables
the independent use of existing computational tools, the numerical adaption to each physical model and
the reduction of the memory use. This method has resorted to a unique discretization and topology for
each physical model. The link between these independent models is ensured by the projection of quantities
common to them. Thus computational tools, originally not intended to operate together, can be used
again. After a theoretical description of the projection method, we will present successive application to
discretizations of different nature. Thus, numerical efficiency of the projections in themselves will be tested.
Because of the large range of combination of physical models, additional tests will be carried out in order
to determine the most accurate coupling flowchart. A highly coupled problem, involving three different
physical models, will be presented using the projection method. Results show a significant gain in flexibility
and cuts in memory costs. Present test-cases reveal that accuracy is of same order as the one obtained
using dedicated tools.

Introduction

Advanced studies of physical phenomena often require the
use of numerical methods. These computational tools are
of great help as they can be used to reveal immeasurable
values or improve the resolution of experimental data. An-
other major use consists in the prediction or the optimiza-
tion of a system before its implementation.

The bases for the computation of a physical phenom-
enon are physical models and numerical approximations.
The physical part of the study is usually well determined
and generally involves partial differential equations gov-
erning the physics (e.g., Navier-Stokes equations, heat law,
Maxwell equations and so on). If these physical laws are
human readable, they cannot be used in that form for nu-
merical computing. The numerical part of such a study
focuses on the processing of these equations, which turn
the physical laws, into a computational form. It generally
invokes an approximation of the physical fields (as shown
in Fig. 1) where differential equations are replaced by al-
gebraic systems. The numerical approximation is based on
the decomposition of the physical domain into elementary

a e-mail: journeaux@lgep.supelec.fr

blocks in which physical fields have predefined shape. This
operation is called the discretization process (Fig. 1b) and
uses meshed version of the geometry.

Obviously the mesh depends on the geometry of the
system, while the choice of the “predefined shape” – called
basis functions or discretization functions – depends on

(a) (b)

Fig. 1. Example of numerical discretization of a physical prob-
lem. (a) Symbolizes the continuous problem, or exact problem.
(b) The numerical counterpart which is computable with nu-
merical tools. Emphasized solid lines symbolize the exact so-
lution and its discrete counterpart.

30001-p1

https://doi.org/10.1051/epjap/2013130098 Published online by Cambridge University Press

http://dx.doi.org/10.1051/epjap/2013130098
http://www.epj.org
http://www.epj.org
http://www.epj.org
https://doi.org/10.1051/epjap/2013130098


The European Physical Journal Applied Physics

Physical model 1

Physical model 2

Physical model 3

Approximation

Single-mesh model

Physical model 1
Approximation 1

Physical model 2
Approximation 2

Physical model 3
Approximation 3

+ Data transfers

Multi-meshes model

Fig. 2. Sketch of the method: rather than developing a spe-
cific numerical program for the coupled problem, the numerical
model is decomposed into sub-problems for which heteroge-
neous numerical process are applied.

the physical model itself. Consequently the way the mesh,
and more generally the numerical model, is built will de-
pend on the physical one.

Accurate design of electromagnetic devices often in-
volves multiple physical models. These models are gener-
ally linked to each other and require particular treatment.
Numerical implementations usually have resorted to ded-
icated tools which solve the problems through a unique
process [1]. Developing a program for each class of prob-
lems is often time consuming and hardens the software
servicing. Moreover, each part of code might not fit the
needs for other applications. The use of a unique mesh,
another major drawback, prevents the numerical adapta-
tion of all physical models simultaneously. At the same
time, these methods frequently present a high memory
cost.

The present work introduces an innovative method
which enables the flexible computation of coupled prob-
lems using existing computational tools, the numerical
adaptation to each physical model and the reduction of
the computational cost.

Instead of attempting to solve the problem in a single
computation, the entire process can be wisely decomposed
into individual sub-problems (see Fig. 2) [2]. Data han-
dling is easier for one sub-problem and it allows the use of
numerically adapted codes, thus improving the global ac-
curacy. This method also reduces the memory cost as the
meshes are topologically adapted to the physical geome-
try. In addition, it allows the effortless reuse of existing
computer programs, and the replacement of sub-codes or
sub-problems is easy. The computational overcost is not
prohibitive compared to the classical processing, and ad-
vantageous features are introduced.

In the present method data transfer and iterative
processes are used to link the different sub-problems to
each other. The focus of this article is on the data
transfer stage – which is the most complex part of the
process – and its use in multi-physics problems.

In order to achieve an accurate coupling process, data
transfer methods will be intensively tested in the first part.
Once the most appropriate method is determined, cou-
pling values and iterative processes will be considered in
the second part. The aim of this work is to present a set of

operations that computes coupled problems as accurately
as possible. The robustness will be measured using sev-
eral analytical tests. Validation cases based on magneto-
thermo-mechanical coupling will then be presented.

1 Theoretical aspects

1.1 Magnetic model

For the sake of simplicity we first consider static mag-
netic formulations. We consequently assume that motion
induces negligible currents through the system. Eddy cur-
rents are considered as negligible when they are low enough
compared to the supplied ones, or when their associated
magnetic fields have negligible influence. Nevertheless, the
study of transient magnetic systems can be performed
with ease using the same technique.

1.1.1 Steady-state Maxwell equations

As we consider static formulations the calculation of mag-
netic and electric fields is decoupled. Displacement cur-
rents are also neglected, Maxwell equations reduce to the
Ampere’s and Gauss’s laws for magnetism:

curlH = Jg (1a)
divB = 0. (1b)

B, H and Jg respectively denote the magnetic flux density,
the magnetic field and the source current density. They
are vector fields of the three-dimensional space. The linear
constitutive law, B = μH where μ is the magnetic perme-
ability, establishes the relation between B and H. Previ-
ous equations lead to a problem which can be rewritten
with either scalar or vector potentials. These two equiv-
alent versions of the problem are respectively called the
“electric formulation” and the “magnetic formulation”.

1.1.2 Electric formulation

Because the magnetic computational domain (Dmag) is
assumed to be star-shaped, for a locally C1 smoothness
of the magnetic induction and assuming divB is null,
the Poincaré lemma can be applied. There then exists a
smooth field A such that:

B = curlA, (2)

where A is the so-called magnetic vector potential. As-
suming divB = 0 and replacing H in the Ampere’s law
one obtains:

curl
(

1
μ

curlA
)

= Jg. (3)

This equation is solved using the weighted residual method
and the boundary condition A × n = 0. This ensures that
B × n = 0 where n is the local normal to boundary.

30001-p2

https://doi.org/10.1051/epjap/2013130098 Published online by Cambridge University Press

https://doi.org/10.1051/epjap/2013130098


A.A. Journeaux et al.: Multi-physics problems computation using numerically adapted meshes

The weak form of the previous equation – where the
boundary integral is zero – is:∫

Dmag

1
μ

curlAcurlψ =
∫

Dmag

Jgψ, (4)

where ψ is a test function belonging to the same sub-space
as A. The discretization of the problem leads to a linear
equation of the form: [P ][A] = [Jg].

1.1.3 Magnetic formulation

Under the same assumption on the computational domain
as in Section 1.1.2, the Poincaré lemma also applies to the
H − Hg field which has a zero curl. A scalar field Ω exists
and satisfies:

H = Hg − gradΩ. (5)

Hg is an intermediate field deduced from the source cur-
rent density and defined as Jg = curlHg.1 Replacing B in
Gauss’s law leads to the magnetic formulation:

div (μgradΩ) = div (μHg). (6)

The drop of the boundary integral ensures the weak nullity
of the normal component of the magnetic field. Applying
the weighted residual method, one gets the so-called weak
formulation:∫

Dmag

1
μ

gradΩgradψ =
∫

Dmag

Hggradψ. (7)

Once discretized, this formulation leads to a linear system
of the form [Q][Ω] = [Hg].

Electric and magnetic formulations describe, in terms
of potentials, the behavior of steady-state magnetic prob-
lems. Fields B, (J, Jg), H, A and Ω are discretized using
the Whitney complex [3]. The magnetic problem is solved
with the help of code Carmel3D.2

1.2 Mechanical model

Electrical systems often require to take into account parts
which do not belong to the mechanical domain (e.g., air
parts, static pieces or domains without interest). Thanks
to the data transfer method, all of these parts can be ex-
cluded, which therefore significantly reduces the compu-
tational cost. This procedure will be applied to the linear
elasticity problem.

Throughout a mechanical domain Dmec, for infinitesi-
mal strains or “small” deformations, the equation of mo-
tion3 is:

σij,j + fi = ρ∂2
t ui. (8)

1 Precomputed using a spanning tree, analytical formula or
finite element technique.

2 code Carmel3D is software codeveloped by EDF (French
electricity company) and L2EP (Lille).

3 which is the local expression of the Newton’s second law.

The previous equation is written using Einstein’s nota-
tions and Cartesian coordinates. σ represents the Cauchy
stress tensor, u is the displacement field and ρ is the den-
sity. In the simplest case, stress and strain are related by:

σ =
E

1 + ν

(
ε+

ν

1 − 2ν
tr(ε)G

)
, (9)

where G is the metric tensor,4 E and ν are respectively the
Young modulus and the Poisson’s ratio, and tr(.) is the
trace operator. If the thermal problem is coupled with the
mechanical one, the actual behavior law is more complex
(see Sect. 1.4.3). Variations of the strain tensor can be
described using the strain-displacement relation defined
by:

εij =
1
2

(ui,j + uj,i) . (10)

Combining equations (8), (9) and (10) one gets the dis-
placement formulation. Eliminating the strain as
unknown, differentiating the stiffness tensor and finally
substituting into the equilibrium equation, one obtains:

E

2(1 + ν)

(
ui,jj +

ν ui,ij

1 − 2ν

)
+ fi = ρ∂2

t ui. (11)

Rewriting the formula in terms of energy functional and
using the weighted residual method, in a compact way,
leads to:

∫
Dmec

ρ∂2
t uδu+

∫
Dmec

εtHδε−
∫

Dmec

f δu+
∫

Γmec

FΓ ∂u, (12)

for all admissible displacement field δu. H is a tensor
which represents the Hooke law and F is a surface load.
δε and ε are expressed in terms of δu and u using the
strain-displacement relation (Eq. (10)).

Once discretized, the following linear system is
obtained:

[M ]∂2
t [u] + [K][u] = [F ]. (13)

It is solved thanks to the code Aster5 tool with the help
of quadratic interpolation functions.

The array [F ] is obtained using the electromagnetic
force density, thus the determination of this field is re-
quired within the solely mechanical sub-problem (which
may not cover the entire domain).

In mechanics, the use of quadratic interpolation func-
tions is preferred as it enhances the solution accuracy in a
very significant way. Not only because second-order func-
tions are used, but also because strain is linear and para-
sitic values are avoided. This implies the use of adequate
methods.

4 As we consider Cartesian coordinates, we always substitute
G by I3.

5 code Aster is developed by EDF (the French electricity
company).
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1.3 Thermal model

The distribution of the temperature as a function of the
time is given by the thermal conduction problem where
heat sources are Joule losses. Boundary heat fluxes were
modeled using imposed heat fluxes which are proportional
to the local temperature of the boundaries. As these losses
were introduced, insofar as the Joule losses are constants,
the system tends to produce a steady-state solution.

Considering a local energy balance (Eq. (14)) and the
Fourier’s conduction law for homogeneous materials
(Eq. (15)), the thermal problem reduces to:

−divq + s = ρCp ∂tT , (14)
q = −k gradT . (15)

The heat equation rewrites in temperature T as:

kΔT + s = ρCp ∂tT , (16)

where q is the vector of heat flux (directed along decreas-
ing temperatures), s is heat source density and ρCp is the
specific volume heat with constant temperature.

To model the thermal influence of external parts, heat
losses are introduced – as boundary conditions – using
the Newton’s law of cooling. These conditions are thus
imposed on the vector of heat flux:

−q · n = h (T − Text), (17)

where h is the local heat transfer coefficient, n is the
outward unit normal and Text is a constant temperature
which represents the external domain. Equa-
tions (16) and (17) lead to the system (18) written in
its weak form over a thermal domain Dthe.∫

Ω

ρCp∂tT φ+
∫
Ω

kgradT gradφ+
∫
Γ

hT φ

=
∫
Ω

s φ+
∫
Γ

hText φ.
(18)

φ is a test function that vanishes at temperature imposed
surfaces. It leads to the following linear system:

[C]∂t[T ] + [Λ][T ] = [Smag] + [Hext]. (19)

This model is solved either by Code Aster or code
Syrthes.6

1.4 Relationship between models

Sub-models can interact in two different ways. The first
interaction involves external loads resulting from the com-
putation of another sub-model (e.g., the mechanical load
which directly depends on magnetic unknowns). A second
type of coupling is due to variations of physical properties.

6 These codes were developed by EDF and are used for in-
dustrial thermal computations.

These variations generally depend on unknowns of other
sub-problems (e.g., the mechanical behavior will depend
on the temperature). These two kinds of interactions are
taken into account in two distinct manners and at two
different stages.

The focus of this study is on a magneto-thermo-
mechanical coupled system. Consequently, the only com-
mon physical quantities taken into account are the mag-
netic force density, the Joule losses and the temperature.
The force density is involved in the direct magneto-
mechanical coupling, whereas the Joule losses one is re-
sponsible for the magneto-thermal coupling. Since the
material behavior varies with the temperature, the
mechanical state also depends on the temperature lead-
ing to a third kind of coupling.

1.4.1 Magneto-mechanical coupling

The forces are obtained using the virtual power principle
(VPP) in its Lagrangian form. This method has the ad-
vantage of computing Lorentz force and forces due to fer-
romagnetic parts in a unique process. Lorentz force suits
well the homogeneous permeability case but does not take
into account ferromagnetic forces [4] if materials of differ-
ent permeabilities are present [5,6]. The VPP procedure
is based on the local computation of the magnetic energy
(W ) or magnetic co-energy (W ∗) defined as follows:

W =
∫
D

H · dB and W ∗ =
∫
D

B · dH. (20)

Forces are deducted from one expression of the energy
through a spatial differentiation:

Fs = −∂uW and Fs = ∂uW
∗. (21)

Expression of forces using co-energy is adapted to the
magnetic formulation, while the use of the energy is
adapted to the electric formulation [7–11]. The choice of
a formulation then imposes the expression of forces to be
used. The “s” subscript denotes that the computation has
to be done for all elements surrounding the considered
node. It therefore produces the nodal value of the force. To
compute the force density f , the following formula must
be used [12]:

Af = F and Aij =
∫
D
wni

wnj
. (22)

The n subscript refers to nodal basis functions used for
discretization. [F ] and [f ] matrices respectively contain
degrees of freedom (DoF) of the nodal forces and of the
force density.

1.4.2 Magneto-thermal coupling

Magnetic and thermal problems are linked by Joule losses
which are involved in the assembly of the thermal sys-
tem’s right-hand side of the equation (19). For this cou-
pling process we determine heat losses using the magnetic
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unknowns, before transferring them to the thermal prob-
lem. Joule losses are computed using the electric field7 or
current density:

s =
|J|2
σ

= σ|E|2. (23)

Using this equation, the thermal right-hand side can be
computed and solved.

1.4.3 Thermo-mechanical coupling

The temperature distribution (T ) arises from the mag-
netic computation and is a prerequisite to the process of
the mechanical problem. This kind of coupling is of differ-
ent nature – compared with the magneto-mechanical one –
as a behavior law modification is involved: the mechanical
problem not only depends on the magnetic forces but also
on the temperature through the material behavior law. As
an immediate consequence the thermal problem must be
solved before the mechanical one.

Once the thermal solution is computed, the mechan-
ical deformation can be determined using the following
behavior law:

σ =
E

1+ν

(
ε+

ν

1−2ν
Tr(ε)G

)
− αE

1−2ν
(T − Tref )G, (24)

where α is the coefficient of thermal expansion and T
is the temperature. Tref is a parameter accounting for
an external temperature. The first part of the behavior
law (Eq. (24)) is the classical Hooke law (see Eq. (9)). The
additional expression in equation (24) takes into account
the thermal phenomenon and can be seen as an equiv-
alent load applied to the system. Consequently, thermo-
mechanical coupling results in the addition of a term in
the mechanical right-hand side of the equation (13).

1.5 Disconnected meshes coupling

1.5.1 Introduction

When the topology of the problem is not changed sig-
nificantly, a successive resolution of each sub-problem is
sufficient. On the other hand, if the modification8 of the
magnetic state with the deformation cannot be neglected,
the use of iterative coupling methods becomes essential.

As the problem domain might change, the availabil-
ity of disconnected coupling methods is of great help. In
consequences:

– Re-meshing process and code reuse are facilitated;
– The mesh type can be adapted to the physical problem

improving the discretization efficiency;
7 The electric field was not considered in the magnetic model.

Nevertheless, eddy-current models were performed invoking
this equation.

8 The use of iterative coupling is closely linked to the re-
quired accuracy.

– Each sub-problem converges better than its strongly
coupled counterpart;

– The number of degrees of freedom is decreased (espe-
cially for linear cases).

Moreover, this weak coupling process makes the phys-
ical time steps easy to separate.

1.5.2 Theoretical considerations

The data transfer method is based on an orthogonal pro-
jection with the help of an adequate sub-space. The aim is
to: establish the target function that best fits the source
function according to the appropriate dot product. The
distance between the source and the target functions is
then minimized:

ut := ∀u ∈ V ∈ ‖us − ut‖ ≤ ‖us − u‖. (25)

In the previous equation us denotes the source function
and ut is the target one. V is a so-called Banach functional
space (e.g., L2) associated to the ‖.‖ norm. The general u
function can either be scalar or vectorial. Let Dcom be a
topological domain common to two physical models (e.g.,
Dcom = Dmag ∩ Dmec), then V is a functional space which
refers to one of these particular spaces:

L2
Dcom

: {u,
∫

Dcom

u2 exists}, (26a)

Hgrad
Dcom

: {u ∈ L2
Dcom

, gradu ∈ L2
Dcom

}, (26b)

Hcurl
Dcom

: {u ∈ L2
Dcom

, curlu ∈ L2
Dcom

}, (26c)

Hdiv
Dcom

: {u ∈ L2
Dcom

,divu ∈ L2
Dcom

}. (26d)

For simplicity reasons the subscript relative to the domain
will be omitted. In what follows, Dcom is the common
part to the two meshes independently of the considered
physical models.

We add to these spaces inner products of two types.
The first one, relative to the L2 space, is defined as:

(u, v) ∈ L2, 〈u, v〉L2 =
∫

Dcom

u · v. (27)

The second one, generically called the H1 scalar product,9
is written as follows:

(u, v) ∈ Hgrad, 〈u, v〉Hgrad =
∫

Dcom

u · v + gradu · grad v, (28a)

(u, v) ∈ Hcurl, 〈u, v〉Hcurl =
∫

Dcom

u · v + curlu · curl v, (28b)

(u, v) ∈ Hdiv, 〈u, v〉Hdiv =
∫

Dcom

u · v + divu · div v. (28c)

9 Although Hcurl and Hdiv do not correspond to H1. Due
to the use of Whitney elements, discretized functions actually
belong to H1 and therefore to Hcurl and Hdiv.
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These dot products also define norms, in a general way we
will define as:

(u) ∈ X , ‖u‖X =
√

〈u, u〉X , (29)

where X stands for one of the four presented sub-spaces.
When X is the L2 space, we talk about the L2 norm.
When X is either Hgrad, Hcurl, or Hdiv, we refer to the
H1 norm or the “energy norm”.

To compute the target values of the function, we use
the weak form of the following equation:

ut − us = 0. (30)

Using one of the so-defined dot products, the weak formu-
lation is written:

〈ut − us, ψ〉X = 0,∀ψ ∈ V. (31)

In general functions are discretized using specific basis
functions (node elements, edge elements, face elements,
etc.) and then belong to the finite counterpart of the
cited sub-spaces. Two independent triangulations (T hs

com

the source triangulation and T ht
com the target one) belong

to the domain Dcom. We thus introduce the discrete func-
tional framework using Vs and Vt which are respectively
the finite spaces related to the source mesh T hs

com and the
target mesh T ht

com. Therefore us and ut respectively belong
to Vs and Vt.

The use of the traditional node, edge or face-based
elements ensures that the discretized values belong to one
of the presented sub-spaces. Functions are considered as
distributions enabling the use of spatial derivatives. us and
ut are then expressed by:

us =
∑

i

usi
wsi

and ut =
∑

i

uti
wti

, (32)

where wi is the ith basis function. Subscripts s and t re-
spectively refer to the source or target mesh.

We now replace the space V by Vt. We successively test
equation (30) using the basis functions of the target mesh.
This method is called the Ritz-Galerkin method [13] and
leads to:

〈ut − us, wti
〉X = 0 for all wti

∈ Vt. (33)

It must be solved for all ψ = wti
selected from the target-

mesh elements functions. X refers – in an abstract way
and for compactness sake – to one of these sub-spaces:
L2, Hgrad, Hcurl or Hdiv. As Vt ⊂ H1 and H1 ⊂ L2, we
can use the inner product of H1 and the inner product of
L2. For each kind of basis function the two inner products
will be considered.

The Ritz-Galerkin method [13] is a very common
process and is widely available in many FEM-related pro-
grams. The resulting consequences of the methods are ad-
vantageous:

– the target (projected) function is unique;
– us − ut belongs to the orthogonal sub-space of Vt;
– ‖us − ut‖ is minimal within the chosen norm;

– the so-computed matrix is invertible, symmetric and
positive-definite. This leaves a large choice for the
solver.

Moreover, if us is associated to a first mesh and ut

is associated to a second mesh, us − ut has a finite di-
mension and directly depends on the number of volume
intersections created by the overlapping meshes.

The overall conformity of the method is ensured by the
discretization for both us and ut. However, test functions
ψ may not belong to one of the cited sub-spaces, leading
to a non-conform Galerkin method.10

The Ritz-Galerkin method leads to a linear system of
type:

[M ][Ut] = [N ][Us] (34)

where [Ut] and [Us] are degrees of freedom of source and
target functions. [M ] and [N ] are two mass-matrices as-
sembled using a FEM-based loop over elements. As an
example, in the L2 case, the respective elements are equal
to:

Mi,j =
∫

{Kt}

wti
· wtj

, (35a)

Ni,j =
∫

{Ks}↔{Kt}

wti
· wsj

. (35b)

{K} represents all elements for which basis functions
wi · wj are simultaneously nonzero. Obviously the sum is
zero if such an element does not exist. wsj

is the jth ba-
sis function of the source mesh (us = Σwsj

usj
) defined

by the triangulation T hs
com. The symbolic representation

{Ks} ↔ {Kt} denotes that the sum has to be done over
the sub-elements where wti

· wsj
is not zero.

These sub-elements are generated by the intersection
between the source and the target mesh. A fast intersec-
tion computation must be developed and is probably the
main difficulty of this stage [14–16].

The projection method is actually applicable to any us

and is not restricted to the discretized source functions.
This method can also be helpful to compute an approxi-
mation of any function in the desired discrete sub-space.
The following equation is used: [M ][Ut] = [Ua], where Uai

=
∫
wi · us. A single mesh is then considered, and [Ut] is

now the array of degrees of freedoms (DoFs) of the dis-
cretized counterpart of the function us.

When u is a vector and is discretized using node el-
ements (e.g., force density projection), equation (34) is
solved a number of times equal to the number of com-
ponents. The array [Us] successively represents the Dofs
along each direction.

1.6 Strategies for accurate coupling methods

We present in this part the general process involved in
the magneto-mechanical coupling. The aim is to solve the

10 This case is not considered in the present method.

30001-p6

https://doi.org/10.1051/epjap/2013130098 Published online by Cambridge University Press

https://doi.org/10.1051/epjap/2013130098


A.A. Journeaux et al.: Multi-physics problems computation using numerically adapted meshes

Magnetic  problem
(B s or H s )

V.P.P. (Fs)

Force  density  ( fs )

Projection: force density

Force  density  ( ft )

Nodal  forces (F t )

Magnetic  problem
(B s or H s )

Projection:  magnetic values

Magnetic  values( B t or H t )

V.P.P. (F t )

Nodal  values  ( F t )

Force  density (ft )

(a) (b)

Fig. 3. Main coupling strategies: force density projection vs.
magnetic quantities projection. Subscripts s or t respectively
refer to the source mesh and the target mesh.

magnetic and mechanical models with the help of two
different computer programs. This operation requires the
application of the projection method presented in Para-
graph 1.5.2. Unfortunately, the choice of a coupling vari-
able is not unique.

Because of the high number of possible choices for
the magneto-thermo-mechanical coupling, we have delib-
erately restricted this study to the magneto-mechanical
case. Similar considerations apply to the magneto-thermo-
mechanical model, for which the most straightforward way
to couple the different sub-problems is the use of nodal
projections involving the Joule losses and temperature.

1.6.1 Predictive process

Projection chains. Forces are source data for the me-
chanical problem. Two main procedures can be applied
as summed up in Figure 3:
– projection of force density from magnetism to mechan-

ics using precomputed forces;
– determination of forces using projected magnetic

quantities.
A first approach consists in the application of the VPP

followed by the projection of the force density (see Fig. 3b).
Another approach of the magneto-mechanical coupling

relies on the projection of magnetic values over the sec-
ond mesh. This method was tested as presented in refer-
ence [17]. The VPP is then applied within the mechanical
mesh. In addition, magnetic projected quantities can be,
depending on the formulation, one among the pair Ω and
H or A and B. Node elements or edge elements are used
respectively for the magnetic formulation, and edge ele-
ments or facet elements are used for the electric one.

Because the mechanical program accepts both force
density or nodal values, underlined processes in Figure 3
are optional stages.

1.6.2 Corrective process and re-meshing

In mechanics most functions are interpolated with the help
of node elements. The displacement field is brought back

from the mechanical domain to the magnetic one using
projections and nodal basis functions.

This allows an update of the geometry of each mesh.
While the resort to a single mesh imposes the deforma-
tion of the elements according to the displacement, the
projection method facilitates the re-meshing process as no
assumption is made on the meshes. This operation has to
be done with care to avoid unwanted shape modifications.

1.7 Conclusion about the coupling method

Spatial restriction. The projection process takes part in
the mechanical source computation: it is composed of a
force density computation stage and a projection stage.
However, these processes are only useful in the “hard ma-
terials”. The spatial restriction can improve the process
as for example when all elements which are not essen-
tial to the computation are withdrawn: the memory cost
of the projection method and the numerical models are
reduced. We also have noticed that the restriction signif-
icantly improves conditioning of the systems of the type
of equation (34).

Physical application of the projections. An innovative
aspect of this work lies in the use of the projection meth-
ods as a foundation for multi-physics system modeling.
Computer tools dedicated to the computation of one
physics are widely available. However, computation code
dedicated to a specific set of physics is uncommon. The
projection method enables the intercommunication be-
tween computational tools. The ways of combining them,
and thus the possibility to model coupled problems, are
therefore endless.

2 Numerical application of the projection
methods

2.1 Projection tests

The aim of numerical applications is to perform accuracy
tests of the projection methods. To achieve these tests we
have used successively node elements, edge elements and
face elements. Two meshes has been considered in order to
determine the most efficient projection process. We have
defined an analytic function which allows the evaluation
of the discretization and projection errors. This function
is well defined for each mesh, then producing an unbiased
source.

Procedure. We started with an analytical function u as
source data. In order to separate the discretization error
from the projection error, the test is divided into the two
following parts.
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Analytical u

Mesh 1 Mesh 2

Discretization [U]

Pull-forward [U
2
]

Pull-backward [U
1
]

%
discr.

%
proj.2

%
proj.1

Fig. 4. Details of the discretization stage, the pull-forward
projection, and the pull-backward projection. [U ] is compared
with u while [U1] and [U2] are compared with [U ].

– The first stage consists in computing a source vector
[U ] stemming from the discretization of u (a projec-
tion method was used). [U ] is computed by solving the
equation:

[M ][U ] = [S], (36)

where matrices are, in the L2 case:

Mi,j =
∫

Dcom

wi · wj , (37a)

Si =
∫

Dcom

wi · u. (37b)

– In a second stage, the error committed when transfer-
ring a function from one mesh to another is computed.
Starting from the reference array [U ] we have trans-
ferred the discretized function over a second mesh.
The first mesh (the finest one, the second mesh being
coarser) remains the same as used for the discretiza-
tion part. Meshes are supposed to be disconnected (no
relationship between them). This projection is called
the pull-forward projection.

– The final stage consists in bringing back the solution
over the first mesh. This projection is called the pull-
backward projection. The different projection and er-
ror measurement stages are summarized in Figure 4.

Error measurement. As detailed in Paragraph 1.5.2, func-
tions discretized using node elements, edge elements and
face elements belong respectively to Hgrad, Hcurl and Hdiv.
This means that they also belong to the L2 functional
space. For each kind of element, two inner products can
be considered: one relative to H1 and one relative to L2.
The norm used to evaluate the error is chosen in accor-
dance with the dot product.

Despite the fact that the Galerkin method ensures that
the projected function is the most accurate one – relative
to the inner product – errors can be measured using both
the norms relative to L2 and to H1. This is helpful to
assess the influence of the inner product on the projection
method.

(a) (b)

Fig. 5. Meshes used for projection tests. Functions are initially
discretized through the fine mesh (a).

Errors, presented in percent of the norm, are computed
as follows:

ε%X =
‖up − ur‖X

‖ur‖X
, (38)

where X can be L2 or, depending on the element kind,
Hgrad, Hcurl and Hdiv. ur represents the reference solution
while up is the one coming from the projection method.

Details. Once transferred to the second mesh, the ref-
erence and projected functions no longer belong to the
same mesh. In order to correctly compute the projection
error, actual values of the reference function are computed
through the second mesh. This require an extra treatment
of the intersection between the meshes. The projection er-
ror actually depends on the solely mesh topology.

The projection method will be applied to the inner
product of L2 and the one of H1. In order to analyze
the influence of the dot product on the error, ε%X will be
computed using both the L2 and Hgrad norms.

The assembly of the array [U ] always stems from the
L2 projection of the analytical function u. In a real case
[U ] is an intermediate array generated by a finite elements
(FEM) program and may not present any particular char-
acteristics. We have only used the analytical value of u
in order to assemble the source array and to assess the
discretization error.

Meshes. Meshes are based on a cube of one unit edge
length (see Fig. 5). As the distance unit does not matter,
every value is given per unit. The first mesh (the fine one)
is composed of 31 000 linear tetrahedra (h = 0.06) while
the second one (the coarser one) is composed of 6000 ele-
ments (h = 0.1). h is called the characteristic mesh size as
it characterizes the fineness of the mesh. This value typi-
cally represents the maximal diameter of the elements.

In the case of nodal values projections, the target
mesh can also support quadratic elements (ten-node-
tetrahedra). At the time of writing the software used for
the projection does not support quadratic edge or face
elements.
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The test consists in computing the global error com-
pared to the reference vector [U ] at each projection stage.
As the L2 and H1 projection methods can be used, at each
stage the values of ε%L2 and ε%H1 have been computed. It
represents the global error computed for the two methods
using the respective norms. In order to evaluate the evolu-
tion of the errors for multiple computations, a test-case of
50 iterations was performed. An iteration merely symbol-
izes a pair of pull-forward and pull-backward projections.

2.1.1 Node elements

This paragraph deals with functions discretized with the
help of node elements. As presented in Paragraph 1.5.2
these functions belong to Hgrad. Mathematically the ap-
propriate dot product is:

〈u, v〉Hgrad =
∫

Dcom

u · v + gradu · grad v. (39)

As Hgrad is a part of the L2 functional space, we also deal
with the corresponding dot product. It merely represents
the first term in equation (39):

∫
u · v.

The discretization method and the projection method
are applied to the following analytical function:

u = r3 + r + 1, (40a)

gradu = (3r2 + 1)ur, (40b)

where ur is the radial unit vector of the local spherical
system. This function also presents L2-like properties.

This work is a part of multi-physics modeling methods.
As the process will involve nodal quadratic basis func-
tions, we will exceptionally deal with this case. Therefore
results are separated into two parts: the linear case and
the quadratic case.

Linear basis functions. Each mesh is composed of four-
node-tetrahedra supporting linear basis functions. Table 1
presents discretization errors. Results for the first pull-
forward and pull-backward projection are presented in
Table 2. Errors are thus computed using the discretized
reference value of the function [U ] issued from an L2 pro-
jection.

Figures 6 and 7 (solid line) present a plot of the error
over 50 pairs of pull-forward and pull-backward projec-
tions.

Table 1. Value of ε%discr. the discretization error for linear
node elements.

ε%discr. Norm type

Projection L2 Hgrad

L2 0.0133 1.9572

Hgrad 0.0212 1.9396

Table 2. Values of ε%proj.1 and ε%proj.2 for linear node elements.

ε%proj is the error between the projected value of the function
and the reference array.

ε%proj.2 Norm type ε%proj.1 Norm type

Projection L2 Hgrad L2 Hgrad

L2 0.1231 5.1577 0.0881 2.7512

Hgrad 0.1284 5.1354 0.0803 1.7950
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Fig. 6. Evolution of the projection error ε%proj.2 for either linear

or quadratic target basis functions. Results are given for the L2

inner product.
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Fig. 7. Evolution of the projection error ε%proj.2 for either linear
or quadratic target basis functions. Results are given for the
Hgrad inner product.

Quadratic basis functions. The same tests were perfor-
med with a second mesh supporting quadratic basis func-
tions. The first mesh still supports linear basis functions.
The geometry of the second mesh has not changed; lin-
ear elements have just been replaced with quadratic ones.
Table 3 details errors for the first iteration. Figures 6 and 7
detail the evolution of the error (dashed line) for 50 iter-
ations (pull-forward/pull-backward projections pair).

Results show that the solution is better preserved with
the use of quadratic elements as it was expected consider-
ing the higher number of degrees of freedom used in this
case.
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Table 3. Values of ε%proj.1 and ε%proj.2, the projection error,
in the case where the second mesh supports quadratic basis
functions.

ε%proj.2 Norm type ε%proj.1 Norm type

Projection L2 Hgrad L2 Hgrad

L2 0.0401 3.4952 0.0066 0.3181

Hgrad 0.0425 3.4799 0.0279 0.3115

Table 4. Discretization (ε%discr.) error for edge elements.

ε%discr. Norm type

Projection L2 Hrot

L2 1.6929 24.040

Hrot 7.2256 4.4703

The Galerkin method produces the optimal solution
according to the chosen inner product. Therefore it is
not surprising that the Hgrad method slightly reduces the
Hgrad norm of the error while slightly raising the L2 norm.
An advantage of the Hgrad method lies in the control over
spatial derivatives.

These first two results show that the transfer of nodal
values is better ensured with the use of quadratic basis
functions. However, the inner product, in the case of node
elements, has little influence on the projection error.

2.1.2 Edge elements

The next accuracy test provides error measurement for
functions discretized using edge elements. Similarly to the
first test (Sect. 2.1.1), the initial (reference) array repre-
sents the circulations of the analytical function along the
edges. The analytical value of the field uses the spherical
coordinates system and is directed along the azimuthal
unit vector. In order to avoid singularities of the curl op-
erator, an extra term directed along the radial unit vector
has been added. We provide the expressions of the func-
tion and its curl:

u = ur + (r3 + r)sin(θ)uφ, (41a)

curlu = 2(r2 + 1) cos(θ)ur + (4r2 + 2r) sin(θ)uθ. (41b)

Expressions are given using the local spherical coordinates
system, where θ is the azimuthal angle.

As we consider linear basis functions, only two tests
can be led. The first one uses the L2 dot product whereas
the second one uses the Hcurl one.

As for the node elements, Tables 4 and 5 present er-
rors for the discretization and the projection stages re-
spectively. Figure 8 is an overview of the evolution of the
error for multiple projections.

2.1.3 Face elements

Finally face-based discretized functions are considered in
this paragraph. This last test uses the Hdiv norm. The ref-

Table 5. Values of ε%proj.1 and ε%proj.2: the projection error for
edge elements.

ε%proj.2 Norm type ε%proj.1 Norm type

Projection L2 Hrot L2 Hrot

L2 4.0281 17.3093 1.8318 19.949

Hrot 4.0707 12.725 1.6408 11.878
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Fig. 8. Evolution of the projection error ε%proj.2 (throughout
the second mesh) in the case of edge elements. Results are given
for both L2 and Hcurl dot products. The second mesh supports
linear elements only.

Table 6. Discretization error (ε%discr.) for face elements.

ε%discr. Norm type

Projection L2 Hdiv

L2 1.8824 8.9880

Hdiv 1.9138 1.6431

Table 7. Values of ε%proj.1 and ε%proj.2: the projection errors for
face elements.

ε%proj.2 Norm type ε%proj.1 Norm type

Projection L2 Hgrad L2 Hdiv

L2 4.4943 12.659 2.2532 11.917

Hdiv 4.5128 9.6621 2.2030 8.6635

erence array stems from the discretization of the reference
function. Its computation reflects the values of the flux
across faces of the function u. Like the previous test, we
have used the L2 and the H1 norms applied to the L2 and
Hdiv sub-spaces. We provide expressions of the reference
function u and its divergence:

u = (r3 + r2)ur + uφ, (42a)

divu = (5r2 + 4r). (42b)

Discretization errors can be found in Table 6 while Table 7
details values of the projection error for the first iteration.
The evolution of the error is presented in Figure 9.
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Fig. 9. Evolution of the projection error ε%proj.2 in the case

of face elements. Results are given for both L2 and Hdiv dot
products.

Table 8. Values of ε%proj.1 and ε%proj.2 in the case of affiliated
meshes.

ε%proj.11
ε%proj.21

ε%proj.12
ε%proj.22

1.2345 1.2345 1.2345 1.2345

2.1.4 Discussion

This method has resorted to three-dimensional overlap-
ping meshes. To the best of knowledge, a priori upper
bounds of the error has been studied for node elements
only [18]. In that case, the error is bounded by a sum of
values depending on the fineness of both the meshes. De-
spite its great similarities, theoretical results available for
the mortar method do not apply here. This mortar method
has extensively been studied but deals with meshes for
which surfaces or lines overlaps [19–22].

As the two meshes define the source and the target
discrete functional spaces, thanks to the Galerkin method,
the error is entirely driven by the geometry of the triangu-
lations. At the nth iteration, the square of the error (ε2)
is given by:

F�[(M−1
s N tM−1N)n� − I][(M−1

s N tM−1N)n − I]F,
(43)

where Ms is the counterpart of the mass matrix Mt but
for source basis functions (Msij

=
∫
wsi

· wsj
). It obviously

only depends on the triangulations and the array [F ].
More thorough tests show that, for a given maximal diam-
eter of the elements (h), results on the error vary widely.
This result is more outstanding when the fine mesh is a
subdivision of the first one. Table 8 presents the first four
iterations to which meshes are affiliated.

As the second functional space is fully included in the
first one, all the error is obtained when passing from the
fine mesh to the coarse one. Ordinary disconnected meshes
will produce a constantly growing error.

We have also noticed that the way the reference vector
[U ] is built is important. In the case where [U ] is assembled
using a H1 projection, the relative error ε%L2 is not signif-
icantly modified whereas the value of ε%H1 is decreased.

Table 9. Value of ε%proj.2: the relative error for the first pull-
forward projection. Only the second mesh is modified.

Nodes Edges Faces

h2 L2 Hgrad L2 Hcurl L2 Hdiv

0.20 1.000 1.000 1.000 1.000 1.000 1.000

0.17 0.520 0.742 0.724 0.955 0.746 0.922

0.15 0.357 0.654 0.671 0.953 0.684 0.901

0.13 0.344 0.641 0.645 0.937 0.665 0.882

0.10 0.259 0.573 0.578 0.925 0.594 0.855

0.07 0.101 0.422 0.438 0.921 0.459 0.834

0.05 0.086 0.392 0.403 0.898 0.417 0.813

0
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Fig. 10. Evolution of the projection error (ε%proj.2) with the
characteristic mesh size h2 for node, edge and face elements.
h1 is kept constant to h1 = 0.06. Solid line: L2 case. Dashed:
H1 case. For each case, values of the errors are normalized by
the maximal one (maximal value of each column).

Evolution of the error with the characteristic mesh size.
In order to provide a simple asymptotic rate of the rela-
tive error, computations have been performed for several
characteristic sizes. We denote by h1 and h2 the mesh
characteristic sizes for the source and the target meshes
respectively. Table 9 and Figure 10 presents results for an
evolution of h2 while the source mesh is kept constant to
h1 = 0.06. In that case, the projection error is essentially
driven by the characteristic size of the second mesh.

Table 10 provides the evolution of the error for a joint
evolution of meshes. The ratio of the characteristic sizes is
kept constant to h1/h2 = 5. In the case of node elements,
results are in agreement with the bound of the error given
in reference [18].

Conclusion on field projection. The method to be chosen
depends on the type of elements discretizing the function.
In a very mathematical way, the preferred method has to
be the one that uses the appropriate dot product regard-
ing the sub-space. The analysis of the plot of the field u
can be misleading as the field seems less modified when
L2 norm is used in comparison with the H1 norm. How-
ever, the projected solution better fits the Hgrad, Hcurl or
Hdiv norm even if the distribution of the field is visually
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Table 10. Value of ε%proj.2: the relative error for the first pull-
forward projection. Mesh size ratio is kept constant to 5.

Nodes Edges Faces

h2 L2 Hgrad L2 Hcurl L2 Hdiv

0.20 0.474 9.709 7.419 12.00 8.016 8.483

0.17 0.235 6.796 5.169 9.113 5.741 6.054

0.13 0.156 5.872 4.573 7.669 5.061 5.255

0.10 0.119 5.060 3.997 6.601 4.408 4.504

0.07 0.042 3.068 2.516 4.036 2.864 2.737

modified. The use of H1 inner product significantly im-
proves values of the spatial derivatives as it includes their
contributions in the projection stage.

The legitimacy of the use of these two dot-products
is questionable. The projection of potentials with the L2

norm is meaningful but does not take into account the as-
sociated field. Furthermore, the use of the H1 norm com-
bines two values having two distinct physical meanings.
The first term

∫
f ·g represents the L2 projection of the

potentials. The second term
∫
d(f)·d(g) where d can be

grad , div or curl is the L2 projection of a physically sig-
nificant field. The next section discusses this problem.

2.2 Relative errors on physical fields

2.2.1 Introduction

We will now determine which of the L2 and H1 projec-
tion methods, applied to the field or values the potentials,
better preserves the solution. To answer this a second set
of tests was performed. For each class of elements pre-
vious projection methods were reused. We added a third
method which relies on the second term of generic H1

norm:
∫

gradu · grad v,
∫

curlu · curl v for respectively
nodes or edges.

This third method represents the L2 minimization be-
tween the physical meaningful electromagnetic fields, de-
duced from their respective potential. The accuracy cri-
terion involves the final electromagnetic field computed
throughout the second mesh.

We then introduce another inner product and the as-
sociated norm defined as:

(u, v) ∈ Hgrad, 〈u, v〉grad·grad =
∫

Dcom

gradu · grad v, (44a)

(u) ∈ Hgrad, ‖u‖grad·grad =
√

〈u, u〉grad·grad. (44b)

The same thing is applied to the curl operator leading to
the 〈u, v〉curl·curl product and the ‖u‖curl·curl norm.

If a function u represents a magnetic potential, then
the projection of the magnetic field using the minimization
between magnetic potential is equivalent to solving:

‖ut − us‖L2 = 0, (45)

whereas the distance minimization between magnetic
fields is:

‖ut − us‖grad·grad = 0. (46)

For each kind of element we will compare the error on the
magnetic field values. We have successively computed the
relative error defined by:

ε%X =
‖up − ur‖grad·grad

‖ur‖grad·grad
, (47)

when the electromagnetic potential is projected using both
the L2 and the H1 inner products. up and ur respectively
refer to the projected and reference solutions.

The same tests were performed using edge elements.
In this case the ‖.‖curl·curl was used.

2.2.2 Projection of scalar potential

Figure 11 presents computation results for node elements,
the first iteration is detailed in Table 11. This method can
be applied to the magnetic scalar potential Ω (node-based
discretization) projected using both L2 and the Hgrad

functional spaces. Then the error over the magnetic field
H is computed. Except for the three first iterations, the
best results are obtained using the L2 norm for potentials.

2.2.3 Projection of vector potential

In a very similar way, computation results for edge ele-
ments are available in Figure 12 while Table 12 presents
details on the first iteration. This method can be applied
to the magnetic vector potentials (A) while the error on
associated magnetic induction (B) is computed. The ben-
efit of the Hcurl dot product appears clearly: the spatial
derivatives of the potential are greatly improved.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Iter

%

0 5 10 15 20 25 30 35 40 45

 
2

  grad

Fig. 11. Relative error in both L2 and H1 projection of node
elements. Errors are evaluated using the distance between mag-
netic field (‖.‖grad·grad).

Table 11. Values of ε%proj.2: the error between the projected
values over the second mesh for the first iteration.

Projection Error (ε%grad·grad)

L2 6.4650

Hgrad 6.4371

30001-p12

https://doi.org/10.1051/epjap/2013130098 Published online by Cambridge University Press

https://doi.org/10.1051/epjap/2013130098


A.A. Journeaux et al.: Multi-physics problems computation using numerically adapted meshes

0%

5%

10%

15%

20%

25%

Iter

%

0 5 10 15 20 25 30 35 40 45

2

  curl

Fig. 12. Relative error for vector potential projection for both
L2 and H1. Distances are measured using the norm relative to
the magnetic induction (‖.‖curl·curl).

Table 12. Values of ε%proj.2: the error between the projected
values over the second mesh for the first iteration.

Projection Error (ε%curl·curl)

L2 18.4035

Hcurl 13.4904

2.2.4 Conclusions

Tests show that the projection of the scalar potential, us-
ing the distance minimization of the physical field, does
not significantly enhance the solution. Results are slightly
more accurate for the first three iterations, but tend to be
less precise for a higher number of iterations. There is no
advantage of using the H1 projection method in this case.

Unlike the node projection, the H1 projection of edge
elements greatly improves the values of the magnetic field.
This method seems advantageous as the magnetic poten-
tial can be transferred minimizing the error on the mag-
netic field.

3 Magneto-mechanical coupled systems

3.1 Steady-state models

Studies presented in the previous sections have allowed to
determine how to efficiently transfer data from one mesh
to another. The following computation relies on mechani-
cal forces projections (Fig. 13). We will apply the present
method to a magneto-mechanical example, the case of a
magnetic plate attracted by an electromagnet as described
in Figure 15. In that study, one of the lateral surfaces is
fixed.

The common quantities between the magnetic and me-
chanical problems are the force density and the displace-
ment field. Both are discretized with the help of node el-
ements. The mesh dedicated to the mechanical model is
composed of ten-node-tetrahedra while the magnetic mesh
is composed of linear tetrahedra.

Magnetic problem, forces

Force density

Projection 1→ 2

Mechanical problem

Projection 2 → 1

Remesh

Test

Fig. 13. Detail of the coupling process (steady-state models).

Table 13. Numerical parameters of the static magneto-
mechanical test case.

Dimensions Materials

Plate 20 cm × 20 cm μr = 1000,

h = 1 cm E = 0.1 Pa, ν = 0.3

Core r = 2 cm, h = 20 cm μr = 1000, solid part

Coil r = 3 cm, h = 10 cm 1 A total current

The properties of the test case are reported in Table 13.

3.1.1 Source quantities

Until the plate is not constrained, the only source quantity
is the magnetic force density. Although it is a straight-
forward computation, this problem requires the use of a
coupling loop due to his coupled nature.

3.1.2 Numerical application

The Young modulus is willingly set to a low value. This
ensures a large deformation of the plate and therefore
significantly changes the magnetic field distribution. It
turns the system into a strongly coupled one. The sys-
tem is energized at zero time and the current is kept to a
constant value over the time. The goal is to compute the
final state of the problem.

Because the magnetic state changes with the plate
position, an update of the magnetic forces is essential.
To achieve this a coupling loop is used as presented in
Figure 13.

The coupling process starts with the magnetic reso-
lution over the magnetic mesh (see Fig. 14) which sup-
ports linear basis functions. This mesh is composed of the
entire electromagnet system and the surrounding air do-
main. Once the magnetic field distribution is known, nodal
force values are computed using the VPP. The next stage
computes the force density over the mechanical parts of
the first mesh. It ensures that values of forces are suitable
to the incoming projection. The projection itself trans-
fers the force density throughout the mechanical mesh
(see Fig. 16) and allows the resolution of the mechanical
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Fig. 14. Mesh of the electromagnet used to solve the magnetic
problem (mesh 1). The air box is not represented.
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Fig. 15. Detail of the geometry and its parameters. An extra
air box is present but not represented.

Fig. 16. Mesh of the plate used to solve the mechanical prob-
lem (mesh 2). It is fully composed of ten-node-tetrahedra.

problem. A pull-backward projection of the displacement
field makes it available over the first mesh. Once the two
meshes are updated thanks to the displacement field, an-
other resolution is possible using a modified version of the
geometry. The process continues until the equilibrium is
obtained [23,24].

The relative displacement between the (n+1)th and
the nth step is chosen as convergence criterion:

〈2‖un+1 − un‖
‖un+1 + un‖〉 ≤ ε. (48)

Number of Iterations
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Fig. 17. Vertical displacement of the point P , see Figure 15.
Dashed: B field norm at center of the iron core.
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Fig. 18. z-component of total force applied to the iron core.

ε is a user predefined value – set to 10−4 here – which
reflects the required accuracy.

The deformation of the plate has noticeable influence
on the magnetic field value. Figure 17 shows that B field
norm at the center of the core varies up to 10% of the final
value.11

The displacement of the point P has a more under-
standable variation. The more the plate gets close to the
iron core the stronger the forces are. Consequently, the
plate is even more attracted. A simple direct computation
chain will give a displacement which is twice as low as the
final computed value (Fig. 17 step 1 compared to the final
value).

At the same time, the total value of the force applied
to the iron core is available (see Fig. 18). The value varies
according to the evolution of the magnetic field.

The initial and final state are given in Figure 19.

3.2 Coupling strategies

The previous subsection gives an overview of a coupled
system solved with the help of force density projection.

This strategy is not the only one available. One can
also transfer magnetic potentials or magnetic fields. We
still consider the displacement field as a return value is-
sued from the mechanical problem. The present test in-
11 In this example the air gap remains large and does not
allow the field to vary more widely.
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(a)

(b)

Fig. 19. Plate at (a) initial and (b) final states. Displacement
is at scale.

tends to line up the best coupling strategy. Among the
possible projected values (the force density, the magnetic
potential or the magnetic field) we have tried to determine
which one produces the most accurate mechanical values.

To produce an unbiased comparison between these me-
thods, two test-cases have been used. For each case the an-
alytical solution is computed using the second mesh and
is taken as reference. Numerical computation of the mag-
netic model is performed using the first mesh. From this
model three coupling strategies are tested using the mag-
netic potential, the magnetic field (magnetic induction)
or the force density. Then the force density and the nodal
values of forces are numerically evaluated over the second
mesh. The accuracy criterion is defined by the L2 norm of
the error between the analytical solution and the numeri-
cally computed one.

3.2.1 Detail of the studied cases

First example. The cube represents a portion of an infi-
nitely long bar with a uniform current density within it.
The domain external to the bar is not modeled as we en-
sure that the normal component of the field is null over
the lateral surfaces. The present cube has 1 m edge length
and the current density (directed along the bar) is equal
to 1 A/m2. In the present case the magnetic permeability
has no influence on the field distribution and is arbitrarily
set to μ0.

The analytical solution is given by a series:

B

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

16Jμ0l

π3

∑
n

∑
p

sin (2n+1)πx
l cos (2p+1)πy

l

(2n+ 1)[(2n+ 1)2 + (2p+ 1)2]
,

16Jμ0l

π3

∑
n

∑
p

cos (2n+1)πx
l sin (2p+1)πy

l

(2n+ 1)[(2p+ 1)2 + (2p+ 1)2]
,

x
y

z
L

l

h

H

R

Fig. 20. Detail of the geometry used for the second test case.

for which the first 10 000 terms were computed.
First mesh: The mesh is composed of 43 000 linear

tetrahedra. In this example we have tested both the elec-
tric and the magnetic formulations. The first one uses the
magnetic vector potential A and the boundary condition
is A × n = 0. In the second case, the scalar magnetic po-
tential Ω, for which the Newmann boundary condition
∂Ω/∂n = 0, is imposed and led to the drop of the bound-
ary integral.

The VPP is then applied and using respectively the
magnetic energy and the magnetic co-energy. It produces
nodal values of forces from which force density is com-
puted using equation (22).

Second mesh: The second mesh is composed of linear
tetrahedra. 13 000 elements are considered thus the mesh
is roughly four times less coarse than the first one. There
is no geometrical difference between the “linear” mesh and
the “quadratic” one. Discretization nodes are numerically
added in the latter one.

The test consists in computing the error committed
on forces over the second mesh. Numerical values of forces
are successively computed using the projected field among
the force density, magnetic field and magnetic potential.
The reference solution is computed, over the second mesh,
using the analytical solution.

Second example. This case consists in a copper cylinder
carrying a uniform current density [25] as represented in
Figure 20. The B × n = 0 boundary condition is still used,
and the same set of tests is performed. The main difference
lies in a full computation of the mechanical model. The
final criterion is the strain value at the center of the copper
core.

The modeled wire has r = 1 mm radius and is made
with common copper (E = 120 Gpa and ν = 0.3). The to-
tal current is I = 1A. The analytical value of the strain
along the radial axis is given by:

σrr(r) =
−μ0 I

2

16π2R2

(3 − 2ν)
(1 − ν)

(
1 − r2

R2

)
. (49)
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Fig. 21. Details of the stages used for the weak coupling using
the magnetic vector potential A.

Fig. 22. Weak coupling using B field.

The magnetic mesh is composed of 300 000 linear
elements. Depending on the method 20 000 four-node-
tetrahedra or ten-node-tetrahedra compose the second
mesh. The air part is withdrawn during the mechanical
stage.

A case where B is transferred through the second mesh
was presented in reference [17]. In this study, we also con-
sider the case where the force and the magnetic potential
are projected.

3.2.2 Magnetic potential projection

This first strategy consists in applying the VPP through
the second mesh. In this case one or another magnetic
value has to be known. We begin with the use of the pro-
jected values of the magnetic potential: A or Ω depend-
ing on the formulation. The process is presented – for the
magnetic vector potential case – in Figure 21, no spatial
integration was needed there. The use of the magnetic for-
mulation in Ω only changes the kind of elements used for
the projection.

3.2.3 Magnetic field projection

The numerical application of the VPP can also be done
using the magnetic field or magnetic induction. Depending
on the formulation we have to transfer B or H. Then the
use of the VPP does not change significantly. Figure 22
presents the main stages for the electric formulation. The
magnetic formulation case uses H as state variable and
edge elements.

Fig. 23. Main stages used for the coupling using force density.
In this case quadratic elements are also considered, the overall
process does not change except the projection and the added
spatial integration.

3.2.4 Force density projection

The main assets of the projection of the force density are
the easy implementation of model restriction and the use
of quadratic projections. The calculation can be done on
moving parts only. This process is used for more complex
problems such as the “plate” example (see Fig. 14). In
this case VPP is applied on the first mesh. Hence force
density is computed. The projection process comes after
the application of the VPP. In order to compare the nodal
values of forces, an extra spatial integration is needed.

Figure 23 sums up the overall process. The projection
stage can either be linear or quadratic and relies on node
elements.

3.2.5 Numerical results, first example

Computation results. Table 14 presents results obtained
for each coupling method. It is subdivided into two parts
depending on the formulation (the electric one for the up-
per part and the magnetic one for the lower part). We
focus on the mean relative error per node between the an-
alytical values of the force and the one computed using
our method. Results are given in percentage of the an-
alytical value. In order to analyze the possible influence
of the strategy on the mechanical problem source data,
comparisons for both force density and nodal values were
performed.

For each strategy the force computation sequence dif-
fers. If magnetic data are transferred nodal forces are com-
puted first, then comes force density. Otherwise force den-
sity is computed first, and secondly the spatial integra-
tion gives the nodal values. The extra computation stages
(spatial integration or force density computation) induce
error on the final result. This explains why nodal values
are more accurate when transferring the magnetic values.
Similarly the force density is closer to the reference solu-
tion in the case where forces were transferred.

Figure 24 represents the force density obtained using
the nodal projection of the magnetic forces. Figure 25 is
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Table 14. Accuracy test results for the cube (first example).

Projected value Prod. Density Nodal val.

Force density (A) L2 1.21% 3.78%

Force density quad. (A) L2 0.97% 3.12%

Mag. potential, A L2 59.30% 52.72%

Mag. potential, A H1 5.25% 4.22%

Mag. induction, B L2 5.78% 4.62%

Mag. induction, B H1 5.75% 4.59%

Mag. potential, Ω & Hg H1, L2 71.47% 62.65%

Mag. field, H L2 15.12% 10.80%

Mag. field, H H1 18.24% 12.63%

Fig. 24. Projected force density for the cube example.

a plot of the difference between the analytical values and
the forces computed using the magnetic potential. High
values of the error are located in the corners of the cube.

Comments on results. The use of force density as a com-
mon value appears to be the best choice for weak coupling.
Force density is the natural source data for the mechani-
cal problem. The use of quadratic basis functions improves
the accuracy of the mechanical problem while it does not
harden the implementation. Furthermore, it facilitates the
reduction of the model: a local renumbering of selected el-
ements divides by 20 the projection time.

However if source data for the mechanical code are
nodal force values, the use of B field is also a good choice.
In this case, the use of quadratic elements and spatial
restriction are then more difficult.

Results show the interest in the use of the H1 norm for
the projection of magnetic potentials. The accuracy of the
fields and therefore the one of forces is greatly improved
in the H1 case compared to the L2 case. This result high-

Fig. 25. Difference between projected forces and those stem-
ming from the H1 projection of the magnetic potential. Errors
are essentially located around the corners of the cube.

Table 15. Accuracy test results for the magneto-mechanical
cylinder (second example).

Projected value Prod. Value/10−3 Relative error

Force L2 −26.89 1.44%

Force quad. L2 −27.06 0.82%

A L2 −19.33 29.15%

A H1 −26.66 2.29%

B L2 −26.67 2.25%

B H1 −24.45 10.39%

Force L2 −27.27 0.05%

Force quad. L2 −27.30 0.06%

Ω & Hg H1, L2 −11.04 59.54%

H L2 −18.13 33.55%

H H1 −17.42 36.15%

lights the importance of considering the physically mean-
ingful field in the projection process.

3.2.6 Numerical results, second example

Numerical computations are presented in Table 15 and
are consistent with the results obtained for the first case.
Note that the projected quantities are force density, A,
B, Ω or H depending on the method and the formulation.
This time the only source data for the mechanical model is
force density. It implies the numerical prepossessing of the
nodal values when magnetic quantities are transferred.

The analytical value for the strain is σrr(r = 0) =
−27.284×10−3 Pa. A cut plane of the radial related com-
ponent of the strain is given in Figure 26.
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Fig. 26. Strain distribution along the radial axis.

3.3 Dynamical systems

3.3.1 Introduction

The projection method can also be applied to transient
state of magneto-mechanical coupled systems. For the sake
of simplicity we now consider mechanically dynamical sys-
tems while the magnetic model is still considered in its
steady-state form. In other words, displacements are slow
enough – considering magnetic field evolution and the con-
ductivity of the materials – to not induce currents that
have significant effects on the mechanical evolution.

The study is restricted to the simple case for which the
present method is performed for a unique time step. To
perform such calculation different methods exist, however
their review – which would need a full study – will not be
presented. A more thorough analysis of time schemes is
presented in reference [26].

3.3.2 Dynamical magneto-mechanical processes

We now consider a transient mechanical model: the mass-
matrix [M ] is introduced and time evolution is taken into
account using an implicit time discretization method.12
To avoid burdening the description of the present method,
it is assumed that the time step is small enough to cor-
rectly compute the evolution of the process. Obviously
more complex time discretization methods can be used.

3.3.3 Numerical example, the damped plate

The plate now has a density equal to ρ = 10−2 kg m3

which is low enough to prevent contact with the iron core.
12 We have used a Newmark scheme due to its unconditional
stability.

Fig. 27. Solid: vertical displacement of the point P using tran-
sient analysis. Dashed: magnetic field norm at the center of the
iron core. Dotted: total force, along the vertical direction, ap-
plied to the electromagnet.

In order to obtain around 10 oscillations, and despite
the lack of significance of such a formula, a Rayleigh damp-
ing model is also introduced: the damping matrix is calcu-
lated from a linear combination of the mass and stiffness
matrices. It leads to the following linear system:

[M]∂2
t [u] + [D]∂t[u] + [K][u] = [f ]. (50)

Results obtained using the weak coupling and field pro-
jections are presented in the following part. We have com-
puted the response of the system, initially unenergized, to
a current step. Figure 27 presents the vertical displace-
ment of the point P (see Fig. 15) using this transient
analysis.

We have also noticed that computed electromagnetic
fields – hence forces – are time-dependent bringing out the
influence of air gap size. Further analysis shows that the
present method gives good results. Different time scheme
were studied in reference [26], their accuracy and compu-
tation time were compared.

4 Magneto-thermo-mechanical coupled
systems

The next part discusses the three-physics modeling.
Processes used for the magneto-mechanical coupling
method are mainly reused. A thermal model is now added
to the previous magneto-mechanical model. This time cou-
pling through the constitutive law is involved in the overall
process. We deliberately highlight that the present frame-
work also applies to systems coupled by constitutive laws,
and not to solely external loads.

The added physics is solved in its own frame; a sup-
plementary mesh is used for it. It also uses two more pro-
jections processes.
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4.1 Process overview

Previous work relies on magnetostatics: the only currents
that may exist belong to inductors and are considered as
sources. Joule losses can be obtained by specifying conduc-
tivity to the domain. Their values are given by s = |J |2/σ.
This is typically what is used in the example of Section 4.2.

The magnetic model is revised to become a transient
one, and the eddy-current model is then used. This model,
which merely represents Maxwell’s equations, is character-
ized by the drop of the displacement current term (∂tD).
For each formulation an additional potential is required.
It leads to the so-called “electric” and “magnetic” formu-
lations, for which equations are respectively:

rot (
1
ν

rotA) + σ(∂tA + gradφ) = Jg, (51)

curl
1
σ

curlT + μ∂t(T − gradΩ) =

−curl
1
σ

curlHg − μ∂tHg,
(52)

where φ is the electric scalar potential and E = −∂tA −
gradφ. T is the electric vector potential, and E = rotT/σ.

Regardless of the used formulation, a prerequisite to
the mechanical problem is the full determination of the
temperature distribution. To do this, two additional stages
are necessary:

– determination of the Joule losses using the
equation (23);

– thermal problem computation using transferred sour-
ces.

4.1.1 Transferred data

Joule losses denoted by s are computed with the help of
the magnetic basis functions. Moreover, losses are scalar
values, constant by element and are discretized using vol-
ume elements.

As we use a specific mesh for the thermal problem, we
have to transfer this loss density. To do this we use an ele-
ment to element projection method, which is conservative
and defined by: ∫

Kti

st =
∫

Kti

ss, (53)

where Kti
denotes the ith element of the mesh associated

to the thermal problem (target one). As the volume ele-
ments basis functions is written wi = 1/vol(Ki) – which
is constant by element – multiplying equation (53) by ψ
chosen among the wtj

one gets:

〈st − ss, ψ〉 = 0 ∀ψ ∈ {wtj
}. (54)

We do recover the method used in Section 1.5. This state-
ment remains important: projection of Joule losses us-
ing volume elements keeps the total heat power despite
changes in the distribution.

Magnetic problem

Virtual power prin.

Force density

Projection 1→ 2

Force density

Joule losses

Projection 1 → 3

Thermal problem

Temperature

Projection 3 → 2

Mechanical problem

Displacement

Projection 2 → 1

Displacement

Remesh

Converged?

End?

Fig. 28. Magneto-thermo-mechanical coupling process stages.
We denote by 1 the magnetic mesh, by 2 the mechanical mesh
and by 3 the thermal one.

By the resolution of the thermal problem, the tem-
perature distribution can be determined. This field is dis-
cretized using node elements and has to be transferred to
the mechanical model.

4.1.2 Detail of the stages

Three different meshes are used: one per phenomenon. As
a consequence we have to deal with three kinds of projec-
tions.

As presented previously, it is necessary to process nodal
forces in order to get the force density which is compliant
with projection. Magneto-mechanical projection involves
forces and uses the L2 node-to-node projection in its vec-
torial form. This first kind of projection involves magnetic
and mechanical parts of the process, and defines force load
applied to the mechanical media.

Magnetic model also provides ohmic losses present in
conducting parts. The second kind of data transfer relies
on element-to-element projection and makes possible the
determination of Joule losses over the thermal mesh start-
ing from the ones on the magnetic mesh.

In order to correctly determine the mechanical behav-
ior law, this distribution also has to be determined within
the mechanical parts. As the temperature is discretized
using node elements, an L2 node-to-node elements pro-
jection stage is used.

At this point, all data required by the mechanical prob-
lem are available through the mechanical parts. The dis-
placement field can be determined through the resolution
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Fig. 29. Illustration of the geometry after meshing.

of the mechanical problem, thus paving the way for the
geometrical update.

Figure 28 is a summary of the flowchart of the overall
problem. In order to cut computational time, as thermal
part of the process is independent of the force density
projection, these two operations can be performed simul-
taneously.

4.2 Comparison with an analytical model

4.2.1 Test-case description

Similarly to the magneto-mechanical case, an electric hea-
ted cylindrical wire is considered. The geometry is the
same as in Section 3.2.1 and is presented in Figure 20.
More precisely the test-case geometry is unchanged but
the combination of the physical models differs. The mag-
netic behavior is roughly the same, namely a uniform cur-
rent density belonging to the conductor. All parts behave
like μr = 1 materials (e.g., air or copper). Moreover, we
take into account the copper’s conductivity σ. As current
density is imposed, the overall magnetic field distribution
is unchanged. The addition of a conductivity allows the
computation of Joule losses using equation (23).

An example of the mesh used for the computation is
available in Figure 29. The upper half of the air part was
removed, thus unveiling the mesh of the wire. The mechan-
ical behavior law is now defined by equation (24): temper-
ature is issued from the thermal computation while force
density is computed using the VPP, “density” transform,
and projection chain.

As we wish to measure the accuracy of the coupled
system, the worst case must be considered. To do this, we
ensure that every linkage produces a deformation of the
same order. A wise set of parameters is then used despite
the loss of the physical significance.

As boundary condition, the Newton’s law of cooling (h
coefficient) is applied to the lateral surface of the conduc-
tor. As described in Section 1.3 the field of temperature is
computed using a linear model of conduction (coefficients
ρCp and k).

All used parameters are reported in Table 16 where R
is the radius of the cylinder, I is the total current within

Table 16. Model parameter values for the heated cylinder.

μ = μ0 I = 1 A

E = 1 Pa ν = 0.3

k = 10−5 W m−1 K−1 σm = 107 S m−1

α = 5 × 10−4 K−1 h = 2 × 10−1 W m−2 K

Text = 20 ◦C R = 1 mm

it. μ0 is the permeability of vacuum common to air and
copper materials. E and ν are respectively Young modulus
and Poisson’s ratio which parameterizes the mechanical
behavior law.

The magnetic mesh includes an air box and is com-
posed of 400 000 linear tetrahedra. The mechanical mesh
is supported by the cylinder shape only and is composed
of 23 600 quadratic tetrahedra. The thermal mesh is com-
posed of 21 200 tetrahedra.

4.2.2 Numerical results

Analytical model computation. The accuracy test con-
sists in computing the radial component of strain at the
center of the cylinder. An analytical computation has been
performed in reference [27] leading to:

σrr = (55)

−μ0 I
2

16π2R2

(
ν

3 − 2ν
+

αE

μ0 k σm (1 − ν)

)(
1 − r2

R2

)
,

which takes a negative value as forces tend to compress
the cylinder. The temperature distribution decreases as
r2 and the heat power balance gives the expression of the
exterior surface temperature Tsur:

Tsur = Text +
I2

2π2 hσ R3
. (56)

Using the present set of parameter values, and applying
above formulae, one obtains: σrr = −34.82 × 10−3 Pa and
Tl = 24.22 ◦C for the lateral surface temperature. These
results are in agreement with the one presented in
Section 3.2.6.

Numerical application. The method was first tested on
a single-mesh method for which no projections were in-
volved. We have then used, for the copper cylinder, the
same mesh for the three models. The magnetic mesh only
differs as an air box is required. The aim is to check the full
integrity of the model and to perform a first assessment of
the exactness of the process. We have used three different
meshes adapted to each physical model. The results issued
from the projection method have to be compared to the
one-mesh process (see Tab. 17).

In order to obtain similar behavior, the mesh used for
the one-mesh method is a combination of the air part of
the magnetic mesh and the cylindrical part of the me-
chanical one. The use of a single mesh avoids resorting to
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Table 17. Accuracy test results for the magneto-thermo-
mechanical test case.

Projected value Prod. Type Value Rel. error

10−3 (%)

None (single mesh) – Tl 24.21 0.04

None (single mesh) – σrr 34.58 0.69

Temperature (A) L2 Tl 24.28 0.25

Forces (A) L2 σrr 34.78 0.11

A L2 σrr 27.42 21.25

A H1 σrr 34.57 0.72

B L2 σrr 34.56 0.75

B H1 σrr 32.89 5.54

Temperature (Ω) L2 Tl 24.28 0.25

Forces (Ω) L2 σrr 35.01 0.55

Ω & Hg H1, L2 σrr 19.24 44.74

H L2 σrr 25.28 27.40

B H1 σrr 22.92 34.18

Fig. 30. Strain distribution along the radial axis.

projections but is highly disadvantageous in terms of com-
putational cost. Nevertheless, the complexity introduced
by the projection stages does not significantly decrease the
final accuracy.

Figures 30 and 31 present numerical results obtained
using the projection method. Figure 30 is a plot of the
radial component of the strain tensor: values are negative
as forces tend to tighten the core. As the heat is evacuated
through the lateral surfaces, the highest temperatures are
located at the center of the wire (Fig. 31). Because of the
circular invariance of the geometry, values only depend on
the radial position.

Fig. 31. Temperature distribution along the radial axis.

4.3 Dynamical system example

The previous analytical test does not involve the complex
re-meshing process. Regrettably we have not found an an-
alytical solution of a transient magneto-thermo-mechanical
system. The further computation does not intend to pro-
duce a performance test. It is more a demonstration of
feasibility of such a computation than a benchmark.

The ferromagnetic damped plate actuated by an elec-
tromagnet provides a highly magneto-mechanical coupled
system. For consistency’s sake we have reused the previous
model, to which we have introduced the missing magneto-
thermal and thermo-mechanical couplings.

The magneto-thermal coupling which is commonly en-
countered is heating due to eddy currents. We now go
on with dynamic magnetic systems containing conductive
parts. The introduction of the missing thermo-mechanical
coupling only remains. In an effort to produce a system
for which the shape highly depends on the temperature,
we focus on bimetallic plates.

4.3.1 Setup descriptions: the damped ferromagnetic
bimetallic plate

The structure of the system is roughly the same as in
Section 3.3.3. Dimensions and physical properties of the
iron core and the copper coil do not change and are still
considered as fixed parts. Except from its width the plate
is not modified and is composed of ferromagnetic materi-
als. In order to get induced currents within the plate, we
now consider the material as conductive. The bimetallic
effect is obtained by taking a nonzero coefficient of ther-
mal expansion. The two parts of the bimetallic strip – the
upper and lower half of the plate – have respectively a
coefficient of opposite sign.
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Fig. 32. Details of the considered electromagnet and strip. Air
not represented.

The source current varies sinusoidally through the
time. The frequency of this source is supposed sufficiently
high to enable the approximation of the force – through a
mechanical time step – by its average value.

Figure 33 is a sketch of the current geometry. Meshes
are then defined by:

– The “magnetic” mesh consisting of: the iron core, the
coil, the plate and the surrounding air. This mesh is
composed of 378 000 of the so-called “four-node” lin-
ear tetrahedra. Mesh characteristic size is significantly
lower than the two following ones. This mesh, for which
the air part was withdrawn, is presented in Figure 32.

– The “thermal” mesh is only related to the plate as we
focused on the temperature of the bimetallic strip only.
It consists in 127 000 linear tetrahedra. At this point
we do not distinguish the two parts of the strip either
for the “magnetic” mesh or for the “thermal” one.

– The remaining mesh is the “mechanical” one. As well
as for the thermal mesh, the mechanical domain is lim-
ited to the plate only. As described before we have used
“ten-node-tetrahedra” which support quadratic basis
functions. This kind of elements suit well the mechan-
ical formulation.

Every parameters involved in the model is gathered in
Table 18. One must carefully keep in mind that some para-
meters may not be physically meaningful. Like it has been
done for the analytical case, we have tried to obtain the
“strongest” coupled case. Namely it is the case where none
of the three physical models entirely rules the evolution of
the system. Every linkage between sub-problems has its
importance and thus highly interferes with the other ones.

As shown in Figure 33 the bimetallic trip is composed
of two sub-shapes defined by their length L and width
l. Their respective height is a. The iron core and its sur-
rounding copper coil are defined using two concentric cylin-
ders which have respectively H and h height, radii are r
and R. The initial air gap is defined by δ which is the dis-
tance between the bottom of the core and the top of the

Fig. 33. Sketch of the geometry of the bimetallic strip.

Table 18. Lengths defining the system. Distances are given in
meters.

L 20 l 10 A

a 0.5 Mpa δ 1

h 5 H 10

r 2 R 3

Lair 60

strip. An additional cube – which is Lair edge length – is
defined and represents the added air used in the magnetic
domain.

Materials properties, using the same notation as in
Section 4.2, can be found in Table 19. We recall that the
damping matrix is computed using the linear combination:
[M ] = αd[K] + βd[M ].

In the present case μ stands for the relative perme-
ability of every ferromagnetic part: the iron core and the
strip. Every other part such as air or coil behaves like vac-
uum (μ0). Each slice of the strip has different coefficient of
thermal expansion: the upper half has αupper = ‖α‖ while
the lower one has αlower = −‖α‖.

The system is initially considered at its extinct state:
no current within the coil and no motion. The temperature
is set to 20 ◦C at every point of the domain. The model-
ing starts with the energizing of the coil. The RMS value
of the current is maintained constant from the beginning
up to the 1000th time step. The coil is then switched off

Table 19. Physical properties values for the “bimetallic strip”
test-case.

μ 1000 I 1 A

E 1 MPa ν 0.3

ρ 1 kg m−3 ρ × Cp 3.3 × 10−3 J K−1 m−3

‖α‖ 2 × 10−6 K−1 h 2 × 10−1 W m−2 K

Text 20 ◦C k 10−5 W m−1 K−1

αd 1 βd 1
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Fig. 34. Solid: temperature at the center of the strip (with
motion). Dashed: plot of the temperature for the non-moving
case.

and the system moves freely up to its equilibrium point.
From the 1001th time step until the end of the compu-
tation, we actually model a thermo-mechanical system as
no magnetic field is considered.

4.3.2 Numerical results

The most remarkable point is the variation of the temper-
ature of the center of the strip over the time. Figure 34
presents the variation of the temperature over the time
for both the present case and the reference case. In order
to point out that the strip shape modification of the plate
has influence on the induction heating, we plot the curves
with (solid line) and without (dashed line) motion.

We denote by reference the purely magneto-thermal
case where no deformation was considered. As the air
gap decreases the magnetic field rises and hence the Joule
losses rise too. One can notice that, in the present case,
the committed error on the maximum values goes up to
15 ◦C. It represents 10% of the total overheating. This
statement is one of the signs that proves the need to take
into account the three models together.

Figure 35, as in Section 3.3.3, represents the vertical
variation of the point P which is the middle point of the
upper edge of a lateral face.

As shown in Figure 35 at least four phases clearly ap-
pear during the system’s evolution:

– The first transitional state (①) is due to the mechan-
ical stroke subsequent to the apparition of magnetic
forces. Oscillations extensively arise from the inertia of
the plate (the mass density ρ is no longer neglected).
They are gradually vanishing as the mechanical prob-
lem is damped. The authors intentionally set the value
of damping factors αd and γd to get a short mechanical
transitional state compared to the thermal one;

– As suggested in the previous point phase ② shows the
bend of the bimetallic strip due to the increasing tem-
perature. Despite the relative similarity to the con-
stant heating case, the shape of the curve has a com-
plex evolution involving the variation of s (the heating

Fig. 35. Plot of the vertical displacement over the time (point
P , see Fig. 33).

sources). We almost awaited the equilibrium state of
the energized system before switching the coil off.

– During the next two stages, the system reduces to a
thermo-mechanical one. Phase ③ reflects the mechani-
cal transitional state due to the sudden release of mag-
netic forces. The strip spontaneously stretches toward
the opposite side as materials are still hot.

– Finally the strip tends to recover its natural state ow-
ing to the imposed boundary conditions that cool the
plate down. Unlike stage ②, phase ④ looks like a simple
cooling process.

Figure 36 is a plot of the norm of the currents induced
within the plate. Joule losses thus have the same distrib-
ution.

Another meaningful experiment consists in fitting the
temperature curve to an exponential function. Setting the
magneto-mechanical coupling aside and choosing a partic-
ular point, the temperature is driven by:

kΔT (t) + s = ρCp ∂tT (t), (57)

where the single variable is t. The solution is of the form
T = A(1 − e

−t
τ ). During the heating process the real

evolution of the temperature is more complex and has no
analytical form. But the curve can still be fitted with the
previous function. It highlights the small bumps lying on

Fig. 36. Distribution of Joule losses within the plate. Eddy
currents are located accordingly.
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Fig. 37. Solid: plot of the normalized difference between the
temperature and the fitted curve Dashed: normalized value of
the displacement, π/2 phase shifted.

the computed curve (see Fig. 34). One can observe that the
difference between the real curve and the fitted one varies
according to the instantaneous state of the air gap (see
Fig. 37). Because of the time derivative in equation (14),
these two curves are π/2 phase shifted.

4.3.3 Comments on the numerical method

We have deliberately ensured that the characteristic times
of the three models are sufficiently different. This greatly
facilitates the interpretation of the results.

This example illustrates the power of the projection
method. If computational tools are available, this is the
basis to the setup of a generic flowchart. Hence a wide
scope of use is possible, and complex coupled phenomena
can be easily modeled.

Conclusion

This work presents an innovative method to transfer data
from a physical model to another one. The numerical
method is of high interest as it enables the use of het-
erogeneous computational tools. For the first time, the
projection methods applied to the multi-physics model-
ing of systems were successfully tested on a three-physics
problem. At the same time, major drawbacks of the cou-
pling methods are overcome: meshes can be numerically
adapted to the physical models. Furthermore, computa-
tional and memory costs were reduced.

We have firstly presented the projection methods us-
ing several dot products. Among this set of tools we have
demonstrated that some of them are, depending on the
values of interest, most suitable for data transfer. There-
fore complex systems can be modeled in different ways:
starting from the projection methods available, we have
tried to determine the most accurate one. Once defined,
experiments on heavily coupled systems have been suc-
cessfully carried out.

The projections greatly depend on the considered basis
function. For each kind of element, two specific dot prod-
ucts can be proposed: the one derived from the L2 sub-
space and the one derived from the H1 sub-space. The

Fig. 38. Magneto-mechanical model of end connections of a 1
GW turbo-alternator used in a nuclear power plant: elastic de-
formations, present during normal operation, are computed as
part of a fatigue prediction study. The magnetic and mechan-
ical models have resort to distinct meshes and are linked by
the developed projection method. Left part is the undeformed
geometry for which magnetic field lines were added. Right part
presents an oversized (105) deformation of the windings.

inner product to choose depends on the value of inter-
est. In the case where physical fields are used through the
second mesh, results recommend the use of H1 norm for
potentials. Nevertheless, the L2 projection method is rec-
ommended for a good conservation of the considered value,
no matter its physical meaning. The test-cases point out
this statement although the accuracy depends on both the
solution and the mesh. The efficiency of the mesh inter-
section computation appeared to be the key point of the
method.

Associated with quadratic basis functions and an ap-
propriate reduction of the different computation domains,
we have found that force density, Joule losses, temperature
and displacement are attractive choices for data trans-
fer. Under these provisos, the overall error added to the
mechanical strain is quite acceptable. Three independent
test-cases were used for performance comparison.

The efficiency of the proposed method is particularly
noticeable when applied to complex problems. Despite
their heavily coupled behavior, the two dynamical sys-
tems presented in this article were easily modeled. More
than a simple computation method, this paper presents
a new approach for coupled systems computation. The
wide availability of high-quality computer codes is attrac-
tive knowing that most of them are open sources. We have
attempted to produce a flexible method that – in addition
to the reduction of computational cost – enables the use
of numerically adapted meshes.

This work aims to present benefits provided by the
coupling method using disconnected meshes and projec-
tions. It is intended to be used to model industrial appli-
cations: the present code is involved in the computation of
vibrations within the end connections of large
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turbo-alternators. Figure 38 presents an example of com-
putation: left part is the undeformed geometry and the
magnetic field lines while the right part is the elastic de-
formation (not at scale) of the end connections induced
by the magnetic forces. These forces are present during
normal operation and are source of aging of the windings.
The operator has interest to monitor these deformations
in order to predict possible failure, or modifications of the
behavior in the case of structural changes.

This particular example involves magnetism, thermal
science and applied mechanics. However, the coupling
method involving projections can be used in numerous
other cases.
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