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Mechanisms of wake asymmetry and secondary
structures behind low aspect-ratio wall-mounted
prisms
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The wake of a wall-mounted finite prism is numerically studied and characterized with
an aspect ratio (height-to-width) of 1 and varying depth ratios (length to width) of
between 0.016 and 4 at Reynolds numbers of 50–500. The prism is immersed in a laminar
boundary layer. The minimum depth ratio considered here accounts for the special case
of a wall-mounted very thin prism (similar to a flat plate), which is used to establish the
mechanism and evolution of the wake associated with free-end effects and the shear-layer
dynamics in small aspect-ratio prisms. The onset of an unsteady wake behind a very
thin prism at a Reynolds number of 200 is characterized by symmetric shedding of
hairpin-like vortices. A unique asymmetric wake pattern appears at lower depth ratios
starting at a Reynolds number of 250, which transitions to an symmetric wake with
increasing depth ratio. The threshold depth ratio for this symmetric transition increases
with Reynolds number. The asymmetric wake results from alternate shear-layer peel-off
from either side of the prism, which itself is attributed to the out-of-phase shedding of
tip vortices at a lower Strouhal number (Stsh/2) that interact with the detaching side shear
layers. Alternate shedding of tip vortices form secondary vortex structures that are fed by
the excess vorticity resulting from shear-layer detachment from either side of the prism.
Increasing the depth ratio leads to simultaneous shedding of the tip vortices, which restores
the commonly observed wake symmetric patterns. Thus, we identify and characterize the
formation and interaction mechanisms of symmetric and asymmetric wakes during the
transition process with increasing Reynolds number for different depth-ratio prisms.
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1. Introduction

The analysis of unsteady flow past bluff bodies is of great practical importance for various
engineering applications. These typical flows at high Reynolds number are encountered in
the airflow around high-rise buildings (Tominaga 2015), chimneys (Jiang & Yoshie 2020),
tube banks in heat exchangers (Mangrulkar et al. 2017) and wakes of trains and trucks
(Paul, Johnson & Yates 2009). At low Reynolds numbers, these flow characteristics are
commonly seen in mechanisms of electronics and chips(Rastan, Sohankar & Alam 2017),
roughness elements in pipes (Goswami & Hemmati 2020, 2021a,b) and wall anomalies in
the aorta (Jia et al. 2021). Bluff bodies, such as prisms, have an extended flow region of
velocity deficit behind them, referred to as the wake (Von Kármán 1963). Characterization
of these wakes for various bodies has proven challenging due to their complexities, since
conditions at either end of the body alter the vortex shedding patterns and consequently
flow structures. To this end, studying the wake of a wall-mounted prism with a finite height
constitutes a classical problem in fluid mechanics, which has been the focus of extensive
research for decades, such as Taneda (1952), Wang & Zhou (2009), Saha (2013) and Wang
& Lam (2019).

The wake of a wall-mounted finite rectangular prism is dominated by end
effects, especially an induced downwash flow (Sumner et al. 2017). Thus, the wake
three-dimensionality becomes more profound compared with those of infinite span
(Norberg 1993; Ying, Xu & Zhang 2012; Ranjan & Dewan 2016; Mashhadi, Sohankar
& Alam 2021) and two-dimensional prisms (Okajima 1982; Park, Yoon & Ha 2013).
The wake features for a wall-mounted finite prism can be divided into three components:
free-end downwash, wall–body junction upwash and the free shear flow (Wang et al. 2006;
Wang & Zhou 2009; Bourgeois, Sattari & Martinuzzi 2011). These end effects result in
additional flow complexities and vortex shedding patterns. The free-end downwash flow
is induced by tip vortices generated due to shear-layer separation at the free end, while the
wall–body junction upwash is induced by the generation of counter-rotating base vortices
at the wall–body junction (Wang et al. 2006). The induced upwash and downwash effects
entrain the flow into the mid-span of the prism, resulting in the generation of mid-span
coherent structures. Thus, the wake becomes highly three-dimensional. Further, the
wall–body junction induces a shear-layer roll-up in front of the body (Simpson 2001). This
results in the formation of a horseshoe vortex at the base, which is generally associated
with downward flow (Simpson 2001). The vortical structures in the wake of such bodies
are significantly affected by various critical parameters, such as aspect ratio (Wang et al.
2006; Wang & Zhou 2009; Bourgeois et al. 2011; Saha 2013; Sumner et al. 2017), Reynolds
number (Hwang & Yang 2004; Zhang et al. 2017), incident (yaw) angle (Castro & Robins
1977; Becker, Lienhart & Durst 2002; Zargar et al. 2021a), boundary layer thickness
(Hosseini, Bourgeois & Martinuzzi 2013; El Hassan, Bourgeois & Martinuzzi 2015),
cross-sectional shape (Uffinger, Ali & Becker 2013; Kindree, Shahroodi & Martinuzzi
2018) and depth ratio (Zargar, Tarokh & Hemmati 2021b).

An abundant literature exists that focuses on reporting the effects of aspect ratio
(Sakamoto & Arie 1983; Saha, Muralidhar & Biswas 2000; Wang et al. 2006; Wang &
Zhou 2009; Saha 2013; McClean & Sumner 2014) and Reynolds number (Zhou, Zhang
& Yiu 2002; Wang & Lam 2019; Yauwenas et al. 2019) in characterizing the large-scale
vortical structures behind wall-mounted finite prisms. Several studies on wall-mounted
finite prisms have established that changing the Reynolds number does not alter the
presence of the main features of the wake topology, such as the horseshoe vortex, tip and
base vortex and mid-span vortex shedding (Saha et al. 2000; Krajnović & Davidson 2005;
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Wake asymmetry and secondary structures for prisms

Zhang et al. 2017), while they do alter the wake dynamics associated with such structures.
To this effect, Saha et al. (2000) numerically showed that the wake of a wall-mounted
finite prism at a Reynolds number of Re = 100 has negligible change compared with
the wake (coherent topological components) of a two-dimensional prism at Re = 21 400
(Lyn et al. 1995) and Re = 140 000 (Cantwell & Coles 1983). The vortex shedding is
suppressed by reducing the Reynolds number or prism aspect ratio. For example, Zargar
et al. (2021b) reported this suppression at a Reynolds number of 250 for an aspect ratio
of 1.2, which corroborated the results of Saha (2013), who associated this with an aspect
ratio of 2 at a Reynolds number of 250. Further, the mid-span coherent structures, as
well as the cross-sectional wake topology, vary with changes in the prism aspect ratio.
The experimental study of Sakamoto & Arie (1983) on the flow past finite circular and
square wall-mounted prisms revealed two types of vortex structures in the wake for aspect
ratios of 1–8 in a turbulent boundary layer. These structures were the Kármán-type and
arch-type structures, which were strongly influenced by the aspect ratio. To this effect,
the arch-type structures only appeared at aspect ratios below 2. Thus, there is a threshold
in aspect ratio below which the downwash flow in the near-wake region suppresses the
periodic and asymmetric Kármán-type vortex shedding. This process was restored for
aspect ratios above this threshold. Evolution of vortex shedding mechanisms by decreasing
the aspect ratio confirmed the importance of geometrical parameters in defining the wake
topology. Later, Wang & Zhou (2009) modified the earlier model of Wang et al. (2006) and
revealed the presence of a single arch-type structure in the near-wake region. They argued
that the spanwise base and tip vortices are inherently connected to form an arch-type
structure. Further, Wang & Zhou (2009) reported that arch-type structures may shed
into the wake in the form of hairpin-like vortices. These structures were unique to large
aspect ratios. However, in case of small aspect-ratio prisms (e.g. a cube), Hwang & Yang
(2004), Yakhot, Liu & Nikitin (2006) and Diaz-Daniel, Laizet & Vassilicos (2017) reported
only hairpin-like vortices in the wake, which are usually formed in a particular range of
Reynolds numbers (Re > 500). The formation of hairpin-like structures in these studies
were attributed to destabilization of the shear layer that had separated from the top leading
edge of the prism. Despite these efforts, there has not been a comprehensive study of effect
of the cylinder depth ratio on wake mechanisms and vortex development.

The cross-sectional wake topologies for wall-mounted finite square prisms are
categorized as either dipole, quadrupole or multipole systems, depending on the aspect
ratio, Reynolds number and boundary layer thickness (Hosseini et al. 2013; Zhang
et al. 2017; Yauwenas et al. 2019; Rastan et al. 2021). At comparable Reynolds number
and boundary-layer conditions, however, the cross-sectional wake topology depends on
the prism aspect ratio. A threshold aspect ratio exists, which separates the dipole and
quadrupole systems, above and below it (Sakamoto & Arie 1983; Wang & Lam 2019).
For aspect ratios below the threshold, the downwash flow induced by the tip vortices was
dominant, resulting in a dipole-type system. For larger aspect-ratio prisms, the downwash
effects were corroborated by upwash effects induced by the base vortices, which formed
a quadrupole-type system (Sakamoto & Arie 1983). Here, the base vortices had opposite
vorticity compared with the tip vortex. At comparable flow conditions, a similar threshold
in aspect ratio was identified for wall-mounted finite circular prisms (Sakamoto & Arie
1983). While this threshold aspect ratio was significantly larger (ARt = 3) than that
of square prisms (ARt = 2), the transitions in wake topology were consistent for both
geometries (Sakamoto & Arie 1983; Agui & Andreopoulos 1992; Okamoto & Sunabashiri
1992).
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Contrary to square or circular prisms with a large aspect ratio, there have not been many
studies on the influence of the depth ratio of rectangular prisms. A majority of the research
efforts in this area have focused on infinite-span prisms or flat plates which are a special
case of a very thin infinite-span prism (Narasimhamurthy & Andersson 2009; Ying et al.
2012; Ranjan & Dewan 2016; Hemmati, Wood & Martinuzzi 2018). In brief, the variations
in depth ratio resulted in changes in the global aerodynamic features, such as the mean
drag coefficient (Cd) and the shedding frequency (Stsh) (Mashhadi et al. 2021). Increasing
the prism depth ratio led to a lower Stsh and Cd. The wake dynamics of large depth-ratio
prisms differs from that of finite square prism due to the flow reattachment–separation
mechanism on the prism free surfaces that influences the downstream wake (Wang &
Zhou 2009). Below, we look at a handful of studies focused on the effect of the depth ratio
on the wake of rectangular prisms.

Joubert, Harms & Venter (2015) analysed the wake of a wall-mounted finite prism with
a depth ratio of 2.63 and aspect ratio 5 at a Reynolds number of 7.6 × 104. Their results
revealed that, after the initial flow separation, the shear-layer reattachment only occurred
for the top surface and not for the side surfaces. Wang & Lam (2019) observed similar
results, and reported that the depth ratio does not influence the mean wake structures as
long as the flow separation and reattachment does not occur on the side surfaces. The
experimental and numerical study of Rastan et al. (2021) on the wake of a prism with
aspect ratio 7 and depth ratios of 1–4 at a Reynolds number of 1.2 × 104 showed that
flow reattachment occurred on the top and side surfaces for depth ratios larger than 3.
The downwash flow weakened with increasing depth ratio, until it completely vanished at
a depth ratio of 3. Thereafter, the upwash flow intensified (Rastan et al. 2021). Thus, the
cross-sectional wake transformed from dipole type for depth ratios of 1–2 to a no-pole-type
system for depth ratios 3–4. Further, the numerical study of Zargar et al. (2021b) revealed
that the wake of a low aspect-ratio (1.2) prism remains steady between Reynolds numbers
of 50 and 250 for both small and large depth ratios (i.e. 0.83–3). Zargar et al. (2021b)
observed that the upwash effects were supressed and downwash effects intensified with
increasing depth ratio. The upwash flow remained dominant at the symmetry plane
(z/d = 0) while the downwash flow was evident close to the prism side and rear faces
due to the arching shape of the near-wake vortex roll-up. The difference observed between
Zargar et al. (2021b) and Rastan et al. (2021) stems from the aspect-ratio effects and
trailing-edge flow separation in the case of the former study.

Another important aspect of the wake of low aspect-ratio wall-mounted prisms is the
near-wake low- and high-frequency instability processes (Kindree et al. 2018; Morton
et al. 2018). In short, they are the harmonics of the dominant shedding frequency in
the near wake. The analysis of such a complex flow field and inherent instabilities in the
flow is mainly performed in the past literature using Floquet analysis (Williamson 1988;
Barkley & Henderson 1996) and model reduction methods (Akhtar, Nayfeh & Ribbens
2009; Rowley et al. 2009; Khalid et al. 2020; Schmid 2010). In post-processing, model
reduction methods such as proper orthogonal decomposition, or POD (Kindree et al. 2018;
Morton et al. 2018), and dynamic mode decomposition, or DMD (Rowley et al. 2009;
Schmid 2010), are useful techniques to investigate complex flow phenomena. Using POD,
Morton et al. (2018) established that the near wake of a wall-mounted finite circular prism
consists of a vortex shedding instability centred at the shedding Strouhal number (Stsh)
as well as low-frequency signatures centred at Stsh/2 and Stsh/4. They further observed
that such low-frequency signatures are independent of Reynolds number, defined based on
prism width (d) over the range of 300–1.18 × 104, but dependent on the boundary layer
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state, and hence the Reynolds number based on boundary-layer thickness. Morton et al.
(2018) further proposed that such low-frequency instabilities are only observed in circular
cross-section prisms with aspect ratios smaller than 4. Further, Kindree et al. (2018)
expanded on this study by investigating the low-frequency periodicity of both circular
and square cross-section prisms of aspect ratio 4, which were positioned inside a thin
laminar boundary layer. This study reported the low-frequency instability in sharp-edged
prisms, i.e.- square cross-section. Hence, reducing the aspect ratio of wall-mounted prisms
highly influences the wake structure by means of the free-end instabilities. To this end, it
is important to explore how the larger depth ratio of a prism can impact the free-end
instabilities, and thus the wake topology and dynamics.

Finally, extra wake features become an important aspect of the flow around prisms.
These features include secondary vortex structures appearing in the wake alongside the
coherent structures, such as arch-type, Kármán-type or hairpin-like vortex shedding.
Diaz-Daniel et al. (2017) observed secondary vortex structures in the wake of
wall-mounted prisms at Re ≥ 600, placed symmetrically alongside the primary vortex
structures. They attributed such structures to secondary interactions caused by the vortical
motion of the horseshoe vortex legs. Further, three-dimensional turbulent effects, with
increase in Reynolds number, cause stronger interactions between the vortices. This results
in a higher number of secondary structures that lose streamwise coherence in close vicinity
to the prism.

Khan et al. (2020a) numerically studied the laminar vortex shedding regime of flow
around a suspended cube to examine the three-dimensional vortex shedding mechanism
and understand the temporal behaviour of the wake. They observed hairpin-like shedding
in the wake, which appeared asymmetric in one plane and symmetric in the orthogonal
streamwise plane. They also observed secondary structures forming between two shedding
hairpins. The secondary structures formed limbs, protruded from the first hairpin-like
structure, which connected the two primary hairpin structures. Khan, Sharma & Agrawal
(2020b) noted similar wake structures at moderate Reynolds numbers. In the case of flow
around wall-mounted finite prisms, no clear consensus was identified in the terminology
of secondary vortex structures and their interactions. Zhang et al. (2017) identified the
formation of a secondary tip vortex from the top surface of the prism leading edge,
naming it a tornado-like tip vortex due to its spiralling rotations in the mean wake. These
observations were consistent with the findings of Rastan et al. (2021), who reported that
secondary tip vortices vanished in the vicinity of the prism. Both these studies discussed
secondary vortex structures in terms of time-averaged streamwise vortices observed in the
wake. The insight into the interactions of secondary vortex structures with the shedding of
coherent structures remains unexplored in the literature.

There exists a knowledge gap on the implications of the depth ratio for the wake topology
and vortex dynamics for flow over wall-mounted prisms with small aspect ratios. This
work, thus, aims to numerically study the wake of wall-mounted finite prisms with an
aspect ratio of 1 over a range of depth ratios between 0.016 and 4. The minimum depth
ratio considered here accounts for the special case of a very thin wall-mounted prism
(similar to a flat plate), in which shear-layer reattachment does not occur. This allows for
a comprehensive comparison of the wake dynamics with cases of long prisms, in which
shear-layer reattachment changes the wake behaviour. This enables thorough study of the
wake evolution mechanisms associated with free-end features and shear-layer dynamics of
long prism geometries. This paper is structured in such a way that the problem description
is provided in § 2, which is followed by the results in § 3 and conclusions in § 4.
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Figure 1. Schematics of computational domain (not to scale).

2. Problem description

The flow over wall-mounted prisms of different depth ratios is investigated numerically
using OpenFOAM. The flow and the geometrical parameters were selected following the
experimental study of Wang & Zhou (2009) and numerical set-up of Zargar et al. (2021a).
The computational domain containing the wall-mounted prism as well as the definition of
the coordinate system is schematically presented in figure 1. The streamwise (x), spanwise
(z) and normal (y) dimensions of the prism are presented in terms of the length (l),
width (d) and height (h). Here, a rectangular prism with an aspect ratio of AR = h/d = 1
was mounted on the base of the domain. Six depth ratios (DR = l/d) were considered,
namely 0.016, 0.1, 0.3, 1, 2 and 4. The study of DR = 0.016 represents a special case
of a wall-mounted very thin prism, the wake of which has been partly characterized in
the literature in terms of flow over fences. All numerical simulations were performed at
Reynolds numbers of Re = Ubd/ν = 50–500, where Ub is the free-stream velocity and
ν is the kinematic viscosity. This range of Reynolds number was selected based on the
findings of Zargar et al. (2021a,b), who established that the wake topologies for thin and
long prisms differ at Re = 250. At Re = 250, the wake experiences transition from steady
to unsteady with changing depth ratio. Although, Mashhadi et al. (2021) established that
the unsteady flow past infinite-span prisms at small depth ratios occurs at Re = 50–80,
the origins of unsteady wake development for smaller depth-ratio finite prisms is not
well known. This hints at the particular motivation for the current study to look at the
implications of depth ratio and extension of the shear layer on wake topology and the
evolution of vortex structures.

The computational domain size was selected as Lu = 10d, Ld = 20d, H = 6d and
W = 12d, as shown in figure 1. More details on the computational domain can be found
in table 1. This numerical study was set up following detailed sensitivity studies on the
computational domain size in Saha (2013) and Zargar et al. (2021a). More discussion
on the domain size is provided later in this section. Figure 2 presents the distributions
of time-averaged and root-mean-squared streamwise velocity normalized by free-stream
velocity (Ub), i.e. ū and u′, in the case of free flow with no prism. The dashed line shows
the boundary-layer thickness (δ), which is calculated as δ/d ≈ 3. Thus, it appears that
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Study DR (l/d) L H W Ntotal Re

Case 1 0.016 30.016d 6d 12d 7.32 × 106 250
Case 2 0.1 30.1d 6d 12d 7.46 × 106 250
Case 3 0.3 30.3d 6d 12d 7.80 × 106 250
Case 4 1 31d 6d 12d 9.03 × 106 250
Case 5 2 32d 6d 12d 9.54 × 106 250
Case 6 4 34d 6d 12d 10.6 × 106 250

Table 1. Case studies and parameter space for wall-mounted cases.

6

Mean velocity

r.m.s. velocity fluctuation
5

4

3

2

y/d

1

0 0.2 0.4 0.6 0.8 1.0

u′/Ub, ū/Ub

Figure 2. Distribution of the time-averaged and root-mean-square of streamwise velocity, i.e. ū and u′,
normalized by free-stream velocity (Ub). Measurements were performed in the absence of the prism. Dashed
line shows the boundary-layer thickness (δ/d).

the prism is fully immersed in the laminar boundary layer. It is important to note that a
laminar boundary layer is expected at low Reynolds numbers between 50 and 500 (Saha
2013; Zargar et al. 2021b). The boundary layer may have a pronounced effect on the flow
structures around the wall-mounted prism. To this effect, Wang et al. (2006) showed that
increasing the boundary-layer thickness enhances the near-wake upwash flow significantly.

2.1. Numerical set-up
The numerical simulations were carried out by directly solving the incompressible
Navier–Stokes and continuity equations using the finite-volume-based open-source
computational fluid dynamics package OpenFOAM (Weller et al. 1998). More details on
the computational algorithms, the solver and their accuracy for bluff body wake dynamic
analyses can be found in Zargar et al. (2021b), Zargar et al. (2021a) and Verma & Hemmati
(2021). All the flow parameters were normalized by the bulk velocity (Ub) and the width
of the prism (d).

Non-homogeneous, multi-block girds, consisting of 7.32 × 106–10.6 × 106 hexahedral
elements were utilized for DR = 0.016–4, respectively. As an example, the grid
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Figure 3. The spatial grid distribution for the wall-mounted thin prism of DR = 0.016. The grid is shown for
a part of the domain. Top view at y/d = 0.5 (a) and side view at z/d = 0 (b).

distribution for the smallest depth ratio (DR = 0.016), which constitutes the most complex
wake dynamics, is shown in figure 3. The grid set-up was similar to those of previous
numerical studies (Saha 2013; Zargar et al. 2021a), where the finer grid was placed
close to the prism and the wall. This enabled accurate simulation of the anisotropic
small-scale flow structures in the vicinity of the prism, as well as downstream wake
structures. Furthermore, the expansion ratio of the grid was kept below 3 %. A constant
uniform velocity inlet boundary condition was used at the inlet boundary, while an outflow
Neumann-type boundary condition was applied at the outlet, based on which ∂ψ/∂n = 0,
whereψ is any flow variable. The ceiling and lateral boundaries were modelled as free-slip
impermeable boundary, which enabled zero normal velocity and zero shear stress for
viscous flow. A no-slip boundary condition was used for the prism surfaces and the ground.

The diffusive and convective terms of the governing equations were discretized,
spatially and temporally, using second-order accurate numerical schemes. A second-order
implicit backward Euler scheme was utilized for temporal discretization. The discretized
equations were solved using pimpleFoam, a transient solver for incompressible, turbulent
flow, incorporating the PIMPLE algorithm, a combination of pressure implicit with
splitting operator (PISO) and semi-implicit method for pressure linked equation (SIMPLE)
algorithms. pimpleFoam is utilized in PISO mode by specifying single outer-correction
iteration with a predictor step and three pressure correction loops to couple the pressure
and velocity equations. A preconditioned bi-conjugate gradient iterative solver was
utilized to solve both the pressure and pressure–velocity coupled equations. The diagonal
incomplete-Cholesky preconditioner was used for the pressure equation and diagonal
incomplete lower–upper (LU) preconditioner method was used in the pressure–velocity
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coupled equation. The absolute error tolerance criterion for pressure and velocity was set
at 10−6.

The time marching calculations were carried out by selecting a time step of �t∗ =
�tUb/d = 0.0065. The maximum Courant–Friedrichs–Levy number for these simulations
was 0.72. All simulations were continued for 20 flowthrough times, where a flowthrough
time is defined as the time fluid takes to travel from inlet to outlet. This flowthrough
time criterion corresponded to 120 vortex shedding cycles, from which the last 50 vortex
shedding cycles were considered for post-processing. All simulations were completed
using 48 Intel Platinum 8160 F Skylake 2.1 GHz cores and 192 GB of shared physical
memory, using an average of 1.5 × 104 core hours per simulation on Compute Canada
clusters.

2.2. Verification and validation studies
Numerical simulations were verified by evaluating the sensitivity of results to the domain
size and grid resolution, following the recommendation of Hemmati et al. (2018). To
address the former, the present domain was designed to be larger than previous studies
(Saha 2013; Saeedi, LePoudre & Wang 2014; Rastan et al. 2021). Further, the present
domain size was comparable to that of Zargar et al. (2021a), who had shown their domain
size to be sufficiently large to minimize any sensitivity of the simulation results to the size
of their domain and position of the boundaries. Thus, we do not provide more information
on our sensitivity analysis of the domain size. Instead, we refer the reader to the extensive
sensitivity studies reported by Zargar et al. (2021b,a). On the criteria for blockage ratio
(β) and the domain height (H), we set these as 0.01 and 6d, respectively. These followed
the practices of Sohankar, Norberg & Davidson (1998) and Saha (2013), based on which
β = (d × h)/(W × H) ≤ 0.05 and H ≥ h + 5d, to ensure that there are no significant
effects on the global flow quantities.

For the effect of the spatial grid, a grid sensitivity analysis was performed using three
successively refined grids for DR = 0.016 at Re = 250: Grid 1 (141 × 59 × 105), Grid 2
(183 × 92 × 156) and Grid 3 (227 × 142 × 228). The case of DR = 0.016 was selected
for the grid sensitivity study since it is expected to provide the most complex unsteady
wake dynamics compared with the other depth ratios. The global flow quantities, including
the Strouhal number and the mean drag coefficient, as well as the mean and turbulent
variables were compared for the three grids. Table 2 compares the Strouhal number and the
time-averaged (mean) coefficient of drag achieved from the three grids. Here, the Strouhal
number is defined by Stsh = fshd/Ub, where fsh is the vortex shedding frequency. The mean
drag coefficient is given by Cd = Fd/0.5ρUb

2dh, where Fd is the mean drag force acting
on the prism. The comparison in table 2 indicates that results from Grid 2 and Grid 3 were
in close agreement. The maximum deviation in Strouhal number between Grid 2 and Grid
3 was ∼4 % and that for the mean drag coefficient was ∼0.5 %. Since these variations are
less than 5 %, one can argue that Grid 2 is sufficiently fine to properly capture global flow
features.

The grid sensitivity analysis was expanded by tracing the effects of grid resolution
on mean velocities, Reynolds normal stress (u′u′), and the turbulence kinetic energy
(k = (u′u′ + v′v′ + w′w′)/2). While the grid sensitivity was performed at two streamwise
locations (i.e. x/d = 3 and 5), only the results at x/d = 3 are shown in figures 4 and 5
for brevity. The mean streamwise and normal velocity profiles are compared in figure 4,
where the difference between Grid 2 and Grid 3 was not substantial inside the base region
(∼5 %). However, a slight discrepancy, corresponding to a maximum of ∼11 %, was noted
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Grids Ntotal �n+ Stsh |�Stsh %| Cd |�Cd %|
Grid 1 8.07 × 105 0.063 0.1570 — 1.0835 —
Grid 2 2.49 × 106 0.032 0.1804 12.97 1.0940 0.96
Grid 3 7.32 × 106 0.016 0.1875 3.78 1.0919 0.21

Table 2. Grid sensitivity analysis results for wall-mounted thin prism case (DR = 0.016).
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Figure 4. Effect of grid size on mean velocities at x/d = 3 and y/d = 0.5, for prism of DR = 0.016 at a
Reynolds number of 250. Shown are profiles of (a) Ū and (b) V̄ .

in the normal velocity predictions. Figure 5 compares the profiles of Reynolds normal
stress (u′u′), which was the largest stress in the near-wake region, and turbulence kinetic
energy (k). The results were consistent with those of the mean flow field, meaning that the
turbulent field was not sensitive to the spatial grid size for Grid 2 and Grid 3. Although
Grid 2 was sufficient for accurately solving the flow, we opted to use Grid 3 to ensure the
grid resolution was sufficient for capturing all small- and large-scale flow features. Finally,
examination of the spatial resolution was complemented by investigating the ratio of grid
size to Kolmogorov length scale (Δ/η) (Moin & Mahesh 1998; Kawamura et al. 2007;
Narasimhamurthy & Andersson 2009; Saeedi et al. 2014; Hemmati et al. 2018; Rastan
et al. 2021). For the critical case of DR = 0.016, Δ/η ≤ 2 was ensured for the entire
domain, stringently following the criteria of Yakhot et al. (2006) and Saeedi et al. (2014).
For further information refer to the Appendix.

There have been several attempts to validate the numerical results obtained using
OpenFOAM and the current set-up in comparison with validated numerical results of Saha
(2013) and Zhang et al. (2017). This was due to limited experimental analyses for larger
depth-ratio prisms. Details of these comparisons can be found in Zargar et al. (2021b,a),
which we do not present here for brevity. These validation studies confirmed that the
current set-up and numerical solvers can capture the wake topology accurately, as well
as the boundary layer prior to and after the prism.

3. Results and discussion

We begin by classifying the wake topology as steady or unsteady at a range of Reynolds
number and depth ratios. Here, a steady wake is defined by the absence of any fluctuations
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Figure 5. Effect of grid size on wake turbulence characteristics at x/d = 3 and y/d = 0.5, for prism of
DR = 0.016 at Reynolds number of 250. Shown are profiles of (a) k/U2

b and (b) u′u′/U2
b .

in either the wake or forces, whereas unsteady wakes feature small and large wake
variations and force fluctuations. A wake map is presented in figure 6 for wall-mounted
prisms of different depth ratios at different Reynolds numbers. Here, the wake is classified
as either steady or unsteady, and is further sub-divided into symmetric and asymmetric
wakes. For clarity, symmetric wakes are defined by the symmetric orientation of the main
instantaneous wake features about the mid-planar axis, such as hairpin-like structures, tip
and base vortices, as well as the horseshoe vortex. Contrarily, asymmetric wakes exhibit
vortical features with distortions about the mid-planar axis, leading to sideway (spanwise)
tilting of the shed structures. This highlights a change in wake topology that closely
depends on the prism depth ratio at a range of Reynolds numbers for a low aspect-ratio
body. In particular, results in figure 6 indicate that the wake is steady for DR = 0.016 until
Re = 150, after which it becomes unsteady. The Reynolds number at which this wake
transition occurs increases with increasing depth ratio, such that the wake remains steady
up to Re = 200 for DR = 0.1 and Re = 400 for DR = 1. In previous studies, the unsteady
wake transition as a function of Reynolds number is mainly discussed with increasing
aspect ratio. Saha (2013) identified transitional flow at a Reynolds number of 250 for an
AR = 2 prism, while Zhang et al. (2017) identified similar unsteady transition for a AR = 4
prism at a Reynolds number of 150. In the case of a wall-mounted cube, this transition
was noted at Re = 500 (Diaz-Daniel et al. 2017). In the present study, we scrutinize such
transitions as a function of Reynolds number and depth ratio. Further classification of
the unsteady wake also reveals interesting topological differences that are identified in
terms of wake symmetry, or the lack thereof. Here, we only focus on identifying and
characterizing the wake mechanism at Reynolds numbers of 250 and 500, since the wake
remains coherent without three-dimensional turbulent effects that could complicate the
flow at high Reynolds numbers (Saha 2013; Zargar et al. 2021a). Moreover, these Reynolds
numbers exhibit both categories of unsteady wake, the mechanisms associated with which
are important in the development of the wake topology. However, discussions on the
changing wake topology with Reynolds number and depth ratio form the basis of a future
study.

We proceed with characterizing the instantaneous wakes starting with the lowest depth
ratio (DR = 0.016) at Re = 250. There exists a wake unsteady transition with increasing
depth ratio at this Reynolds number. The wake is unsteady for DR ≤ 0.1 and it transitions
to a steady wake for DR = 0.3–4. Moreover, the wake of the very thin prism exhibits

950 A31-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

82
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.824


S. Goswami and A. Hemmati

0.016 Asymmetric unsteady wake

Symmetric unsteady wake

Steady wake

0.100

0.200

0.300

0.400

0.500

0.600

0.700

DR

0.800

0.900

1.000

2.000

4.000

50 100 150 200

Re
250 300 400 500

Figure 6. Classification of the wake topology in terms of Reynolds number and depth ratio.

unique features at Re = 250, leading to asymmetric characteristics. These were not
observed at lower Reynolds numbers or for larger depth ratios. The characterization of
these wake features are initially discussed in the next section, followed by analysing
the mechanisms associated with the wake development for low depth-ratio prisms, i.e.
DR ≤ 0.1, and characterizing secondary structures in the wake in latter sections.

3.1. Wake classification
The wake classification in figure 6 identifies that the Reynolds number threshold for
transition to an unsteady wake increases with increasing depth ratio. It becomes clear that
the wake is steady for all depth ratios at Re ≤ 150. With further increase in Reynolds
number to 200, a transition to an unsteady wake occurs for DR = 0.016, while the
wake of DR ≥ 0.1 remains steady. At Re = 250, the wake transitions from unsteady to
steady with changing depth ratio. Moreover, the wake of the very thin prism exhibits
asymmetric characteristics, which change to symmetric shedding, followed by a steady
wake at larger depth ratios. Although it is important to identify how wake topology changes
with increasing Reynolds number and depth ratio, and the correspondence between the
two parameters, this analysis falls outside the scope of the current study. Instead, we only
focus on identifying and characterizing the wake at Re = 250, as well as the mechanism
of asymmetric wake patterns that are observed at Re ≥ 250. To this effect, we begin by
examining the wake of our thin prism (DR = 0.016) at Re = 250, which is the onset of
wake asymmetry. Please note that our analyses are also valid for larger depth ratios or
Reynolds numbers, as long as the wake classification remains the same as that identified
for the thin prism at the given Reynolds number.

Figure 7 shows the wake topology behind the very thin prism (DR = 0.016) over the
range of Re = 150–500. These results identify a clear change in wake topology with
changing Reynolds number. The case of a very thin prism is selected because it clearly
marks the onset of an unsteady wake, as well as transition from symmetric to asymmetric
wake characteristics Similar analyses can be undertaken for any other depth-ratio and
Reynolds number cases, and similar observations are expected for the same wake topology
(classifications based on figure 6). Unsteady wake structures, their formation, evolution
and interactions are investigated using the Q-criterion, as described by Hunt, Wray &
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Figure 7. Instantaneous vortex structures of a DR = 0.016 prism identified using Q∗ = 6 × 10−6 and overlaid
with mean streamwise velocity (ū/Ub), at (a) Re = 150; (b) Re = 200; (c) Re = 250; and (d) Re = 500. All
panels are shown in three-dimensional view.

Moin (1988) and Jeong & Hussain (1995). Iso-surface plots overlaid with mean streamwise
velocity (ū/Ub) contours in figure 7 demonstrate the transition of wake features with
changing Reynolds number for DR = 0.016. At Re ≤ 150, the wake remains steady,
and the formation of a horseshoe vortex (Simpson 2001) and leading-edge shear-layer
separation are clear. The onset of an unsteady wake occurs at a Reynolds number of 200,
which is characterized by the formation of symmetric hairpin-like vortices. Diaz-Daniel
et al. (2017) reported similar symmetric wake structures behind a cube. They attributed
the symmetric shedding to the interaction of tip vortices, formed at the upper part of
the prism side surfaces, with the shear layer created over the prism, leading to flow
unsteadiness. Further increase in Reynolds number to 250 leads to asymmetric hairpin-like
wake structures. At Re = 500, the wake of a very thin prism, although unsteady and
asymmetric, cannot maintain its coherence far downstream. This could be attributed to
stronger interactions between the shed structures, as a result of increased unsteadiness
(Diaz-Daniel et al. 2017; Zargar et al. 2021a). Here, the wake asymmetry is characterized
by distortion of the head of the hairpin-like structure, which leads to spanwise (sideways)
tilting of structures, as noted in figure 7(c). Identifying the wake features that are altered
by the changing depth ratios and characterizing secondary structures and their interactive
mechanisms with the wake form the basis of our analyses for the remainder of this paper.

Since the onset of asymmetric wake occurs at Re = 250, we look at instantaneous
streamwise vorticity (ωx

∗) contours for the case of a very thin prism at Re = 250 and 500
in figure 8. These results enable us to investigate the formation, interaction and distortion
of near-wake vortical structures. There are three main observations that can be discussed
with respect to the results in figure 8. First, the wake appears symmetric in the immediate
vicinity of the prism at x/d = 0. Two pairs of counter-rotating tip vortices are noted here,
with the primary tip vortex forming on the top part of the prism side surface, and the
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cutoff levels for ωx

∗ are ±0.12 and the contour interval is 0.001. The contours are shown at x/d = 0, 1 and 2.

secondary tip vortex forming on the prism top surface. This is consistent with the wake
topology of wall-mounted prisms (Rastan et al. 2021). The second observation is that
near-wake structures lose streamwise coherence due to stronger interaction between shed
structures and increased unsteadiness with increasing Reynolds number towards Re = 500.
As such, structures at x/d = 1 for Re = 500 appear distorted compared with Re = 250.
The third observation relates to an influx of vorticity at x/d = 2, which corresponds to
the formation of secondary vortex structures in the wake. These secondary structures
appear distorted at higher Reynolds numbers, compared with Re = 250, possibly due
to incoherent interactions with the separating shear layers from the prism top and side
surfaces (Diaz-Daniel et al. 2017). These secondary structures also appear in the case of
symmetric unsteady wakes (i.e. DR = 0.1 at Re = 250 in figure 25), in which case they are
placed symmetrically in the wake. Thus, we expand on our investigation of the mechanism
of wake asymmetry based on these observations focusing on the case of Re = 250, which
enables characterization of the wake devoid of major incoherent, transient effects.

Finally, it becomes important to scrutinize variations in the flow dynamics at higher
depth ratios for the given ranges of Reynolds numbers for completeness. Figure 6 reveals
that the unsteady asymmetric wake exists for DR = 0.9 at Re = 400, while it vanishes
for a Reynolds number of 500. It is evident from the iso-surface plots shown in figure 9
showing that DR = 1 at a Reynolds number of 500 results in an asymmetric unsteady
wake, which quickly becomes steady with increasing depth ratio to 1.5. Trailing-edge flow
separation as a result of shear-layer reattachment on the prism top and side surfaces for
large depth-ratio (DR ≥ 1) prisms leads to the suppression of unsteady flow characteristics
(Rastan et al. 2021; Zargar et al. 2021b). For the present study, figure 9 shows trailing-edge
flow separation for the case of DR = 1.5 at Re = 500, resulting in steady flow.
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500, identified using Q∗ = 6 × 10−6 and overlaid with mean streamwise velocity (ū/Ub). All panels are shown
in three-dimensional view.

3.2. Instantaneous wake characteristics
We begin our wake analysis by looking at the asymmetric unsteady wake formation at
Re = 250. Iso-surface plots are overlaid by the mean streamwise velocity (ū/Ub) contours
in figure 10, which demonstrate a difference in the wake with changing depth ratio. The
wake of prisms with DR = 0.016 and 0.1 is unsteady at Re = 250, while that of DR ≥ 0.3
is steady. This indicates an unsteady-to-steady transition of the flow with increasing depth
ratio. The two common features of the wake, for all the cases considered here, are the
formation of horseshoe vortices in front of the prism, and the shear-layer separation at the
leading edge. The latter folds after the initial separation on the top and side surfaces of the
prism as the depth ratio increases. Hereinafter, we will only focus on the unsteady wake
features and their formation mechanisms, unique characteristics and potential sources.

The flow around a wall-mounted prism with a very small depth ratio (DR < 0.3 at
Re = 250) experiences shear-layer separation and roll-up, leading to vortex shedding. The
wakes of such prisms are dominated by hairpin-like vortices that are formed along the top
face of the prism. These are clearly identified in figure 10(a,b). This is consistent with
the observations of Hemmati, Wood & Martinuzzi (2016), who identified the wake of a
finite aspect-ratio normal thin flat plate is dominated by vortex loops that are shed on the
longer edges with legs that are ‘peeled off’ from the side (shorter) edges. Here, the head
of the hairpin-like structure moves faster downstream compared with its legs. Thus, wake
structures appear elongated or distorted in the streamwise direction. This observation is
consistent with the fact that head of the hairpin is closer to the free stream, while the legs
are located closer to the boundary layer on the ground. Further, shedding of hairpin-like
structures changes from asymmetrically to symmetrically placed hairpins with increasing
depth ratio from 0.016 to 0.1. This hints at the implications of depth ratio in restoring the
flow symmetry (Diaz-Daniel et al. 2017), which remains prevalent for DR ≥ 0.3 (steady
cases).

Hairpin-like structures were symmetrically placed due to the flow separation–
reattachment processes on the prism top surface at a depth ratio of 0.1, which is consistent
with the results of Hwang & Yang (2004), Yakhot et al. (2006) and Diaz-Daniel et al.
(2017) for a cube. Here, the results thus far clearly identify that the wake of a small
aspect-ratio prism with a very small depth ratio is asymmetric at Re = 250, while the wake
symmetry is restored with reattachment of the shear layer on the body with increasing
depth ratio. In simpler terms, we provide evidence that increasing the depth ratio leads to
restoration of the flow symmetry in small aspect-ratio prisms.
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Figure 10. Instantaneous vortex structures identified using Q-criterion and overlaid with mean streamwise
velocity (ū/Ub), for (a) DR = 0.016; (b) DR = 0.1; (c) DR = 0.3; (d) DR = 1; (e) DR = 2; and ( f ) DR = 4,
at a Reynolds number of 250. The threshold of Q∗ = 6 × 10−6 is used for DR = 0.016, 0.1, 1–4, while Q∗ =
1 × 10−6 is used for DR = 0.3 to avoid distorted contours. All panels are shown in three-dimensional view.

The steady wakes observed for cases of DR ≥ 0.3 in figure 10(c–f ) exhibit initial
flow separation on the leading edge of the prism that is followed by a shear-layer
reattachment on top and side faces. This process suppresses the wake three-dimensionality
and unsteadiness according to Zargar et al. (2021a) and Rastan et al. (2021). Two aspects
of flow separation are observed in the steady wake. First, a pair of tip and base vortices
are identified in figure 10(c) (DR = 0.3), which are either not formed or quickly distorted
for DR > 0.3 in figure 10(d–f ). The existence of tip vortices for DR = 0.3 hints at the
dominance of downwash induced flow, based on the discussions of Zargar et al. (2021b),
which intensifies with increasing depth ratio. Traces of tip vortices are missing for the
case of DR > 0.3 in figure 10(d–f ), which is attributed to folding of initial shear-layer
separation on the surfaces of the prism. The second feature of the wake involves an initial
shear-layer separation and reattachment on the top and side surfaces of the prism for

950 A31-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

82
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.824


Wake asymmetry and secondary structures for prisms

–2

(a) (b)
Horseshoe hairpin

structures

–1

0p/z

x/d

1

2

–2

–1

0

1

2
0 2 4 6 8 10

x/d
0 2 4 6 8 10

–0.500

ū/Ub :

–0.075 0.350 1.2000.775

Figure 11. Instantaneous vortex structures identified using Q∗ = 6 × 10−6 for (a) DR = 0.016 and
(b) DR = 0.1, at a Reynolds number of 250. Panels are presented from top view.

DR > 0.3, which is followed by trailing-edge separation. This leads to the shear-layer
roll-up and the formation of trailing-edge vortices, identified as ‘V1’ and ‘V2’ in
figure 10(d–f ) on the prism top and side wakes, respectively. These trailing-edge vortices
entrain free-stream fluid into the wake, thus leading to intense downwash flow behind
the prism. This is well aligned with the previously reported observations of Zargar et al.
(2021b) on the steady wake of long rectangular wall-mounted prisms.

Another important feature of the flow is the formation of a multi-part horseshoe structure
at the base of the prism leading edge. For DR < 0.3, the legs of the outer horseshoe
are shed into the wake by forming hairpin-like structures. These structures are clearly
identified in figure 11. The formation of these hairpin-like structures has been previously
reported in the literature, and may be associated with vortical motions of the horseshoe
vortex legs. Hwang & Yang (2004) and Diaz-Daniel et al. (2017) reported the shedding of
a horseshoe vortex in the wake of a wall-mounted cube at Re = 600. They suggested that
the flow region around the horseshoe vortex is fundamentally similar to a quasi-streamwise
vortex from the near-wall region of a turbulent wall-bounded flow. Hence, the hairpin
structures were reasonably expected in this region, similar to those discussed by Adrian
(2007). What is unique in the current study, however, is observing of an asymmetric
pattern for horseshoe–hairpins in figure 11(a) (for DR = 0.016), while they are placed
symmetrically around the prism for DR = 0.1. The horseshoe–hairpins for the former
prism (DR = 0.016) are stretched as they progress downstream, similar to the primary
hairpin-like vortices. Structures on either side of the prism appear distorted following the
initial shedding close to x/d = 3. This coincides with their lower convective speed, which
in turn leads to a small phase difference at x/d = 9. In the case of DR = 0.1, however, no
such phase difference exists, and the hairpins are symmetrically placed around the prism.
The investigation of phase difference in the unsteady case is completed in the later part of
the paper.

Expanding these studies to higher Reynolds numbers, i.e. the results in figure 6,
revealed that the threshold depth ratio, at which wake symmetry is restored, increases
with increasing Reynolds number. This constitutes the effect of Reynolds number on wake
transition mechanisms, which falls outside the scope of the current study. Nonetheless,
we provide a brief report on the transition mechanisms investigated in past literature.
The fundamental mechanism of wake transitions, that is the suppression of unsteadiness
and restoration of wake symmetry, is a multivariate function. Wake transitions depend on
flow parameters, such as the Reynolds number, boundary-layer thickness and changing
geometric parameters, e.g. aspect ratio and depth ratio. Past literature has focused on wake
transition mechanisms in the case of suspended cubes (Saha 2004; Khan et al. 2020a;
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Meng et al. 2021) as well as wall-mounted prisms (Saha 2013; Diaz-Daniel et al. 2017;
Rastan et al. 2017; Zhang et al. 2017). For the case of a suspended cube, Hopf bifurcation
(Saha 2004; Khan et al. 2020a) results in transition to unsteady flow, mainly at Reynolds
numbers of 250–300. In the case of wall-mounted prisms, transition is mainly investigated
in terms of changing aspect ratio (Saha 2013) and Reynolds numbers (Diaz-Daniel et al.
2017; Rastan et al. 2017; Zhang et al. 2017). Saha (2013) attributed the transition to
unsteady flow with increasing aspect ratio, to alternate shedding of side-edge shear layers
forming Kármán-type mid-span vortices. Saha (2013) observed transition to unsteady flow
at an aspect ratio of 3 and Reynolds number of 250. Then, Zhang et al. (2017) and Rastan
et al. (2017) observed transition in mean wake topology with changing Reynolds number.
Zhang et al. (2017) notably observed a six-vortex-type cross-sectional wake topology,
considered to be a transitional structure between quadrupole and dipole-type wakes, at
a Reynolds number of 250. Finally, Diaz-Daniel et al. (2017) attributed the transition to
an unsteady wake to destabilization of the leading-edge shear layers. In the context of the
present study, we observe suppression of unsteadiness with increasing depth ratio, leading
to restoration of flow symmetry and a steady wake. Further, the threshold for transition
changes with Reynolds number, as observed in figure 6. Thus the transition mechanism
here becomes a multivariate function of changing depth ratio and Reynolds number, which
will be further discussed as part of a future study.

3.3. Time-averaged wake characteristics
While the analysis of time-averaged flow effects and the influence of changing depth ratio
and Reynolds number remain outside of the scope of the present study, the characterization
of time-averaged flow features becomes important to understand the flow dynamics around
wall-mounted prisms. Thus, here, we briefly characterize the time-averaged (mean) wake
features with changing depth ratios.

Time-averaged vortex structures identified using the Q-criterion and overlaid with
time-averaged axial vorticity (ωx

∗) are presented in figure 12, for prisms with changing
depth ratios at a Reynolds number of 250. A panel showing iso-surfaces of streamwise
axial vorticity is added on the top-right corner of each plot. Figure 12 shows that
the time-averaged wake is symmetric for all cases, including DR = 0.016, in which
the instantaneous unsteady wake feature asymmetric hairpin-like structures. Further, the
time-averaged vortex structures for DR < 0.3 show a quadrupole-type cross-sectional
wake topology, composed of counter-rotating pairs of primary tip and base vortices,
emanating from the tip and base of the prism, respectively. In the literature, Zhang et al.
(2017) and Zargar et al. (2021b) observed similar quadrupole structures at a Reynolds
number of 250. Increasing the prism depth ratio beyond 0.3 leads to impairment of the
tip vortex due to reattachment of the leading-edge separated flow into the top and side
surfaces of the prism (Rastan et al. 2021).

The iso-surfaces of vorticity, shown on the top-right corner for each plot in figure 12,
provides insight into the formation of tip vortices and their dependence on depth ratio.
Two vortices forming over the top surface of the prism are primary and secondary tip
vortices. Primary tip vortices form on the top part of the side surfaces, while secondary tip
vortices form on the top surface of the prism (Rastan et al. 2021). For all cases, secondary
tip vortices vanish immediately behind the prism. In the case of DR > 0.3, secondary
tip vortices vanish due to shear-layer reattachment on the top surface of the prism, while
primary tip vortices swerve down the side surfaces.
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Figure 12. Time-averaged vortex structures identified using Q∗ = 1 × 10−6, coloured with ωx
∗ for (a) DR =

0.016; (b) DR = 0.1; (c) DR = 0.3; (d) DR = 1; (e) DR = 2; and ( f ) DR = 4. The iso-surface for ωx∗ is shown
for each case on the top-right corner.

Finally, in order to understand the evolution of time-averaged structures in the near
and far wake downstream of the prism, figure 13 presents profiles of time-averaged axial
vorticity (ωx

∗) at x/d = 2, 5 and 10. Profiles for DR > 1 are omitted for brevity, since their
mean flow characteristics do not change compared with DR = 1 (Fang & Tachie 2019;
Zargar et al. 2021b). At x/d = 2, the profiles of ωx

∗ are similar for DR ≤ 0.3, showing the
pairs of primary and secondary tip vortices, and base vortex pairs. The horseshoe structure
wrapping around the prism and extending into the wake is also apparent. The signs of
vorticity for primary tip vortices are opposite to those of secondary tip vortices. The latter
structures diminish beyond x/d = 2 and they are no longer identifiable at x/d = 5. Thus,
secondary tip vortices only appear in the near wake, while primary tip vortices and base
vortices retain their coherence farther downstream the wake. The strength of the tip and
base vortices reduces with increasing depth ratio farther downstream. Thus, it becomes

950 A31-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

82
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.824


S. Goswami and A. Hemmati

2

1

1 0 –1
0

2

1

1 0 –1
0

2

1

1 0 –1
0

2

1

1 0 –1

0

2

1

1 0 –1

0

2

1

1 0 –1

0

2

1

1 0 –1
0

2

1

1 0 –1
0

2

1

1 0 –1
0

2

1

1 0 –1
0

2

1

1 0 –1
0

2

1

1 0 –1
0

y/d

y/d

y/d

y/d

z/d

z/d z/d

x/d = 2 x/d = 5 x/d = 10

D
R

=
0
.0

1
6

D
R

=
0
.1

D
R

=
0
.3

D
R

=
1

Primary tip

vortices

Primary tip

vortices

Secondary tip

vortices

Horseshoe

vortex

Base

vortices
Base

vortices

(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

( j) (k) (l)

Figure 13. Contours of time-averaged axial vorticity (ωx
∗) structures (solid blue lines: positive values, dashed

red lines: negative values) for (a–c) DR = 0.016; (d–f ) DR = 0.1; (g–i) DR = 0.3; and (j–l) DR = 1. The line
contour cutoff levels for ωx

∗ are ±3 and the contour interval is 0.06. The contours are shown at x/d = 2, 5
and 10.

clear that tip and base vortices remain dominant in the very near wake (x/d = 2), while
they are not as dominant farther downstream at x/d = 5–10. Further, the strength of the
tip vortex in the far downstream (x/d = 10) weakens with increasing depth ratio up to
DR = 1, where the tip vortex is fully distorted and the base vortex dominates the wake.

3.4. Upwash and downwash motion
From the past literature (Sumner, Heseltine & Dansereau 2004; Wang et al. 2006; Wang
& Zhou 2009; Hosseini et al. 2013), it is well known that the free-end vortex pair
or tip vortices induce downwash flow, whereas the wall–body junction vortex pair or
base vortices induce an upwash flow. Sumner et al. (2004) and Hosseini et al. (2013)
further elucidate that the free-end downwash dominates the wake for a dipole-type
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Figure 14. The ωz
∗ contours overlapped with the time-averaged streamlines for (a) DR = 0.016;

(b) DR = 0.1; (c) DR = 0.3; (d) DR = 1; (e) DR = 2; and ( f ) DR = 4. Plots are shown at y/d = 0.

mean wake topology. In case of a quadrupole-type wake, the strong upwash due to the
base vortex interacts with the downwash from the tip vortex, forming a saddle point in the
symmetry plane (Wang & Zhou 2009). For a thicker boundary layer, Wang et al. (2006)
observed that the upwash flow is stronger, resulting in the saddle point located closer to the
free end of the prism. In the present study, it becomes important to analyse the influence
of varying depth ratio on the upwash and downwash flows. To this effect, figure 14 shows
the contours of ωz

∗ overlapped with the time-averaged streamlines for all cases, shown at
the symmetry plane. The intensity of upwash or downwash flow is clearly evident by their
effect on the leading-edge shear-layer separation at prism free end. Figure 14 shows the
location of the saddle point for all cases, which clearly indicates that the location of the
saddle point lowers towards the wall–body junction with increasing depth ratio. This hints
at the increasing strength of free-end downwash flow with larger depth ratios (Zargar et al.
2021b).

Upwash and downwash flows have profound effects on the mean shear-layer separation
and elongation in the downstream wake, which in turn affect the flow periodicity (Wang
et al. 2006; Wang & Zhou 2009). Zdravkovich (2003) reported on the influence of
downwash flow on the elongation of a separating shear layer and widening of the near
wake. This study suggested that, with increasing strength of the downwash flow, the
near wake widened and the shear layer elongated, resulting in prolonged spanwise vortex
shedding. Wang & Zhou (2009) observed similar results for the case of increasing aspect
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Figure 15. Location of the maximum Reynolds shear stress, YM(−u′v′), and ZM(|u′w′|), normalized by the
prism width (d), downstream of the wall mounted prism, at the (a) z/d = 0 and (b) y/d = 0.5 plane.

ratio for a finite square prism. Since the vortex shedding mechanism directly depends
on the elongation of the shear layer and spanwise momentum transport (Zdravkovich
2003), we quantitatively analyse the transport and recovery of mean shear layers, under
the influence of upwash and downwash flows, in figure 15. Previous studies (Smits,
Ding & Van Buren 2019; Goswami & Hemmati 2020, 2021a) have used a similar
method to investigate the recovery of a separated shear layer downstream of a sudden
contraction–expansion system. Figure 15 shows the location of maximum Reynolds shear
stress, that is YM(−u′v′) and ZM(|u′w′|), in the wake. As the Reynolds stress reflects the
stirring and mean momentum transport by the fluctuating velocity component, downstream
spreads of −u′v′ and u′w′ are associated with the formation of spanwise vortices and
their convection downstream (More et al. 2015). The value and trend of u′w′ is also a
measure of fluctuating streamwise momentum transport in the lateral direction or a degree
of correlation between streamwise and cross-stream fluctuating velocities. Since u′w′ is
positive and negative in regions above and below the centreline, respectively, we opted to
use the location of maximum |u′w′| to characterize the wake.

Transport of −u′v′ in figure 15(a) sheds light on the influence of depth ratio on the
strength of upwash (v′ > 0) and downwash (v′ < 0) flow. For all cases, initially the stresses
remain close to the height of the prism. Small depth-ratio cases (DR = 0.016 and 0.1) show
a prolonged region of v′ > 0 behind the prism, which entrains high-momentum fluid from
the free steam into the wake, resulting in a strong upwash flow. Thus, transport of −u′v′
away from the ground, in the region of upwash flow (4 < x/d < 10), is clearly observed
for the case of DR ≤ 0.3. With increasing depth ratio, a small region of upwash flow
exists immediately behind the prism, while the downstream wake is mainly dominated
by downwash flow. Thus, −u′v′ initially remains close to the prism height for the case
of DR > 0.3, but it quickly recovers towards the ground farther downstream in the wake.
The profiles of u′w′, in figure 15(b), correspond to the roll-up of the shear layer from the
side faces of the prism. The near wake appears widened for DR ≤ 0.3, under the influence
of strong upwash flow. Its recovery towards the core region is prolonged until x/d ≈ 5.
With increasing depth ratio, the location of maximum shear stress is lowered towards
the wake core within a short distance from the rear face of the prism, which hints at a
narrowing of the wake width. Thus, increasing the depth ratio weakens the interaction
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Figure 16. The power spectral density function, Eu, of the streamwise streamwise velocity (u) at x/d = 2.5,
y/d = 0.5 and z/d = 0.5, for (a) DR = 0.016 and (b) DR = 0.1 prisms at a Reynolds number of 250.

between downwash flow and spanwise separating shear layers, which in turn coincides
with a growing strength of the upwash flow in the far wake. The analysis that follows
focuses on evaluating the impact of upwash and downwash flows on periodicity in unsteady
wakes.

3.5. Flow periodicity and spanwise coherence
Figure 16 presents the power spectral density (Eu) of streamwise velocity for two prisms
with DR = 0.016 and 0.1. Welch’s averaged modified periodogram method (Welch 1967)
was utilized to calculate the power spectrum, where velocity data (time history) were split
into 8 segment with 50 % overlap with a Hamming window was applied on each segment.
The dominant frequency for DR = 0.016 corresponds to Stsh = 0.1875, while it reduces
to Stsh = 0.15 with increasing depth ratio to 0.1. Visual inspection of the wake over
time reveals that these dominant shedding frequencies are associated with hairpin-like
structures formed by the separated shear layer at the prism leading edge. The dominant
frequency noted here is higher compared with large aspect ratio (AR = 2–7) prisms (Wang
et al. 2006; Wang & Zhou 2009; Saha 2013; Rastan et al. 2017), in which case the range of
St is 0.11–0.13 at Re = 40–9.6 × 103. There are, however, limited studies in the literature
that look at the influence of depth ratio on vortex shedding. The recent study of Rastan
et al. (2021) reported that increasing the depth ratio from 1 to 3 lowered Stsh. The Strouhal
number noted in their work was 0.049 ∼ 0.138 for DR = 1–4 cases at Re = 1.2 × 104 and
an aspect ratio of 7, which was lower compared with the value obtained here. The reduced
shedding frequencies in those studies, compared with the present case, were attributed to
elongation of the vortex formation under the influence of intense downwash flow.

Hairpin-like vortex formation is a key wake feature in the case of isolated bluff bodies
such as finite aspect-ratio flat-plate isolated cubes and prisms. In the case of the finite
aspect-ratio flat plate, Hemmati et al. (2016) established that shedding occurs as a result
of shear-layer peel-off of side-edge vortices from the shorter side due to secondary flow
induced by detachment of the main vortex roller from the longer side of the plate. The
dominant shedding structures in this case resemble hairpin-like vortices. They observed a
shedding frequency of Stsh = 0.317 for a flat plate of aspect ratio 3.2, which is significantly
higher compared with the present study. The increased shedding frequency in the case
of Hemmati et al. (2016) is attributed to the isolated nature of the flat plate, where
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shear layers peel off from either end of the flat plate. Mainly, the added shear layers
contributed to the dynamics that increases the shedding frequency. Further, Hemmati,
Wood & Martinuzzi (2017) expanded on their previous study of normal thin flat plates by
examining the implications of aspect ratios using cases of AR = 1.6 and 1.0. The vortex
shedding frequency reduces for these cases significantly, such that Stsh = 0.146 for AR = 1
and Stsh = 0.186 for AR = 1.6. In the case of AR = 1, a second spectral harmonic peak is
observed at 2St, which they attributed to the secondary vortex shedding process observed
with square plates. In the present study, the effects of the horseshoe and hairpin-like
vortices can be isolated by changing the ground boundary to a symmetry boundary. In
that case, the shedding frequency of the thin prism (DR = 0.016) is comparable to the
results of Hemmati et al. (2017). This hints at a negligible influence of the interaction
between the horseshoe vortex and hairpin-like vortex in wall-mounted flat plates and
prisms.

In the case of an isolated cube, Saha (2004) established that the flow remains
planar–symmetric and steady up to a Reynolds number of 265. Then, the wake transitions
to unsteady flow by undergoing Hopf bifurcation. The unsteady flow loses planar
symmetry, and the wake is characterized by shedding of hairpin-like vortices in the
wake. Further, Khan et al. (2020a,b) and Meng et al. (2021) scrutinize the mechanism
of shedding and various wake regimes for isolated cubes. They note a reduction of the
shedding frequency to ≈ 0.09 at a Reynolds number of 270 and ∼0.13 at Re = 400,
relative to suspended thin flat plates. The wake topology differs in the present study, where
the flow is steady at similar setting, due to the reattachment of the leading-edge shear layer
on the top and side surfaces of the prism, which is consistent with observations of Zargar
et al. (2021b).

Lowering of the shedding frequency with increasing depth ratio continues beyond
DR = 0.3, at which point the wake becomes steady. Although this trend depends on Re,
such that the threshold DR for transition to a steady wake changes at higher Re, we retain
our focus on analysing the wake periodicity at Re = 250 to establish the mechanisms
leading to such trends. The reduction in Stsh for the case of DR = 0.1 can be attributed
to increasing dominance of the downwash flow, evident in the results of figure 15. This
follows from arguments of Zdravkovich (2003), who explained that the vortex shedding
mechanism is directly dependent on elongation of the shear layer and spanwise momentum
transport under the influence of upwash–downwash flow. The shear-layer elongation that
was previously discussed for the case of larger DR values aligns well with the lowering
trend of the shedding frequency observed here and corroborated by the description of
Zdravkovich (2003).

The spectral analysis revealed an additional flow dynamics in the wake. There are three
dominant wake features identified in figure 16 that can also be associated with wake
structures, by inspection: (i) Stsh that is associated with shedding of hairpin-like structures;
(ii) low-frequency signature at Stsh/2 for the case of DR = 0.016, which is associated
with a sub-harmonic of the hairpin-like vortex shedding; (iii) high-frequency harmonic
peaks centred at 2Stsh, 3Stsh and 4Stsh for the case of DR = 0.016, and at 2Stsh for the
case of DR = 0.1. Diaz-Daniel et al. (2017) and Tiwari et al. (2019) have noted similar
sub-harmonic and harmonic peaks in the wake of prisms, mainly in the near-wake region,
associated with interactions of detaching shear layers from the prism surfaces. Figures 16
and 17 provide the direct evidence of these flow features. Autocorrelation of the streamwise
velocity is shown in figure 17 for DR = 0.016 and 0.1, where the lag (horizontal axis) is
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Figure 17. The normalized autocorrelation function, ρτ , of the streamwise velocity at x/d = 2.5 and y/d =
0.05, 0.5 and 0.95, for (a,c,e) DR = 0.016 and (b,d, f ) DR = 0.1. Note that τ ∗ = τ fsh is the number of vortex
shedding periods, where fsh is the vortex shedding frequency corresponding to Stsh.

normalized by the vortex shedding frequency, fsh. Autocorrelation of a signal is defined as,

ρτ = 〈utut+τ∗〉
〈u2

t 〉
, (3.1)

where the streamwise velocity signal (ut) is correlated with itself (ut+τ∗) after a time delay
corresponding to one vortex shedding period (τ ∗). Autocorrelation analysis is carried out
using the final 5 shedding cycles along the height of the prism at three locations. For the
case of DR = 0.016, the signature of the vortex shedding process is intensified close to
the prism free end, where a periodic signature is apparent corresponding to Stsh/2. At the
mid-span and wall–body junction, the periodic signature corresponds to Stsh. In the case
of DR = 0.1, no such distinction is observed since the periodic signatures correspond to
Stsh along the prism height.

The low-frequency (Stsh/2) activity noted for DR = 0.016 is attributed to the region
where tip vortices are present (y/d ≈ 0.95), which is consistent with observations of
Diaz-Daniel et al. (2017). This suggests that tip-vortex shedding occurs at a different
frequency compared with the hairpin-like structures. Further investigation into the phase
lag between the shedding tip vortices on two sides may account for the asymmetry.
Previously, Kindree et al. (2018) and Morton et al. (2018) reported low-frequency
behaviour for wall-mounted circular prisms with AR = 4 immersed in a thin laminar
boundary layer. They proceeded to argue, based on further analysis, that low-frequency
signatures are unique to circular cross-section prisms with AR ≤ 4 that are placed in thin
laminar boundary layers, and that this process is independent of Re. Here, we observe a
similar behaviour for small AR rectangular (sharp edge) prisms with sufficiently small
DR that result in asymmetric features. At Re = 250, this unique wake asymmetry is
only apparent for the case of DR = 0.016, while wake symmetry is restored quickly at
DR = 0.1. Similar wake behaviour was observed for larger DR values at higher Reynolds
numbers, as was previously classified in figure 6. We have observed and discussed
evidence earlier on, both quantitative and qualitative, that hints at the dynamics of
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Figure 18. Spectral coherence, Cohu1u2 , between streamwise velocity u1 and u2 for DR = 0.016, at x/d = 2.5
and z/d = 0.5. Here, u1 was measured at y/d = 0.008, and u2 was measured at y/d = 0.05, 0.5 and 0.95.

side-edge shear-layer detachment dictating this wake asymmetric behaviour. We aim to
provide further support for this hypothesis by identifying the potential phase difference
between shear-layer detachment on side edges.

To better understand the near-wake dynamics associated with tip-vortex low-frequency
signatures, for example for the case of DR = 0.016, we used spectral coherence (Cohu1u2)
between velocity signals along the domain span in figure 18. Spectral coherence provides
the degree of coherence between Fourier components of two streamwise velocity (time
history) signals, say u1 and u2, such that u1 is recorded at y/d = 0.008 and u2 at y/d =
0.05, 0.5 and 0.95 (Wang & Zhou 2009). Spectral coherence is defined as,

Cohu1u2 = Co2
u1u2

+ Q2
u1u2

Eu1Eu2

, (3.2)

where Cou1u2 and Qu1u2 are the cospectrum and quadrature spectrum functions of u1 and
u2, and Eu1 , Eu2 are the power spectral density functions of u1 and u2. The signal for u1
is measured close to the ground for reference, following the recommendation of Wang &
Zhou (2009). The results in figure 18 for Cohu1u2 show a dominant peak at Stsh = 0.1875
along the prism span, as well as at Stsh/2 close to the prism free end. The peak value of
Cohu1u2 for Stsh ranges from ∼0.3 at y/d = 0.05 to 0.5 to ∼0.1 at y/d = 0.95. This is while
Cohu1u2 for Stsh/2 becomes ∼0.9 at y/d = 0.95. The spanwise coherence at Stsh = 0.1875
suggests a strong correlation along the prism height, which corroborates with hairpin-like
structures shedding in the wake. A strong coherence corresponding to Stsh/2 is absent
along the prism height near its free end. This suggests that the low-frequency signature
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Figure 19. The variation of instantaneous streamwise velocity components, u1 and u2, at locations
(2.5, 0.95,±0.4) as shown in the schematic plot, for DR = 0.016 prism. Here, t∗ is the convective time, given
as t∗ = tUb/d.

originates from the prism free end. Thus, low-frequency signatures observed in the wake
are associated with tip-vortex shedding.

Coherent vortex shedding observed in the wake of two-dimensional prisms, typically
suggesting symmetric vortex shedding, corresponds to no phase lag (phase angle of zero)
between laterally arranged vortices (Zhou et al. 2002). In asymmetric vortex shedding,
however, there is a phase lag between structures shed from different edges of the prism.
The apparent phase difference in the mid-height of the prism, comparing streamwise
velocity signals along the prism span, hints at a potential phase difference between
structures positioned on either edge of the prism. This accounts for the wake asymmetry
observed in the shedding and convective orientation of hairpin-like structures. To verify
the existence of a phase difference between tip vortices on two sides of the prism, we look
at instantaneous streamwise velocity variations on opposite spanwise edges of the prism
in figure 19. The results are based on two instantaneous streamwise velocity signals, u1
and u2, measured at opposite spanwise locations with respect to the prism middle line,
that is (2.5, 0.95,+0.4) and (2.5, 0.95,−0.4). These spatial positions correspond to the
location of the low-frequency signature observed earlier for the case of DR = 0.016, i.e.
the location of tip vortices. It becomes clear from figure 19 that the two signals, u1 and u2,
experience a phase shift of π. At a given instant of time, the signal of u1 leads u2 by half a
period, which corresponds to the low frequency observed at Stsh/2. Thus, the tip vortices
from either side of the prism shed alternately with a low frequency and opposite phase.
This provides us with more evidence on the mechanism of wake asymmetry associated
with low depth-ratio prisms.

We next focus on analysing the implications of alternate tip-vortex shedding for the
hairpin-like structures in the wake. Interactions between the tip vortex and separating
side-edge shear layers could result in the formation of secondary vortex structures, and thus
contribute to shear-layer premature separation, or ‘peel-off’ following the terminology
of Hemmati et al. (2016). Further, the streamwise coherence of these secondary vortex
structures is associated with the pattern of shedding of hairpin-like vortices. Hence, there
is an inherent mechanism that leads to formation and shedding of hairpin-like structures
in an asymmetric pattern in the wake of wall-mounted low depth-ratio prisms.
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3.6. Mechanism of asymmetric shedding
Hwang & Yang (2004) and Yakhot et al. (2006) have previously characterized the
flow around a wall-mounted cube. These studies reported a dominant hairpin-like
shedding in the wake, resulting from the adverse pressure gradients formed by the abrupt
boundary-layer separation on the surfaces of the body. Further, Diaz-Daniel et al. (2017)
showed that such hairpin-like structures appear symmetric at low Reynolds numbers,
due to the shear-layer reattachment–separation on the prism surfaces. With increasing
Reynolds number, hairpin structures lose their symmetry moving downstream, which is the
onset of their break down and incoherence. Moreover, Diaz-Daniel et al. (2017) observed
a low-frequency signature corresponding to tip vortices, which were absent in the case of
symmetric hairpin-like shedding. They hinted at potential interactions between tip vortices
and the hairpin head, leading to the aforementioned dynamic wake features and vortex
distortion.

A similar approach can be utilized for the current study, compared with those of
Diaz-Daniel et al. (2017), to characterize the mechanism of wake asymmetry. We have
thus far established that, for the case of DR = 0.016, which exhibits asymmetric wake
structures, tip vortices are shed at a lower frequency and they exhibit an inherent lateral
phase difference. This directly relates to the orientation and coherence of hairpin-like
structures that are formed by detachment of shear layers from the top and side edges of
the prism. Figure 20 shows the instantaneous vortex structures using Q∗ overlaid with
contours of streamwise vorticity (ωx

∗) for DR = 0.016. At x/d = 0, both contour-line
and iso-surface plots hint at the presence of symmetry in the wake, where primary
and secondary tip vortices are clearly visible and are positioned symmetrically. More
details on these structures have already been discussed extensively. Farther downstream,
near-wake structures start showing signs of distortion, hinting at symmetry breaking, at
x/d = 1. It has been already discussed how secondary tip vortices appear fully distorted
at x/d = 1, while primary tip vortices dominate the wake (Rastan et al. 2021). Onwards
from x/d = 1.5, primary tip vortices start interacting with the separating shear layer from
the top and side surfaces of the prism. At x/d = 2 and 2.5, there are several secondary
streamwise vortex structures identified in the wake. The sign of vorticity (direction of
rotation) for secondary vortex structures is opposite to that of the corresponding shear
layer (see x/d = 2). The influx of vorticity due to these secondary structures further
facilitates their interactions with the separating shear layer from the prism top surface,
which forms the head of hairpin-like structures upon its detachment from the body (Hwang
& Yang 2004). This interaction impacts the separating hairpin-like structure on either
side, causing asymmetric vortex shedding. Similar secondary vortex structures are noted
downstream, the presence of which coincides with tilting of hairpin-like structure towards
that respective side.

Summarizing previous discussions, key features of the asymmetric wake behind small
aspect-ratio wall-mounted prisms include (i) the formation of a multi-part horseshoe
vortex in front of the prism, (ii) shedding of horseshoe legs in the wake, (iii) leading-edge
shear-layer separation from the prism top and side surfaces, (iv) the formation of secondary
vortex structures and (v) subsequent formation of asymmetric hairpin-like structures in the
wake. These key features remain common amongst the cases studied here, and are shown
in figures 20 and 24.

We proceed by investigating the interactions of tip-vortex and side-edge separating shear
layers, as well as the mechanism of shear-layer peel-off. This can establish a potential
cause for the formation of hairpin-like structures in the wake. Figure 21 compares the
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Figure 20. Instantaneous vortex structures identified using Q∗ = 6 × 10−6 and overlaid with streamwise
vorticity (ωx

∗), surrounded by the line contours of ωx
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negative values) for a DR = 0.016 prism at a Reynolds number of 250. The line contour cutoff levels for ωx
∗

are ±0.12 and the contour interval is 0.001. Contours are shown at x/d = 0–2.5 at intervals of 0.5.

circulation (Γ ) for top and side shear layers for both asymmetric (DR = 0.016) and
symmetric (DR = 0.1) hairpin shedding cases. The absolute values of circulation are
compared, and normalized using bulk velocity (Ub) and prism width (d). For both depth
ratios, the strength of top surface shear layer appears higher compared with that from either
side. Larger circulation of the top shear layer entails a roll-up from the leading edge and
a strong upwash flow that causes shear-layer peel-off. Further, the evidence of alternate
shedding of the tip vortex interacting with the side shear layer is clear from figure 21.
The trends of circulation computed for the right-hand side shear layer lead the ones from
the left edge, by a phase of π. This phase difference is consistent with that of tip-vortex
shedding from either side of the prism. Further, comparing the circulation of the side shear
layers at any time (t∗), it is noticed that the shear layer on either side is stronger compared
with its counterpart. As such, the side with the stronger shear layer (larger circulation)
tilts the separating hairpin on the respective side. No such phase difference is observed for
DR = 0.1, where the side surface shear layers shed simultaneously from either side of the
prism.
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Figure 21. Circulation (Γ ), normalized by bulk velocity (Ub) and prism width (d), computed for top and side
surface shear layers of (a) DR = 0.016 and (b) DR = 0.1 prisms at a Reynolds number of 250. Here, t∗ is the
arbitrary range of convective time, given as t∗ = tUb/d.

Analyses thus far reveal that further evaluation of the origins of secondary structures is
necessary. Contour-line plots at x/d = 2 in figure 20 suggests that the influx of vorticity
(from secondary vortex structure) is consistent with the vorticity of the primary tip vortex.
To analyse this further at this location, the temporal evolution of ωx

∗ is evaluated in
figure 22 within one shedding cycle. These plots clearly depict the formation of the head
section of the hairpin-like structure. Initially, a secondary vortex structure is identified at
t1 in figure 22(a), which tilts the separating shear layer towards its respective side, in this
case the +z direction. Primary tip vortices are also identified at t3 and t4 in figure 22(c,d).
Structures with a negative-sign vorticity (dashed red lines at t4 in figure 22d) interact with
the shear layers detaching from the top and side surfaces of the prism with an opposite
vorticity sign (solid blue lines at t4 in figure 22d). This leads to an influx of opposite
vorticity in the separating shear layer, the interjection of which with the shear layer induces
an inward velocity, with respect to the prism. This feature distorts the hairpin-like structure
and breaks the wake symmetry.

Based on their location and the vorticity sign of secondary vortex structures in
figure 22(a, f ), we argue that the secondary vortex structures form as a result of alternate
shedding of primary tip vortices, due to excess vorticity resulting from the shear layer
during the peel-off process on either side of the prism. The trends of circulation, the
area integral of vorticity associated with the vortex, in figure 21 shows the evidence of
excess vorticity during shear-layer detachment from either side of very thin prism. The
shear layer on either side is stronger compared with its counterpart, resulting in excess
vorticity on the respective side, that may lead to such secondary vortex structures. The
excess vorticity in the asymmetric wake feeds the secondary structures, which accounts
for their coherence far downstream in the wake. In case of depth ratio 0.1, the side surface
shear layers shed simultaneously, devoid of any vorticity deficit. Thus the secondary vortex
structures forming in the wake lose their coherence fairly quickly downstream.

The existence of a single coherent structure in the wake, despite different frequency
signatures observed in the power spectrum (see figure 16a), deserve closer attention. In
elaborating on the mechanism of hairpin-like structures, Tiwari et al. (2019) attributed
their formation to elongation and interactions of separating shear layers from the prism
top and side surfaces. The top and side surface shear layers merge to form the hairpin-like
structures in the wake (Khan et al. 2020a). The leading-edge separation from the prism
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Figure 22. Time marching, line contours of ωx
∗ (solid blue lines: positive values, dashed red lines: negative

values) plotted at x/d = 2 for DR = 0.016 at Reynolds number of 250. The line contour cutoff levels for ωx
∗

are ±0.12 and the contour interval is 0.001. Contours are shown at (a) t1 = to; (b) t2 ≈ to + 1
5 τ

∗; (c) t3 ≈
to + 2

5 τ
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5 τ
∗; (e) t5 ≈ to + 4

5 τ
∗; and ( f ) t6 ≈ to + τ ∗. Here,τ ∗ is the time scale based on τ ∗ =

d/(UbSt).

side surfaces induces vortical motions that form the tip vortices, which interact with the
shear layer formed over the cube. This interaction leads to distortion of the hairpin-like
structure in the wake, and formation of secondary structures that lose their coherence
downstream. The existence of secondary structures that are connected to the coherent
hairpin-like structure (see figure 20) accounts for the low-frequency signatures observed
in the power spectrum.

Finally, we utilize DMD to explore different aspects of the wake dynamics and to
confirm the origins of asymmetric hairpin-like vortices as a result of alternate shedding
of the primary tip vortex at Stsh/2. DMD provides a computational framework to
extract a primary low-order description of a dataset through its orthonormal modes in
a temporal sense (Zheng et al. 2019; Khalid et al. 2020; Taira et al. 2020). In other
words, DMD enables identification of spatial structures with characteristic frequencies
associated with these structures. In the present study, since the case of DR = 0.016 results
in sub-harmonic and harmonic peaks in the power spectrum, DMD analysis enables
segregating of the induced effects of each frequency on the overall wake. Here, the
cases of DR = 0.016 and DR = 0.1 are considered for wake characterization using DMD
analysis as a generalized example with asymmetric and symmetric wakes. DMD analysis
is completed using the streaming total dynamic mode decomposition (Hemati et al. 2016,
2017) method implemented in OpenFOAM. The details of the mathematical formulations
and implementation of the algorithm is found in the work of Kiewat (2019).

The reconstructed vortex structures in figure 23(a,b) are identified using Q-criterion
iso-surfaces that are overlaid with instantaneous streamwise vorticity. Reconstruction is
performed by addition of the mean mode with DMD mode 1, corresponding to Stsh,
and mode 2, corresponding to Stsh/2. In the current analysis, DMD modes 1 and 2 are
the dominant modes, corresponding to ∼35 % and ∼31 % of the frequency amplitudes.
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streamwise vorticity and (c,d) reconstructed streamwise vorticity structures. Structures are reconstructed using
the addition of (a,c) mean with DMD mode 1 (Stsh); (b,d) mean with DMD mode 1 (Stsh) and mode 2 (Stsh/2).

This hints at the dominant influence of Stsh and Stsh/2 on the overall flow dynamics.
From figure 23(a), showing the addition of the mean flow to mode 1, we see that the
dominant modes possess structures that correlate with the shedding hairpin-like structures
in the wake. These shedding hairpin-like structures are symmetric, with frequency
corresponding to Stsh. Thus, it is evident from this result that the dominant frequency
arises from the shedding of hairpin-like structures. Figure 23(c), presenting instantaneous
streamwise vorticity structures obtained by addition of the mean with mode 1, shows the
legs of hairpin-like structures forming due to antisymmetric vorticity about the centreline.
In the past literature (Kindree et al. 2018; Morton et al. 2018), the general topology of
symmetric vortex shedding modes are made up of a series of counter-rotating vortices
located on either side of the wake streamline. This suggests that the side-edge shear
layers shed simultaneously and result in symmetric hairpin-like structures shedding at the
dominant Strouhal number (Stsh).

The influence of sub-harmonics (Stsh/2) on the overall flow is examined by adding mode
2 in our DMD analysis. Figure 23(b) shows the reconstructed structures by addition of
mean mode with DMD modes 1 and 2, and the respective vorticity structures are shown in
figure 23(d). With the addition of mode 2, corresponding to sub-harmonic frequency, the
iso-contours show asymmetry in the shed hairpin-like structures. The asymmetry arises
from the influx of excess vorticity (see figure 23d) to either side. Here, the excess vorticity
on either side in mode 2 (figure 23d) feeds into the antisymmetric vorticity about the
centreline in mode 1 (figure 23c). Such influx induces an inward velocity, with respect the
prism, distorting the head of the hairpin-like structure. Thus, the origins of asymmetry
can be attributed to the influx of vorticity as a result of sub-harmonic, low-frequency
instability centred at Stsh/2. This observation further complements existing literature
(Diaz-Daniel et al. 2017; Kindree et al. 2018; Morton et al. 2018) by attributing the influx
of vorticity to the secondary vortex structures that interact and distort the hairpin-like
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shedding structures. The discussion thus here provides, for the first time, a detailed
description of these structures, their physical mechanisms and their contributions to the
wake asymmetry.

This observation is not limited to very thin prisms at low Reynolds number. Figure 24
shows an asymmetric wake and the existence of secondary vortex structures in the
case of DR = 0.6 at a Reynolds number of 400 as well as DR = 1 at Re = 500. This
is corroborated by the classification of wake topology in figure 6. This suggests that
secondary structures and the subsequent asymmetry in the wake develops at sufficiently
small depth ratios with increasing Reynolds number. The applications and effectiveness
of DMD analysis at higher Reynolds number are evident from the study of Khalid et al.
(2020). At higher Reynolds numbers and depth ratios, the interactions of shedding vortex
structures with detaching shear layers results in near-wake incoherence and multiple
sub-harmonic and harmonic frequencies (Diaz-Daniel et al. 2017). The investigation of
such an incoherent wake using DMD analysis, although interesting, remains part of a
future study. Further, a higher Reynolds number leads to stronger interaction between the
secondary vortex structures and separating shear layers, resulting in a more disorganized
distribution of wake structures downstream in figure 24(b). In the case of symmetric
shedding (see figure 25), secondary vortex structures also appear symmetric and their
shedding frequency corresponds to the shedding frequency of the main hairpin-like
structure. As the flow progresses downstream, they lose their coherence and vanish
completely. This explains the lack of these structures farther downstream of the wake.

4. Conclusion

Flow over a wall-mounted finite prism with aspect ratio 1 and varying depth ratios
(0.016–4) is numerically investigated at Re = 50–500 to characterize the implications of
the depth ratio for the flow dynamics. The minimum depth ratio considered here accounts
for the special case of a wall-mounted very thin prism (similar to a flat plate), which is
used to establish the mechanism and wake evolution associated with the free-end effects
and shear-layer dynamics in small aspect-ratio prisms. These analyses and their related
arguments are therefore expandable to other cases (different depth ratio and Re) that
exhibit a similar wake classification. The wake analyses at a range of Reynolds numbers
and depth ratios suggest that the threshold Re at which the wake experiences unsteady
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Figure 25. Instantaneous vortex structures identified using Q∗ = 6 × 10−6 and overlaid with streamwise
vorticity (ωx

∗), surrounded by the line contours of ωx
∗ (solid blue lines: positive values, dashed red lines:

negative values) for DR = 0.1 prism at Reynolds number of 250. The line contour cutoff levels for ωx
∗ are

±0.12 and the contour interval is 0.001. Contours are shown at x/d = 0, 1, 1.5, 2 and 2.5.

transition changes with increasing depth ratio. Moreover, we established that there is a
unique asymmetric wake system formed behind wall-mounted prisms with sufficiently
small depth ratios resulting from alternating shear-layer peel-off on either side of the body.

The unsteady wake topology and dynamics, including symmetric and asymmetric
wakes, are evaluated using the wake of the very thin prism as an example, which can
be expanded to other cases with a similar wake classification. For the case of a thin
prism (DR = 0.016) at Re = 250, the wake was dominated by tilted hairpin-like structures
that form an asymmetric wake system. This phenomenon was well suppressed, and wake
symmetry restored, at a larger DR of 0.1. Further analysis revealed that threshold DR
associated with the restoration of wake symmetry increases with Reynolds number. For
example, the wake symmetry is restored by DR = 0.3 at Re = 300, 1 at Re = 400, and 2 at
Re = 500. We identified and described a unique flow mechanism leading to this particular
wake behaviour using the results at Re = 250. The alternating vortex shedding from either
side of the prism coincided closely with the tilting of hairpin-like structures, and the
formation of wake asymmetry. Moreover, it was determined that this alternating process
is attributed to the out-of-phase detachment of shear layers on either side of the prism
at a lower Strouhal number (Stsh/2). Moreover, it was identified that the wake features
secondary streamwise structures that appear alternatively on either side of the prism in
the downstream wake. The origin of the secondary vortex structures was attributed to the
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Figure 26. Contours of the ratio of grid size to Kolmogorov length scale (Δ/η) at y/d = 0.5 for the case of a
wall-mounted thin prism (DR = 0.016) at Reynolds number of 250.

alternate shedding of primary tip vortices. In case of asymmetric shedding, they resulted
from an influx of vorticity from the shear-layer peel-off process, which fed into these
structures. Increasing the depth ratio to 0.1 led to restoration of flow symmetry through
symmetric shedding of the side surface shear layer. Secondary streamwise structures were
also reported here, though they shed symmetrically and lost coherence fairly quickly
downstream the prism.
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Appendix. Spatial grid verification

The verification of the spatial resolution further proceeded by examining the ratio of grid
size to Kolmogorov length scale (Δ/η). The grid size was estimated using Δ = (�x ×
�y ×�z)1/3 following the definition of Yakhot et al. (2006). The Kolmogorov length
scale was estimated using η = (ν3/ε)1/4, where ε was the viscous dissipation rate, given
by ε = 2νsijsij, and sij was the strain-rate tensor (Pope 2001). According to the past studies
on wall-mounted prisms (Moin & Mahesh 1998; Kawamura et al. 2007; Saeedi et al.
2014; Rastan et al. 2021), the accuracy of the simulation results required the smallest
resolved scales to be of the same order of magnitude as the Kolmogorov length scale.
Previously, other wake studies on infinite-span bluff bodies relied on assessing the grid
resolution based onΔ/η ≤ 4, at least up to 8d downstream of the body (Narasimhamurthy
& Andersson 2009; Hemmati et al. 2018). Contours of Δ/η are reported in figure 26 at
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y/d = 0.5, which is the planar location of the largest velocity gradients and vorticity in the
unsteady flow. This follows the similarity of our grid distributions to Zargar et al. (2021a).
The contours in figure 26 reveal that Δ/η increases with x/d so that the maximum ratio
is Δ/η = 0.1 at x/d = 1 and it only marginally increases to ≈ 0.8 at x/d = 5. Further
downstream, the maximum ratio remains below 1 until x/d = 20. In addition, the zones
withΔ/η ≈ 1 appear where the turbulence levels intensify in the wake. In other words, the
energetic turbulent motions in the wake at the prism mid-span result in a larger dissipation
rate and smaller Kolmogorov length scale. The numerical study of Yakhot et al. (2006)
and Saeedi et al. (2014) estimated the optimum criterion of 2 ≤ Δ/η ≤ 5 for the critical
regions of the flow using direct numerical simulations. The results here indicated that the
grid followed this criterion stringently (Δ/η ≤ 1), thus confirming that the grid resolution
is adequate for the numerical results in the present study.
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