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EIGENVALUE ESTIMATES AND
ISOPERIMETRIC INEQUALITIES FOR CONE-MANIFOLDS

CRAIG HODGSON AND JOHAN TYSK

This paper studies eigenvalue bounds and isoperimetric inequalities for Rieman-
nian spaces with cone type singularities along a codimension-2 subcomplex. These
"cone-manifolds" include orientable orbifolds, and singular geometric structures on
3-manifolds studied by W. Thurston and others.

We first give a precise definition of "cone-manifold" and prove some basic
results on the geometry of these spaces. We then generalise results of S.-Y. Cheng
on upper bounds of eigenvalues of the Laplacian for disks in manifolds with Ricci
curvature bounded from below to cone-manifolds, and characterise the case of
equality in these estimates.

We also establish a version of the Levy-Gromov isoperimetric inequality
for cone-manifolds. This is used to find lower bounds for eigenvalues of do-
mains in cone-manifolds and to establish the Lichnerowicz inequality for cone-
manifolds. These results enable us to characterise cone-manifolds with Ricci cur-
vature bounded from below of maximal diameter.

1. INTRODUCTION

In this paper, we study eigenvalue bounds and isoperimetric inequalities for Rie-
mannian spaces with cone type singularities. These "cone-manifolds" will be precisely
defined in section two, where we also prove some relevant geometric results. Ori-
entable orbifolds and branched coverings of Riemannian manifolds, for instance, are
cone-manifolds. Other interesting examples of cone-manifolds arise as singular geomet-
ric structures on 3-manifolds, studied, for example, by Thurston [18, 19].

In section three, we generalise the results of Cheng [4], on upper bounds of eigen-
values of disks in manifolds with Ricci curvature bounded from below, to cone-manifolds
and characterise the case of equality in these estimates.

In section four, we establish a version of the Levy-Gromov isoperimetric inequality
[10] for cone-manifolds. Via a Faber-Krahn type argument, we are therefore able to find
lower bounds for eigenvalues of domains in cone-manifolds in terms of the eigenvalues
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128 C. Hodgson and J. Tysk [2]

of disks of related volume in space forms. This enables us to establish the Lichnerowicz
inequality for cone-manifolds and to characterise cone-manifolds with Ricci curvature
bounded from below of maximal diameter.

We would like to thank Sidney Frankel for several helpful conversations.

2. CONE-MANIFOLDS

DEFINITIONS: An n-dimensional cone-manifold is a simplicial complex M which
is a rational homology n-manifold (that is, the link of each vertex has the rational
homology of an (n — l)-dimensional sphere). In addition, M is a complete metric
space with a smooth Riemannian metric defined on the complement of the codimension
two skeleton of M and on each closed simplex.

The singular locus E consists of points in M with no neighbourhood isometric
to a ball in a Riemannian manifold. Then E is a subcomplex of the codimension two
skeleton of M. At each point of E in the interior of an (n — 2)-simplex there is a
cone angle which is the sum of dihedral angles of n-simplices containing the point. In
general, the cone angle may vary from point to point within a simplex. The regular set

Mr = M — E is a dense open subset of M and is a smooth Riemannian manifold with
a metric which is incomplete whenever S ^ 0.

Throughout this paper, we make the additional assumption that the singular locus
is a union of totally geodesic simplices (of dimension S$ n—2). This condition is probably
not essential for our main results, but rules out certain pathological kinds of behaviour
of geodesies (compare Example (d) below).

EXAMPLES.

(a) Riemannian orbifolds are spaces locally modelled on Riemannian manifolds
modulo finite groups of isometries. These spaces have singular locus modelled on the
fixed point sets of elements in these finite isometry groups and are cone-manifolds
whenever these fixed point sets have codimension at least two. Here, the singular locus
consists of totally geodesic strata with cone angles of the form 2w/n, where n is an
integer.

(b) Branched coverings of Riemannian manifolds over codimension two submani-
folds are cone-manifolds, with cone angles of the form 2irn, where n is an integer. In
this case the singular locus will be totally geodesic if and only if the branching set is
totally geodesic.

(c) Any rational homology manifold triangulated by totally geodesic simplices from
a space of constant curvature K gives a cone-manifold whose singular locus is a union
of totally geodesic simplices. We call these spherical, Euclidean or hyperbolic cone-
manifolds when K>0,K = 0orK<0 respectively. Many 3-dimensional examples of

https://doi.org/10.1017/S0004972700012326 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012326
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such cone-manifolds arise in Thurston's theory of hyperbolic Dehn surgery [18, Chapter
5]. Such cone-manifolds are also used extensively in Thurston's proof of the existence
of geometric structures on many 3-dimensional orbifolds [19]; here, they give a way to
interpolate between geometric structures on different orbifolds. In [7], Cheeger considers
piecewise constant curvature spaces somewhat more general than those considered here.
Cheeger proves, however, that if the curvature is non-negative and cone angles are less
than 2ir, then the two notions coincide.

Given a spherical cone-manifold S of constant curvature 1, let Conejf (5; R) de-
note the (open) cone of constant curvature K with base S and radius R. Topologically,
Conejc (5; R) is obtained from the space 5 x [0, R) by identifying 5 X {0} to a point.
The metric has the form da3 = dr* + ajc(r)2d02 where dO2 denotes the metric on 5 ,
r £ [0, R) and

: sin (y/Kr) ifK>0,

sK(r) = •

y/W\

if K = 0,

sinh (J\K~\r) itK<0.

If K < 0 then Cone* (5; R) is defined for all 0 < R < oo. If K > 0 then Conejr {S; R)

is defined for 0 < R < v/y/K and we define the suspension Susp^ (S) of 5 to be the
completion of Conejc (S;R) where R = ir/y/K. This suspension is obtained by gluing
together two closed cones of radius ir/ ( 2y/K j ; the centres of these cones are called the
3u.spen.jton points. These cones and suspensions are analogues of standard balls and
spheres for constant curvature cone-manifolds.

(d) Examples of cone-manifolds with singular locus which is not totally geodesic
can also be easily constructed by gluing together simplices. For example, begin with
the boundary of a 4-simplex in Euclidean space. This gives a Euclidean cone-manifold
structure on the 3-sphere made from five Euclidean 3-simplices such that the cone angles
are < 2ir. Now construct five new 3-simplices by deforming the 1-skeleton slightly and
adding in new 2-dimensional faces. By filling in new faces consistently we can pair
these faces together by isometries and obtain new Euclidean cone-manifold structures
on the 3-sphere with singular locus no longer totally geodesic and cone angles < 2TT.
We remind the reader that such examples will not be considered in the remainder of
this paper.

At each point p of a cone-manifold M there is a tangent cone TMp isometric
to a Euclidean cone Coneo (5p;oo). Any sequence of enlargements t{(M,p) of the
based metric space (M,p) with scale factors U —* oo converges to TMP in the sense of
Hausdorff convergence (compare Gromov [11]) and the convergence is smooth away from
S. In fact, TMp is the union of the Euclidean tangent cones to all the n-dimensional
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simplices containing p. The spherical cone-manifold Sp is the called the unit tangent
cone at p, and has constant curvature 1.

REMARKS.

(1) A cone-manifold is a path space in the sense of Gromov [11]: the distance
between two points is the infimum of lengths of paths joining the points. (Compare
Lemma 1 below.)

(2) It would be possible to define a cone-manifold in a more intrinsic way as a space
modelled locally on Euclidean cones. A "Riemannian structure" could be introduced by
equipping each tangent cone with a Euclidean metric (varying continuously from point
to point) and defining the length of curves by integrating this infinitesimal metric.

A geodesic in a cone-manifold is a curve which is locally length minimising.

LEMMA 1 . Let M be a complete, connected cone-manifold.

(i) Then any two points in M can be joined by a geodesic of length equal to
the distance between the points.

(ii) Given any vector v in TMP, there is a geodesic gv in M with initial

tangent vector v, and gv is uniquely defined in some neighbourhood of

?•

PROOF: Part (i) follows by a standard compactness argument as in Gromov [11].
Part (ii) is clear unless v is tangent to the singular locus S. In this case the result also
follows immediately since we are assuming that E consists of totally geodesic strata. D

Let T>p C TMP be the "fundamental domain" at p, consisting of all v in TMP such
that geodesic gv is defined and minimising up to time 1. Then there is a well-defined,
continuous exponential map exp : T>p —» M, defined by exp(v) = gv(l).

LEMMA 2 . A connected spherical cone-manifold of curvature 1 with all cone an-
gles < 2TT has diameter ^ n, with equality if and only if the cone-manifold is a suspen-
sion. Further, the only two points at distance it apart are the suspension points.

LEMMA 3 . In a cone-manifold with all cone angles < 2ir, length minimising
geodesies do not pass through the singular locus. Such a geodesic may intersect the
singular locus at an endpoint or be entirely contained in one stratum of the singular
locus.

REMARKS.

(1) These results both fail if cone angles larger than 2ir are allowed. In this case
length minimising geodesies may pass through cone points. In fact, there is a pencil of
extensions of any geodesic at any cone point with angle > 2rr, consisting of all outgoing
geodesic arcs making an angle ^ n with the incoming arc.
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If the singular locus is not totally geodesic then geodesies may intersect the singular
locus tangentially.

Lemma 3 implies that if a vector v is not tangent to E then the geodesic gv can
be extended until it meets the singular locus. If v is tangent to S then gv is contained
in £ and can be extended until it meets a different strata of the singular locus.

PROOFS: We prove Lemmas 2 and 3 simultaneously by induction on dimension,
following an argument of Thurston. Let (2 n ) , (3n) be the statements of Lemmas 2 and
3 for n-dimensional cone-manifolds. For n = 1 both statements are trivially true.

Assume (2n_x) and (3n_i) are true for n ^ 2. Let g be a length minimising
geodesic in an n-dimensional cone-manifold. Suppose p is a singular point in the
interior of g, and let v_ and v+ be the unit tangent vectors to g at p , directed away
from p . Then v_ and v+ give two points in the unit tangent cone Sp, which is a
spherical cone-manifold of dimension (n — 1). The angle between these tangent vectors
is the distance between v_ and v+ measured in Sp so is ^ n, by the hypothesis on
cone angles if n = 2 and by the induction hypothesis (2n_i) if n > 2. If this angle is

< 7T then the length of g could be reduced by smoothing the corner at p, so g would
not be locally length minimising. If the angle is equal to it then it follows from (2n_i)
that g is tangent to I! at p , hence contained in E. This proves (3 n ) .

To prove (2 n ) , we consider a length minimising geodesic g in an n-dimensional
spherical cone-manifold S of curvature 1. By (3n) , g does not pass through the singular
locus. Elementary spherical geometry therefore shows that g has length ^ iz; hence S
has diameter ^ TT. Further, if g has length n then its interior has a neighbourhood
which is a suspension. Now suppose that 5 contains two points p , q at distance n
apart. Let U be the set of unit tangent vectors v G Sp such that the geodesic gv with
initial tangent vector v is length minimising on [0, n] and joins p to q. Then U is an
open subset of Sp by our previous remark. Suppose that v is a vector in the closure
of U. We claim that the geodesic gv is defined on [0,ir]. If not, then gv ends at some
singular point po G £ . Let g' be a shortest geodesic from po to q. Then gv U g' has
length ^ 7T since v lies in U. But this curve has a corner at po, so can be shortened
to give a path from p to q of length less than IT , contradicting the choice of p and q.
Since the exponential map is continuous, it now follows that v £ U. Hence, U = Sp

and M is the suspension of Sp, with p and q as suspension points. U

The following result is an important consequence of the previous lemmas.

LEMMA 4 . If M is a complete, connected cone-manifold with all cone angles

< 2n then the exponential map exp : T>p —> M is onto.

Next we study dVv and the cut locus exp(&Dp). If / : M —> N is a continuous
map between cone-manifolds, then it is possible to consider directional derivatives at
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each point of M. If all such directional derivatives exist, then one obtains a map
df : TMp —» TNf(p). We say that q is a conjugate •point of p in M if dexp(v) = 0 for
some non-zero v G TMP such that exp(v) = q.

LEMMA 5 . A point q £ M lies in the cut locus exp(&Dp) if and only it at least

one of the following cases occurs:

(1) There are two minimising geodesies from p to q in M.
(2) q is a conjugate point of p.
(3) q is in the singular locus E and there is a length minimising geodesic

from p to q which doesn't extend past the point q.

REMARK. Case (3) always occurs when q is a singular point, unless Sq is a suspension
and there is a unique shortest geodesic from p to q which is tangent to the direction
of the suspension points in 5 , .

PROOF: This follows from the usual arguments for Riemannian manifolds together
with Lemma 3. D

We now make some comments on the local structure of exp(dT>p) near a point 50 in
the singular locus £ .

In case (1), there are at least two minimising geodesies from p to qo. If go is not
conjugate to p, then there exists 6 > 0 such that only finitely many geodesies of length
< <f(p, qo) + 6 join p to 90 • In particular, there are finitely many shortest geodesies
from p to q for all q near qo and these are obtained by small perturbations of shortest
geodesies from p to qo . Let 7 be a shortest geodesic joining p to qo, with length do.
Then if 7' is a geodesic sufficiently close to 7 joining p to a point q, then

length^') = d0 - ecos9 + 0(e2)

where e is the distance from 90 to q, and 0 is the angle pqoq between 7 and qoq.

From this one can easily obtain an explicit description of the tangent cone to exp(&Dp)

at go as the cone on a totally geodesic, codimension one subcomplex K of Sqo. (In
fact, if xi,X2,... ,Xk € Sqo are initial vectors of the shortest geodesies from go to p,
then K consists of the boundaries of Voronoi regions for the set of points {xi , . . . , n }
on Sqo. In particular, each point in K is equidistant from at least two of the points
X\,... , Xk •) For our purposes, it is enough to observe that a wedge of positive measure
is excluded from T>p for each minimising geodesic from p to go • Similar arguments
apply when case (3) occurs at a non-conjugate point. The local structure of the cut
locus near conjugate points can be much more complicated, just as in the Riemannian
manifold case.

Given a point p E M, define c : Sp —> [0,oo] by c(y) = snp{t \ tv 6 Dp}, for
v G Sp. In other words, c(v) is the distance from p to its cut locus along the geodesic
in direction v.
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LEMMA 6 . The function c: Sp —> [0, oo] is continuous.

PROOF: The argument is largely the same as in the case of a Riemannian manifold.
Let {vi,} be a sequence in Sp approaching v. By taking a subsequence we can assume
that limc(vt) exists in [0,oo]. Let at = c(i>fc) and a = limc(vjfc).

First we show that limc(ut) ^ c(v). For each k,

d(p,exp tvk) = t, for 0 ^ t ^ c(t>t).

// exp tv is defined for 0 ^ t ^ lim c(vk), then since d and exp are continuous it follows
that

d(p,exp tv) = t, for 0 ^ t ^ limc(v*),

hence c(v) ^ limc(vi). However, it is also possible that the geodesic in the direction
v meets the singular locus at some point exp tv where t < limc(vfc) and cannot be
extended past this point. In this case, the local analysis given above shows that &D
forms a wedge with vertex at tv, and c is continuous at v.

Now assume that c(v) > limc(v*) = a. By Lemma 5, exp av is not conjugate
to p along the geodesic in direction v. It follows that exp is a homeomorphism in a
neighbourhood U of av, hence exp a«,vjb is not conjugate to p along the geodesic in
direction vt for all k sufficiently large. From the remarks in the previous paragraph
and Lemma 5, it follows that there are two minimising geodesies exp tvk and exp tvik
from p to exp a^Vk for all large k, with w& outside the open set U. By choosing a
subsequence, we can assume that the wjb converge to w E Sp. Then w ^ v and

exp aw = lim exp d^Wk = lira exp â Vfe = exp av.

(Note that exp aw is necessarily defined, by the same local analysis near the singular
locus as in the previous paragraph.) Hence there are two minimising geodesies from p
to exp av and c(v) < a, contradicting our assumption. D

COROLLARY. The sets &DV and exp(dVp) have measure zero in the tangent cone
TMp and M respectively.

For each p in M, let B(p; r) denote the ball of radius r centred at the origin (that
is, cone point) in the tangent cone TMV and let B(p;r) denote its image under exp,
that is, the ball of radius r about p in M.

LEMMA 7 . Let M be a cone-manifold of constant curvature K with all cone

angles < 2it. If 7)p n B(p; r) has full measure in B{p; r) then B(p; r) is isometric to

the open cone Cone/c (Sp;r) where Sp is the unit tangent cone at p.

PROOF: From Lemma 6 it follows that if Vp D B(p;r) has full measure then
B(p; r) C Vp. Hence, using Lemma 4, the exponential map exp is a homeomorphism
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from B(p; r) to B(p; r ) . If M has constant curvature K it follows easily that B(p; r)
is isometric to the (open) cone Cone/f (Sp;r). D

Many standard results in Riemannian geometry can be generalised to cone-
manifolds by applying the usual results within closed simplices and piecing together
the results. For example, there are versions of Gauss's Lemma, geodesic polar coor-
dinates and Fermi coordinates giving nice local representations of the "Riemannian
metric" on a cone-manifold.

We can define sectional and Ricci curvatures as usual in the smooth part of M. On
the singular locus the curvature should be regarded as a measure. There is concentrated
positive curvature at points where the cone angle is < lit and concentrated negative
curvature where the cone angle is > 2ir.

DEFINITION: Given a real number c, we say that a cone-manifold has (Ricci)

curvature ^ c if the (Ricci) curvature is ^ c at all smooth points and all cone angles
at singular points are < 2TT.

Then the usual comparison theorems based on growth rates of Jacobi fields, for
example the volume comparison theorems of Bishop [2], all generalise to cone-manifolds.
For instance, the volume form dV of a cone-manifold M can be written in geodesic
polar coordinates (r,v) £ [0,oo) x Sp (with rv £ Vp) as

dV - y/g(r,v)dr dfj,p(v),

where dfip is the volume form of Sp and ^fg is a function determined by the Jacobi
fields along geodesies through p. If M is an n-dimensional cone-manifold with Ricci
curvature bounded below by (n — \)K, the factor ^g satisfies the inequality of Bishop's
comparison theorem:

y/9'(r,v) ^ ,_ cK

—pr. r- $ (n - 1)— ,
y/g(r,v) sK

where ' denotes differentiation with respect to r , sj( is defined as in Example (c)
above and ex = s'K . Further, if equality holds for all v then Mr has constant sectional
curvature K. By the continuity of the curvature of MT, the same conclusion can be
drawn if equality holds for almost all v.

3. EIGENVALUE BOUNDS FOR DISKS IN CONE-MANIFOLDS

Before stating our eigenvalue bound we shall briefly discuss the Laplace operator on
cone-manifolds. Consider first the usual Laplace-Beltrami operator A on the domain

= CS°(Mr),
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[9] Cone-manifolds 135

where M is a compact cone-manifold. The corresponding quadratic form

/(*,*) = - / <t>W = I V*-VV>,
JM JM

is denned for </>,rl> G D(I) = CS°(Mr). The domain D{I) can be completed using the
inner product

JM

to a Hilbert space denoted H1 (M) and I extends to a quadratic form / on H1 (M).
Since —A is positive and symmetric, / is the quadratic form of a unique self-adjoint
extension A of A with domain D(A) C H1{M). In fact,

H\M) : (Au)diMtr e L2(M)},

where (Au)rfi#<r is the distribution

* 6 CS°(Mr).f
JM

The operator A is the so-called Friedrichs extension of A (compare [17, Theorem

X.23]), and is defined for <f> £ £ > ( A ) by

/
J M

for all <f> G J9rl(M). Since M is assumed compact one gets the usual direct sum
decomposition of L3(M) into eigenspaces of A. The eigenfunctions are furthermore,
by standard elliptic theory, smooth on Mr and, as we have seen above, lie in H1(M).
At the end of this paper, we sketch a proof that the eigenfunctions are continuous across
S.

For compact cone-manifolds the first eigenvalue is, of course, zero and we shall
denote the sequence of eigenvalues by

0 = A0(M) < Xi(M) < A2(M) ^ . . .

We will sometimes use the notation A(M) instead of Ai(M).
We will also consider the Dirichlet problem for the Laplace operator on bounded

domains fi in cone-manifolds. We will follow the same construction as above, complet-
ing the space CQ°(CI — E) using the inner product

/ H>+ f
M JM
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to a Hilbert space denoted HQ(CI). The eigenvalues of a domain ft will be denoted

and the notation A(ft) will often be used in place of A!(ft).

By the variational characterisation of eigenvalues,

- inf
- inf Jn J

The lemmas from section two then allow us to use the techniques of Cheng in [4] to
prove the following generalisation of his Theorem 1.1.

THEOREM 1 . Let M be an n-dimensional cone manifold with Ricci curvature
bounded below by K(n — 1), for some real number K. Then for any 6 > 0, p G M,
we have

where A(2?JJT( £)) is the first Dirichlet eigenvalue of a disk of radius 6 in a simply
connected space form of curvature K. Equality occurs if and only if B(p; S) has constant
curvature K and is isometric to the cone ConeK (5j>; 6).

PROOF: Let T be a (radial) eigenfunction of \(BK(&)) chosen so that

T| [ 0 , 4 )>0, andT'|(Oltf]<0.

Define the function F by
F(q)=T(d(p,q))

for q G B(p;S). Then F is clearly continuous and for (r,v) £ [0,oo) X SP, satisfying

rveVp,
\(VF)(exp(rv))\ = \T'(r)\,

so \VF\ is bounded on B{p;6). Now, VF is continuous except possibly on

dDpnB(p;6),

which is a set of measure zero. Since F\$B(p.6) = 0 by construction and £ is of codimen-
sion 2, a straightforward argument (compare [8, p.75]) shows that F £ HQ(B(P;6)).

Now let
b(v) = nun(c(v),S),

https://doi.org/10.1017/S0004972700012326 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012326


[11] Cone-manifolds 137

where c(v) = sup{r | rv G £>j>} as in Lemma 6. Then, using the notation from the end
of section two,

| | V F | | 2 = / dnP(v) / (T'f^g(r,v)dr,
Jsp Jo

and \\Ff = f dpp{v) f V T2^(r,v)dr.

Jsp Jo

To obtain the desired eigenvalue bound, it is therefore enough to show

rHv) fHv)
f /T^' \ /̂ Ya ».\ J _ ^ \t D (aw / fri* fzif^ M*\ J _

Jo A
for almost all v E Sp. Now, with ' denoting differentiation with respect to r,

/ (I") v ^ ( r . v ) d r = Tr'v/»(''»v)|o / T ( r ' v^( r > u ) ) *Jo Jo

= TT'(b(v))^(b(v),v)- I " T(T'v^(r,«))'<ir
Jo

(

where the first inequality used the properties of T stated in the beginning of the proof.
The second inequality follows from Bishop's comparison theorem [2] for cone-manifolds,
as discussed in section two of this paper.

In the case of equality we must therefore have b(v) = 6 almost everywhere and
equality in Bishop's theorem for almost all v. It follows that the sectional curvatures
are all equal to K in Mr D B(p; S), and from Lemma 7 of section two we conclude that
B(p; 6) is the cone Cone* (5P; 6). D

REMARKS. Following Cheng in [4, Theorem 2.1], we can, using the max-min principle,
bound the j th non-zero eigenvalue, \j(M), of a compact cone-manifold M with Ricci
curvature as in Theorem 1 by

(1) A,(M) < \(BK{d(M)/2j)),
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where d(M) is the diameter of M. Prom (1) one then obtains bounds for the j t h
eigenvalue of a compact n-dimensional cone-manifold with non-negative Ricci curvature
(compare with [4, Corollary 2.2]),

If the Ricci curvature is bounded below by (n — 1)(—K) and the dimension n satisfies
n = 2(m +1) for some non-negative integer m, we have

4 {d{M))2

and if n = 2m + 3, for some non-negative integer 771,

Estimate (1) does not, as we have seen above, give bounds that are asymptotically
like Weyl's formula. Instead (compare Gromov [10]) we can argue as follows. Let M
be an compact n-dimensional cone-manifold with Ricci curvature bounded below by
(n — 1)K, and let N(e) be the maximal number of disjoint geodesic disks in M having
radius e > 0. Prom the discussion in section two, we can apply Bishop's comparison
theorem to cone-manifolds with Ricci curvature bounded from below to conclude that

where BK(2C) is a ball of radius 2e in a space-form of curvature K and V{) denotes
volume. Applying Theorem 1 and using a max-min argument, we have

where [ ] denotes taking the integer part. Using the fact that for small e,

KBK(e)) ~ cDe\

where C£> is the first eigenvalue of the unit disk in R n , we can conclude that for j

sufficiently large

in asymptotic agreement with Weyl's formula. These estimates can be refined further
as in [16] to obtain bounds of the form

2 / n

where c\ depends on K, d(M) and n, and c? depends on K and n.
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4. T H E LEVY-GROMOV ISOPERIMETRIC INEQUALITY AND LOWER BOUNDS

FOR EIGENVALUES

We have the following generalisation of the Levy-Gromov inequality [10] to cone-

manifolds.

THEOREM 2 . Let M be a compact n-dimensional cone-manifold whose Ricci
curvature satisfies

Rdc > (n - 1)K,

where K > 0 is a constant. Let

0= V(MK)

where V{) denotes volume and MJC denotes the simply-connected space form of con-
stant curvature K. Given any flcM which is a finite disjoint union of normal domains
in M, let D be the disk in MK for which

Then, with A() denoting (n — l)-dimensional area,

0A{dD),

with equality if and only if fi is isometric to a constant curvature cone Cone# (S; S).

PROOF: AS in [10], (compare also [8, pp.322-325]), we consider hypersurfaces H
which divide M into two open sets Fi and V2 of equal volume. More precisely, we
consider disjoint open sets Vi and V2 with Lipschitz boundary H = dV\ = SVi • Let
H be the (possibly singular) hypersurface for which the (n — l)-dimensional Hausdorff
measure A(H) achieves its minimum. It follows from Almgren [1] that H exists and
has a tangent cone at each point.

REMARK. It is probably possible to show that H has singularities of codimension at
least 7 as in the manifold case, but we don't need this result.

Consider a tangent cone C = THP to H at a point p G M (possibly p G E).
Then C has mean curvature zero at all non-singular points and is area minimising in
the Euclidean cone TMp.

CLAIM. Let C be a codimension-one cone contained in a Euclidean cone E. If all
points of C are at an angle < 7r/2 from a ray p in E then C is not an area minimising
hypersurface in the cone E.

PROOF: Let S be the set of points at distance 1 from the conepoint x of E. Let

pB denote the cone with base B = C H S and cone point p on p. In particular, xB
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is the part of C inside S. Since every point of B lies within an angle of TT/2 from
p, each distance d(p, y), with y G B is decreased if p is moved along p away from x.

Then, A(pB) < A(xB), hence C is not area minimising. D

We will say that H is non-singular at x if there are exactly two (opposite) normal

directions to H at x. By Lemma 2 of section two, this is equivalent to requiring that

the pair (TMX,THX) is isometric to the cone on a pair (Susp(S), 5) .

Let v denote the (non-singular) normal bundle to H in M consisting of normal
vectors v to H at non-singular points of H and let UQ C V consist of normal vectors v
such that the geodesic gv is length minimising on [0,1]. Then there is a well defined
exponential map exp : I/Q —» M.

LEMMA. The exponential map exp : I/Q —* M is onto.

PROOF: This follows by essentially the same argument as in Gromov [10]. Given
any point x G M — H, suppose a shortest path 7 from x to H meets H at y. Then
every tangent vector to H at y makes an angle at least 7r/2 with 7. Since the unit
tangent sphere Sx has diameter ^ 7r by Lemma 2, it follows that every tangent vector
to H makes an angle ^ TT/2 with a ray in the direction furthest from 7. By the claim
above and Lemma 2, it follows that that Sv is a suspension (with the direction of 7
as a suspension point) and 7 is perpendicular to TH at y. Hence y is a non-singular
point of H, and if x is in S then 7 lies in E. D

It also follows easily that the comparison theorems of E. Heintze and H. Karcher
[12], apply to exp : v$ —• M. The rest of the proof is now as in [10], compare also [8,
pp.322-325]. The argument for the case of equality is similar to that given in the proof
of Theorem 1. D

COROLLARY 1 . Let M, K, Q and D be as in the statement of Theorem 2.

Then

X(D),

with equality if and only if Cl is isometric to a cone of constant curvature K.

PROOF: Use the modification of the classical arguments of Faber [9] and Krahn

[13], given by Berard and Meyer for their [3, Theorem 5]. U

COROLLARY 2 . Let M be a cone-manifold with

Ric ^(n-l)K.
T h e n V ;

\(M) ^ nK,

and A(Af) = nK if and only if M has constant curvature K and is the suspension

of a (n — l)-dimensional spherical cone-manifold S.
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REMARK. This generalises to cone-manifolds the classical theorem of Lichnerowicz [14],
and the characterisation of equality due to Obata [16].

PROOF: Let ^ be an eigenfunctioh of the first non-zero eigenvalue of M. It is
shown in the appendix that <fi is continuous on all of M. Let fti be the smaller of the
two nodal domains of <f> and let D be the disk in MK for which

where /3 = V(M)/V(MK). Then D is contained in a hemisphere of MK , and

The case of equality then follows as in the proof of Theorem 1. U

We also have the following result, generalising the classical Bonnet-Myers compar-
ison theorem, and the characterisation of equality, due to Cheng [4, Theorem 3.1].

THEOREM 3 . Let M be a cone-manifold with

Ric > (n - \)K,

where K > 0. Then the diameter of M satisfies

and d(M) = ir/y/K if and only if M has constant curvature K and is the suspension

of a (n — l)-dhnensional spherical cone-manifold.

PROOF: The diameter bound follows from the proof of the classical Bonnet-Myers
theorem together with Lemma 3 from section two. The characterisation of the case of
equality follows from the characterisation of equality in Theorem 1 and the max-min
argument used by Cheng in [4]. D

REMARK. The isoperimetric inequality of Theorem 2 can also be utilised to give lower
bounds for the higher eigenvalues of cone-manifolds with positive Ricci curvature. Let
MK be as in the statement of the theorem, and divide M into two open subsets flj
and ftj with dfti = Sfij. This gives a division of MK into two disks D\ and Z?2 with
dDi = dD2 and V(fii) = 0V{Dt) for t = 1,2. We then note that

min (V(tli), n f l a ) ) " 1 min
(0A(dD1))

n

min (V(D1), V ^ ) ) ) " " 1 min (V(A), V(D2)T
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Hence if *(M) and I(MK) are the isoperimetric constants of M and MK respectively,
then

0i(MK).

Following arguments of Cheng and Li in [5] one can then show that

where c(n) and c'(n) are constants depending only on n.

A P P E N D I X . REGULARITY OF THE EIGENFUNCTIONS

As we noted in section three, the eigenfunctions for a cone-manifold M are smooth
on Mr and belong to H1(M). We now outline an argument showing that the eigen-
functions also are continuous at the singular locus E. By blowing up the metric at a
point p G E by a sequence of rescaling factors {r,} tending to infinity, we obtain a
sequence of cone-manifolds which converge smoothly outside E to the Euclidean cone
Coneo (Sp; oo). An eigenfunction u on M with eigenvalue A naturally gives rise to a se-
quence of functions Uj defined, for t large enough, on compact subsets of Coneo (Sp; oo).
A gradient estimate of Cheng and Yau [6, Theorem 6] assures us that {u,} has a sub-
sequence converging to a harmonic function on the regular part of Coneo (Sp; oo). By a
separation of variables argument, one shows that if no such limit extends continuously
across the cone point p €E Coneo (5 P ; oo), then the eigenfunction u would not lie in
H1(M), contradicting earlier remarks on the eigenfunctions. Thus, some subsequential
limit extends continuously across p . If this limit is unique and constant, we are done.
If not, then for every large constant L, we can find an e > 0 and a 8 > 0 so that if we
replace u inside B(j>;8) by this continuous extension, JM |Vtt| is reduced by Le and
JM u2 is changed by at most e. Let us be this modification of u. We can then smoothly
change U{ outside B(p; 6) U E to obtain a function orthogonal to all eigenfunctions with
eigenvalue strictly less than A, changing fM«| by at most C\t and JM |Vw«|2 by at
most C2C, where Ci and C2 do not depend on e. Choosing L large enough, we there-
fore obtain a contradiction to the fact that u minimises the Rayleigh-Ritz quotient
among all functions orthogonal to the eigenfunctions with eigenvalue strictly less than
A.
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