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1

Let S be a closed bounded convex set in d-dimensional Euclidean space Ed.
The width w(S) of S is the minimum distance between supporting hyperplanes
of S, and L(S) is the number of integral lattice points in the interior of S.

If a is a positive real number, we define

g(a, d) = min{L(S): w(S)>a}.

Recently Scott (1973) has proved that

In Section 2 of this note we prove that

where [q] denotes the integral part of q. We also show that

3) s<°

Earlier Sallee (1969) obtained a sharper result than Scott's (1) for sets of
:onstant width in E2. A set WCEd is said to have constant width a if the
jistance between any two parallel supporting hyperplanes of W equals a. From
Sallee's result we have

;i*) g*(1.546,2)=l,
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where

g*(a,d) = min{L(W): w(W)> a}.

We have the following estimates for g*:

(2*) g*(a, 2)S

and

ti*\ * / -i\ ^~ a

*• ' " g ( a > 2 ) g —

In Section 3 we prove an analogue of Minkowski's classical result. Let
KCEd be a convex body which is central symmetric about the origin 0. We
define as before

Then

Oo)

and

(2o)

go(a,d) = min{L(K): w(K)> a}.

go(2,d) = 2d + \

go(a,
2d r

as a

We now prove (2). Let S be a closed bounded convex set in E2 with
w(S) > a. Write r = [2a 1(2 + V 3)]. If r = 0, the result is clear. So suppose r g 1
and consider the similarity transformation

• S' = -S = -Y: YGSr r

Obviously,

Now let T = (tl,t2) be a lattice point with 0 ^ ( i , I : S r - l and consider the
translate S" of S ' given by

S"=S'--T=(x--T: XGS
r { r
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Obviously,

By (1), S" contains a lattice point G. Hence S' contains the point G + (l/r)T, and
so 5 contains the point P = r(G + ( l /r)T) = rG + T. But T = (t,, t2) might have
been chosen in r2 different ways, for we could have selected each of /,, t2 in r
different ways. Therefore we have r2 distinct lattice points P = (p,, p2) in S.
These are distinct, since pt = /, (mod r) (;' = 1,2) and the /,- are a complete set of
residue mod r. Hence L(S)^r2, from which we have (2).

The proof of (2*) is analogous to that of (2), using (1*) instead of (1).
To prove (3) we use the following

LEMMA 1. Let R CE2 be a closed bounded measurable region. Then the
minimum number of lattice points in R is always less than the measure of R.

For the proof, see Theorem 3 in Niven and Zuckerman (1967).
Now the area of an equilateral triangle of width a is (a2/V3), from which (3)

follows.
We remark that this bound is the best we can obtain by making use of the

lemma, since it is well-known that of all convex sets of a given width, the
equilaterial triangle has the smallest area.

Analogously, the area of the Reuleaux triangle of constant width a is
| a 2 ( 7 r - V 3 ) , from which (3*) follows.

Both (l0) and (20) are simple consequences of the following

LEMMA 2. A central symmetric convex body K CEd centered at the origin,
and of width a, contains the d-dimensional ball U centred at the origin, of radius
a/2.

Since bd K is a closed set, there is a point P of it at a minimum distance m
from 0. Then any supporting plane of K at P is normal to OF, since otherwise
there is a point of bd K nearer to 0 than P. By the central symmetry, w (K) § 2m
and so m ~^\a. The stated result follows.

We now prove (l0). Suppose that AT is a central symmetric convex body
centred at 0, of width exceeding 2. By the lemma above, K contains a
d-dimensional ball U of radius exceeding 1, centred at 0 and hence K contains,
besides the origin, each of the 2d points (0, • • -,0, ± 1,0, • • -,0). Hence g{2, d ) a
2d + \. On the other hand, a <i-dimensional ball of radius s (1 < s < V2)
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contains, besides the origin, precisely the 2d points (0, • • -,0, ± 1,0, • • -,0),
whence g(2, d) s 2d + 1. This proves (1(1).

It is well-known that the number of lattice points inside a d-dimensional
ball U of radius r is asymptotically equal to its volume Trdl2rdIT((d + 2)/2)) as
r—»=c. An analogous argument to that just given, proves (20).
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