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ABSTRACT

In the present note we deduce a class of bounds for the difference between the stop-
loss transforms of two compound distributions with the same severity distribution. The
class contains bounds of any degree of accuracy in the sense that the bounds can be
chosen as close to the exact value as desired; the time required to compute the bounds
increases with the accuracy.

1. INTRODUCTION

During the last twenty years, there has grown up a large literature on approximations
and inequalities for stop-loss premiums under various assumptions. One way of ap-
proximation is to approximate the original distribution with another distribution that
makes the evaluation simpler. In such cases it is useful to have bounds for the diffe-
rence between the exact stop-loss premium and the approximation, that is, it is of
interest to have bounds for the difference between the stop-loss transforms of two
distributions.

When approximating the stop-loss transform of a compound distribution, it is so-
metimes convenient to replace the counting distribution with another distribution, e.g.
a Bernoulli distribution or a Poisson distribution, and keep the severity distribution
unchanged. Such approximations are discussed by i.a. Dhaene & Sundt (1996).

In the present note we deduce classes of bounds for the difference between the stop-
loss transforms of two compound distributions with the same severity distribution. The
classes contain bounds of any degree of accuracy in the sense that the bounds can be
chosen as close to the exact value as desired; the time required to compute the bounds
increases with the accuracy.

2 . NOTATION AND CONVENTIONS

Let ^+ and Z+ denote the sets of respectively the non-negative real numbers and the
non-negative integers, and PK and Pz the classes of probability distributions with
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finite mean on respectively "R+ and Z+. For distributions in PK , we shall denote the
cumulative distribution function with a capital letter and, for distributions in Pz , the
discrete density function with the corresponding lower case letter. The stop-loss trans-
form of a distribution will be denoted by a horizontal bar on the top of the symbol of
the distribution, that is, for a distribution F e PK , we have the stop-loss transform F
given by

F(x) = f" (y -x)dF(y) = f" (1 - F{y))dy. (x > 0)
Jx Jx

The mean of F is denoted by fiF, that is,

liF = F(0) = j ~ ydF(y) =^ (1 - F{y))dy.

We shall denote a compound distribution with counting distribution P e Pz and
severity distribution He PK by P v f f , that is,

«=0

where //"'denotes the n-fold convolution of //.
For F e PK+ and r e "R+, we define the approximation F, by

F(x)=\F(x) (0<x<r)
X [ l - (x>r)

This approximation can be interpreted as the distribution obtained by setting all obser-
vations greater than r equal to r. The limiting cases r - 0 and r = °° correspond to
respectively the distribution concentrated in zero and the original distribution F.

We shall interpret V._ v, = 0 when b < a.

3. RESULTS

3.1. The following lemma is proved as formula (38) in De Pril & Dhaene (1992) for
the special case r = 1; the proof is easily extended to the general case.

Lemma 1 For He PK , r, m e Z+ such that r <m, and x e £+) we have

(m-r)H(x)<Hm*(x)-Hr*(x)<(m-r)nH.

Lemma 2 For P e Pz+, H e PK+, r e Z+, andxe £+, we have

H(x)P(r)< P v H(x)- Prw H(x)< nHP(r). (1)

https://doi.org/10.2143/AST.26.2.563221 Published online by Cambridge University Press

https://doi.org/10.2143/AST.26.2.563221


DIFFERENCE STOP-LOSS ORDER AND TWO COMPOUND DISTRIBUTIONS 227

Proof. We have

PvH(x)-PrvH(x) = JjP(n) (Hn\x)-Hr\x)).
n-r

Application of Lemma 1 gives

5>(«) (n-r)H(x)<PvH(x)-PrvH(x)<^p(n) (n-r)nH,
n-r n=r

from which we obtain (1). Q.E.D

The second inequality in (1) was proved under more general assumptions by Sundt
(1991), who also showed that 0<PvH(x)-Pr vH(x) , which is weaker than the
first inequality in (1).

If Pr = P, that is, P(r) = 1, then the bounds in (1) become equal to zero.
Lemma 1 appears as a special case of Lemma 2 by letting P be the distribution con-

centrated in m.

3.2. For P, Q e Pz+, H e PR+, r e Z+, and x e R+, we introduce

which can also be written as

Br(x;P,Q,H)=Yj(p(n)-q(n))Hn\x)~

(P(r -\)-Q(r- 1))/T {x) + nH P(r) -H(x)Q (r). (3)

Theorem 1 For P, Qe Pz+, H e Ps+, r e Z+, andxe TZ+, we have

-Br(x;Q,P,H) ^ P v H(x)-Qv H(x) < Br(x;P,Q,H). (4)

Proof. Application of Lemma 2 gives

P v H(x) -Qv H(x) <Prv H(x) + fiHP(r) -Qrv H(x) - H(x)Q(r) =

Br(x;P,Q,H),

which proves the second inequality in (4). The first inequality follows by symmetry.
This completes the proof of Theorem 1. Q.E.D.
We shall look at some special cases of Theorem 1:

1. As

we see that Lemma 2 (and thus also Lemma 1) is a special case of Theorem 1.
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2. From (3) we obtain

For H € Pz this case is discussed in Dhaene & Sundt (1996).
3. From (2) we obtain

H(X)LIQ. (5)

4. If P(r) = Q(r) = 1, then Pr = P and Qr = Q, and from (2) we obtain

Br(x;P,Q,H) = -Br(x;Q,P,H) = Pv H(x)-Qv H(x),

that is, in this case Theorem 1 becomes trivial.
5. From (2) we obtain

that is, unfortunately the bounds in Theorem 1 do not in general become
equal to zero when comparing two identical compound distributions.

3.3. Let Dr(x;P,Q,H) denote the difference between the upper and lower bound in
Theorem 1, that is,

Dr(x;P,Q,H) = Br(x;P,Q,H) + Br(x;Q,P,H). (7)

Then

We see that Dr(x;P,Q,H) decreases to zero when rincreases to infinity, that is, we
can make the difference between the upper and lower bound in Theorem 1 as small as
desired by making r sufficiently large.

We see that Dr(x;P,Q,H) increases from zero to fJ.H\P(r) + Q(r)\ when x increases

from zero to infinity. Thus our bounds are most accurate for low values of x. Further-
more, if for some e > 0 we choose r such that

P(r) + Q(r)<—,

then Dr(x;P,Q,H)<z for all x e J?+.

3.4. Let

br(x;P,Q,H) = Br(x;P,Q,H)-Br+1(x;P,Q,H).
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From (3) and trivial calculus we obtain

HH(1-P(r))-H(x)(l-Q(r)).

By rewriting (9) as

and application of Lemma 1, we see that br(x;P,Q,H) > 0. Thus Br(x;P,Q,H) is non-
increasing in r. This implies that in (4), the upper bound is non-increasing and the
lower bound is non-decreasing in r, and as Dr(x;P,Q,H) goes to zero when rgoes to
infinity, both bounds converge to P v H(x)-Qv H{x).

Formula (9) can be applied for recursive evaluation of Br(x;P,Q,H).
Furthermore, when we have found Br(x;P,Q,H), we easily obtainBr{x;Q,P,H) from (7)
and (8).

3.5. The main purpose of the present subsection is to deduce an improvement of the
bounds in Theorem 1. For doing that, we shall need the following lemma.

Lemma 3 For P, Q e Pz+, H e PK , r e Z+ and x e "R+, we have

br(x;P,Q,H)z(nH-H(x))(l-max(P(r),Q(r))). (10)

Proof. We apply Lemma 1 in (9). If P(r) > Q(r), then

that is,

br(x;P,Q,H)>(^H-H(x)){l-P(r)). (11)

Analogously, if P(r) < Q(r), then

br(x;P,Q,H)>(P(r)-Q(r))fiH+fiH{l-P(r))-H(x)(l-Q(r)),

that is,

br(x;P,Q,H)>(vh -H(x)){l-Q(r)). (12)

From (11) and (12) we obtain (10). Q.E.D.

https://doi.org/10.2143/AST.26.2.563221 Published online by Cambridge University Press

https://doi.org/10.2143/AST.26.2.563221


230 BJ0RN SUNDT - JAN DHAENE

Theorem 2 For P, Qe Pz+, H e Ps+, r e Z+, andxe £+, we have

(/iH-H(x))ft(\-max(P(k),Q(k)))<
k=r

PvH(x)-QvH(x)<

Br(x;P,Q,H)-(nH-H(x))fd(l-max(P(k),Q(k))). (13)
k=r

Proof. For s e Z+ such that s > r, we obtain by applying successively Theorem 1 and
Lemma 3

PvH(x)-QvH(x)<Bs(x;P,Q,H) =
. s - l

Br(x;P,Q,H)-^bk(x;P,Q,H)<
k = r

Br(x;P,Q,H)-(iuH - 7/(x))]T(l - max(P(k),

By letting 5 go to infinity, we obtain the second inequality in (13); the first inequality
follows by symmetry.

This completes the proof of Theorem 2. Q.E.D.

We see that in (13), like in (4), the lower bound is non-decreasing in r and the upper
bound is non-increasing in r.

The infinite summation in (13) may seem complicated. However, as all the terms
are non-negative, we obtain weaker bounds by including only a finite number of
terms. Furthermore, if P or Q has a finite support, then only a finite number of terms
are non-zero.

In the following corollary we consider another case where the summation obtains a
particularly simple form.

Corollary 1 Let P, Qe Pz+, H e P^+, and x e 72+. If there exists a non-negative in-

teger s (possibly equal to infinity) such that

Q(y)<P(y) (y = 0,l,...,s-

Q(y)>P(y), (y = s,s + l,...)

then

PvH(x)-Qv H(x) <

Br(x;P, Q,H) - (/iH - H(x))(P(r) - P(s) + Q(s))
= 0,l,...,s-\) (15)
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Br(x;P,Q,H)-(fiH-'fi(x))Q(r). (r = s,s + l,...) (16)

Proof. For r - 0, 1, ..., s-\, we have
v — 1

k-r k-r k=s

~P(r)-P(S) + Q(s),

and insertion in (13) gives (15). The inequalities (16) are proved analogously.
This completes the proof of Corollary 1. Q.E.D.

If we in addition to (14) assume that fiQ < fiP, then we have the stop-loss orderings

Q < P and Q v H < P v H; for proofs cf. e.g. Goovaerts, Kaas, van Heerwaarden, &
Bauwelinckx(1990).

At the end of subsection 3.2. we pointed out that unfortunately the bounds in Theo-
rem 1 do not become equal to zero when Q = P. From (6) and (15) we see that the
improved bounds of Theorem 2 do not have this deficiency.
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