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Abstract

In this paper, we consider the system governed via the coefficients of a semilinear elliptic
equation and give the necessary conditions for optimal control. Furthermore, we obtain the
necessary conditions for an optimal domain in a domain optimization problem.

1. Formulation of the problem

In this paper, we consider the system governed via the divergence component of a
semilinear elliptic equation. Standard results of optimal control problems for systems
governed by elliptic equations with distributed control can be found in {2, 3, 5, 10, 13,
15, 16]. Casas considers the system governed via the coefficients of a linear elliptic
equation in [4] and gives the necessary conditions of optimal control by using convex
analysis under the supposition that the phase spaces of both the control and the cost
functional are convex. In this paper, the phase space of both the control and the
cost functional may not be convex. We will give the necessary conditions of optimal
control by using the convexification method and Ekeland’s variational principle.

We first consider the following problem: there are two kinds of materials & and
A (for example, material & may be oil and material £ may be water). Let the
temperatures of &/ and % be given by y., and yg respectively. The quantities $2.¢
and Q4 represent the domains occupied by & and &. Assume I' 4 (the boundary of
Q) and I' g ((the boundary of Q24)\I'») are smooth (see Figure 1). Then y, and
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FIGURE 1.
ya satisfy the equations
—alAy(x) = f (x), X € Qu,
—bAyg(x) = f (x), x € Qg, .
Y» |rg= 0, ( ) )
d

aa—nyﬂf Ird:bayg lrd’ Yo |I‘¢=)’.93 Il"d’

where b > a > 0. We know that there exists a unique classical solution y,, and yg
for Problem (1.1) if f (-) € C**(G) for 0 < a < 1. We now give a cost functional

F(Qu) = FOx, yar(x), Vyg(x)) dx + fox, yax), Vya(x))dx (1.2)

Qur Qa

and a set
IM={RQy | R C G, |2yl =1, 'y is smooth}, (1.3)

where |E| = meas E, G is a fixed domain and G = QU Q4.
We can raise the following domain optimization problem.

PROBLEM D. Find a domain € = € I1, such that
F(Quy) = inf{F(Qu) | Ry € ). (1.4)

If there exists a domain €, such that (1.4) holds, we say that the domain Q. isan
optimal domain.
We now introduce a function

u(x) = axa,(x) + bxag (x). (1.5)
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Problem (1.1) can then be written as

—div(u(x)Vy,(x)) = f (x), x € G, (1.6)
yu |rg= O? .
that is,
, € Qu,
ya) = |7 X €8 (1.7)
ya(x), X €Qg. ‘
The cost functional (1.2) becomes
J(u) = ffo(x, Yu(x), Vy,(x)) dx. (1.8)
G
Let
¥ = {u(x) = axe, (x) + bxag (x) | R € IT}. (1.9) -
We can now raise the optimal control problem corresponding to Problem D.
PROBLEM C. Find a control & € #/, such that
J@) =inf{J(w) |uec ¥}. (1.10)

In this practical problem, the control variable is involved in the coefficient, the
admissible control set # is not convex and the cost functional (1.8) may not be
convex.

In this paper, we will discuss a more general system:

- Z 8%, (aij (x, u(x))aixj)’(x)) =fx, y(x), u(x)), -

Yirp =0,

(1.11)

ij=1

where 2 (C R" ) is a bounded domain with smooth boundary g, u(x) € U is a
control function, U C R™ is a bounded closed set and co U stands for the convex hull
of the U.

We denote the set of all admissible controls by %4, that is,

UY,q = {u(x) € U | u(-) is measurable on Q}. (1.12)

If for any u(-) € %, y(x) = y(x;u) is a solution of Problem (1.11), we can define
the cost functional

J(uw) = ff°(x,y(x;u), Vy(x; u), u(x)) dx. (1.13)
Q

Our optimal control problem can be stated as follows.
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PROBLEM E. Find a u(-) € %4, such that
J(@()) = inf{J (u()) | u(-) € %a}, (1.14)
where J (u(-)) is given by (1.13).

Any admissible control «(-) satisfying (1.14) is called an optimal control for Prob-
lem E; the corresponding state y(-) is called an optimal state and the pair (y(-), u(-))
is referred to as an optimal pair.

2. Variation of convexification problems

Let us assume that
(P1) a; : Qx coU — R satisfies the following conditions.
(1) The quantity a; (-, ) is bounded measurable on 2 and a; (x, -) is Lipschitz
continuous of rank K on co U. '
(2) There exists a constant A > 0, for any (x, u) €  x co U, such that

Y ayGx,wynm; = Alnl’, Vo e R

ij=l1

We shall also assume that

(P2) f :Q2x R xcolU — R issuchthat f (-, y, u) is measurable on €2 and that
f (&, -)and f,(x, -, -) are Lipschitz continuous of rank X on R x co U. There exists
a constant L > 0, such that

—L <fy(x,y,u) <0, VY(x,y,u)e2x R xcoU,

where £°(., y, ¢, u) is measurable on Q and f °(x, -, -, -), f 2(x, -, -, -) and £ 2(x, -, -, -)
are Lipschitz continuous of rank K on R x R" x co U.

For any M > 0, there exists a function Fj,(-) € L%(2), such that

If G,y )]+ Iy, 3, W+ 1F O, 3, & wl + 1) (x, y, 8, )] < | Fy ()],
Iyl <M, VYuecol, V{eR"

In deriving necessary conditions for optimal control, one needs to make certain
perturbations for the control and the corresponding variations of the state and the cost
functional need to be determined.

We first introduce a new control set

% = {u(x) | u(-) : @ = co U is measurable}. 2.1
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DEFINITION 2.1. A function y(-) is called a generalized solution of Problem (1.11)
if y(-) € H} () and for any ¢ € H,(S2) the following equality holds:

- a 0
f > a5 0, 1)) 5=y ()5 —p(x) dx = f f @ y@), ux)e@)ds.  (22)
e iz Xj Xi Q

We have the following lemmas.

LEMMA 2.1. Let (P1)~(P2) hold. For any u € %, there exists a unique generalized
solution y(x) = y(x;u) € Hol (2) for Problem (1.11), and there exists a constant C
being independent of u, such that

Iyl < C. (2.3)
PROOF. Step 1. We have
If O, y(x), ux))| < cly(x)| + a1 (x).
In fact,
Fo,y&x), ux)) = f(x,yx), ulx)) — f (x,0, u(x)) + f (x, 0, u(x))
= fnfy(x, Ty(x), u(x)) dry(x) + f (x, 0, u(x)).

From this equality and condition (P2), we know that the inequality of Step 1 is true.
Step 2. Forany y € H,(2), we have

/Z [au(" “(x))—)’(x)——y(x)dx
Q

W=

—f &y, u(x))y(X)] dx 2 cllylla e — cs.

In fact, for any y € H}(S),

2 d
f {ay (x, u(X))a—y(x)—y(x) dx — f(x,y(x), u(x))y(x)] dx
Q X; ox;

ij=

= {a., (x, u(X))—y(x)—y(X)dx

sz,,
- /0 Fy(x, ty(x), u(x))dry*(x) — f (x,0, u(x))y(X)}dx

> AMIVyliag — ellyllzaey — C@IS ¢, 0, W)l L2
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Since || Vylli2@ = Cllyllixe) for any y € Hy (), we can choose € small enough so
that

1
Myl —ellylliie = Elllv}'"um) > allyllaie-

Therefore Step 2. holds.
Secondly, from condition (P2), it is easy to see that

[{'f(x,yl(X), u(x)) — f (x, y(x), u@x)yx)Hyi1(x) — y2(x)}dx < 0.
2

According to Theorem 9.1 of Chapter 4 in [9], we know that there exists a function
y € H}(2) which satisfies (2.2).

We can prove the uniqueness of this solution. In fact, suppose y;(x) and y,(x) are
the generalized solutions of Problem (1.11). We then have

f Za,, (x, u(x))—(yx(x) - y2<x))—¢(x)dx
Q

ij=
= [ 67, w0 = £ . ), G ) .
Q
In particular, let ¢(x) = y;(x) — y,(x). We now have
0 < AMIV(y1 = y)llxe

</ Zau(x u(x))—(mx) P 01 = () dx
Q

ij=
= /Q/ £y, y20) + T (x) — y2(x)), u(x)) d{y:1(x) — y2(x)}*dx < 0.
1]

Therefore || V(y, — y2)ll.2@ = 0. Thatis, ly; = Y2llmigy = 0, 50 y1(x) = y2(x).
Using conditions (P1)—(P2), we have

[ 1wyeorax < | Zau &, u(x))—y(x)—y(x)dx
Q

ij=

= /Qf(x,y(x), u(x))y(x)dx

1
=[f(x,0, u(x))y(x)dx+// fy(x, Ty(x), u(x)) dry*(x) dx
Q QJO
< CIf G0, utDlzelly Lz

From Poincaré’s inequality, we have
MV < CIFO 2@ VyOllze,
so the inequality (2.3) holds.
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Let i,v € %, y(-) = y(-, #) and y,(-) = y(-, v) be the generalized solutions of
Problem (1.11) corresponding to &(-) and v(-), respectively.

LEMMA 2.2. Let (P1)—(P2) hold. We have the following estimate

1Y) = v Ol < Cllit = vl ey, 2.4)

where the constant C is independent of u(-) and v(-).

PROOF. From (1.11), we have
9 ] -
- Z Py (a.,- x, V() 7y (x) — y(x))) (2.5)
5= 9% ax;

d
= Z (a,](x u(x)) — a;(x, u(x)))r)’(x)
Xj

'Hf(x Yu(x), v(x)) — f (x, y(x), u(x))]
= Z (a,,(x v(x)) — a; (x, u(x)))—y(x)

+ / Fy(, y(x) + 1(yy(x) — y(x)), v(x)) dt(y, (x) — y(x))
0
+ [f(x’ i(x), U(X)) —f (X, i(x), ﬁ(x))]

Multiplying (2.5) by y,(x) — y(x) and integrating the resulting relation over £2, we
have

MVG = Pz

/;Z[m,(x u(x)) — ay(x, v(X))]——y(X)—(yu(x)~)'(x))dx

L=

+// [, 7(x) + 1(re(x) = §(x)), v(x)) dT(y,(x) — F(x))* dx
QJo

+fn[f(x’5'(x),v(X))—f(x,i(x), UGNy (x) — y(x)) dx

< Kfju ~ vllo@ I VYl 2 I VO — Y2
+ K| — vy llys — ¥l 2
< Cllu ~ vllo @ Vs ~ Yl

‘We thus obtain the result of Lemma 2.2.
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Let z(-) € H,y () satisfy the following equation

r n a _ a
— z o (a,j (x, u(x))—ax_ Z(X))
i,j=1 :

J

= f,(x, y(x), u(x)) z(x)
4 1 3 _ a .
+ ‘; a—x—(aij (x,v(x)) — a;(x, u(x)))é—;y(x)

i )
+[f (x’ _)-’(X), U(X)) _f(x’ f(x)’ ﬁ(X))],
K Ira=0

and let

549

(2.6)

; )
o= [f’o(x’ F(), V5 0), a()2(e) + 3 f06, 500), VI, )5 —2(x)
@ i=1 X

+ £, 5 (x), Vi(x), v(x)) = £ O(x, 5 (x), Vy(x), ﬁ(x))] dx.

@7

REMARK 2.1. We see that the solutions z(:) of (2.6) and z° defined by (2.7) are
dependent on the choice of v, # € . If i is fixed, then we can denote z(-) = z(-, v)
and z° = z%°(v). Multiplying (2.6) by z(x) and integrating the resulting relation over

Q, we have

2 - - -
)"”VZ"LZ(Q) < Kllu = v|lee@ I VYl L2 1 Vzll L2y + Kl — v]l Loy | 2l L2¢0)

< Cllu = vlleo@ I Vzl 2.
Thus, we have
lzll ey < Clle — vllLog)-
THEOREM 2.1. Suppose that conditions (P1)(P2) hold. Then

yo(x) = y(x) + z2(x) + r(x),
J)=J@+°+r°

and

Nrlierey = 0(||U - ﬁlle(m) s |"0| =0 (Ilv - ﬁ"LW(m) .
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PROOE. From (2.5) and (2.6), we obtain

n

( d
- E P (a., (x, v(x))—(yu(x) —-yx) - z(x)))
Xi

ij=1
—Z[ - (a (x, v(x)) — a5 (x, u(x)))—z(x)]

ij=1

(2.12)
/fy(x YE)+1(y(x) =y (x)), v(x))dr (y,(x) —y(x) —2(x))

/[fy(x Y@+t (x)—y(x)), v(x)) = f,(x, y(x), u(x))]drz(x),
| v =Y =2 Ir,=0.

Multiplying (2.12) by y,(x) — y(x) — z(x) and integrating the resulting relation over
2, we have

)\"V(}’v Z)"LZ(Q)

- SR )
< _/; i;][a;j (x, u(x)) — a; (x, v(x))]a—sz(x)a—n(yv(x) — $(x) — z(x)) dx

1
+ / / G, 3(0) + T(u(x) — §(x)), v(x))dT (9, (x) — ¥ (x) — z(x))* dx
QJOo

1
+/[ [fy(x, y&x) + t(nulx) = y(x)), v(x)) — f(x, ¥ (x), u(x))ldz
QJO

X z(x)(ys(x) — y(x) — z(x)) dx

< Kllu = vllo@l Vzll 2@ I Vs — ¥ — D2
+ Kllu — vileo@llzlliezayllye — ¥ — zllz@

< Cllit = V) oy IVO — ¥ — Dl 2@-

From this inequality, we obtain
Irlaey = lys — § = zllm = o(llv — ullLo@)-
Furthermore, we may calculate directly
J() — J(u)
= fn[f‘)(x,yv(X), Vyu (), v(x)) — £ °(x, (x), V3(x), a(x))] dx

= f[f°(x, yo(x), Vyu(x), v(x)) — fO(x, y(x), Vy, (x), v(x))] dx
Q

+f[f°(x,)"(X),Vyu(x),v(X)) — £, (), VI(x), v(x))] dx
Q
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+/[f°(x,i(x), Vi), v(x)) — f°(x, (), V3 (x), d(x))] dx
Q

!
=// [y, () + 1, (x) — (), Yy, (x), v(x)) dT (3 (x) — §(x)) dx

3 _
f ff; (x y(x) y(x) gx—iy(x)

d _
iyv(x), v(x)) dr = (o (x) — §(x)) dx

+7 —(yv(x) - y(x)), Y

ax; T ax,
+/;z[f°(x,i(x), Vi(x), v(x)) — f°(x, 3(x), Vy(x), u(x))] dx
From (2.9), we have
J(v) — J (i)
= / /lf°(x,§(x)+t(yu(x) — y(x)). Vy,(x), v(x)) drz(x) dx

3 _
fn.~ /f; (x y(x) y(x) a—ZY(x)
3

yu(x), v(x)) d‘tiz(x) dx

+1T ——(yu(x)—i(x)) o

ax,- 3 e o a—x"
+ / [fox, y(x), VI(x), v(@x))—f °(x, §(x), V3 (x), a(x))] dx+o(llv—ill =)
Q

1
=2 [ [ 12650 + 10u6) - 500, ), 0660
QJO
—fx, y(x), Vix), ﬁ(X))]drz(X)dx

d
[ [ (x50 s 5w
2 =} Xi

- 0 - - -
+1T 5—(yu(X)—y(x)), e T Ye(X), v(X)) —fox, 3 (x), V3 (x), u(x))] dr
X; ax,

] _ .
x Ez(x) dx + o(llv = itllgoey) = 2° + o(llv — it L))

Thus Theorem 2.1 is proved.

3. The case of U being the endpoints set of a cuboid

In this section, we suppose that U is a set of the end points of a cuboid and discuss
the necessary conditions for the optimal control problem with a state constraint.
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Now, suppose Q C H,(2). For any u(-) € %4, there exists a unique function
y.(x) = y(x;u) € Hy(2), which is the generalized solution of (1.11). We can
therefore talk about the state constraint

yu(-) € Q.
We let
US = ue %aly(,u) € Q).
Our optimal control problem can be stated as follows.
PROBLEM E,,. Find a it(-) € %,2, such that
J(a()) = inf {J u(-)) | u() € 3}, 3.1
where J(u(-)) is given by (1.13).

Any admissible control u(-) satisfying (3.1) is called an optimal control for Prob-
lem E ,, the corresponding state y(-) is called an optimal state and the pair (y(-), #(-))
is referred to as an optimal pair.

It is clear that Problem E is a special case of Problem E,.

We first raise the question: Suppose u#(x) is an optimal control of Problem E and
uy(x) is an optimal control of Problems (1.11), (1.13) and (2.1). Then is it true that
u(x) = uq(x)?

EXAMPLE 3.1. We consider the system given by

{y—uc:ir:(:(g.wy(x» =fx), xeq, 52
We set
Y = {u(x) € U = {a, b} | u(-) is measurable on 2}
and

J(w) = /Q {x) = 2(x)2(Gulx) = ya@®))* + (u(x) — ug(x))*} dx,

where O < a < b and

a+ (1/4)(b — a), x € E,,

uat¥) = {a +3/MHb-a), xek,.
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We have that E, U E, = Q, E, N E, = @, ys(x) is a solution of Problem (3.2)
corresponding to u, and

u(x) = axg,(x) + bxg, (x).
It is clear that

J(u(-)) = inf{J (u()) | u() € %a}-

% = {u(x) € [a, b] | u(-) is measurable on £},
then
J(ua(-)) = inf{J (u(-)) | u(:) € %}.
We thus have i(x) # us(x).

This example indicates that the optimal control of Problem E is not equal to the
optimal control of the convexification problem for Problem E. It therefore implies that
we can’t use the convexification method alone to solve both Problems E and E .

We shall now discuss Problem E ;. Suppose that

(P3) Qs aclosed and convex subset of H, (£2).
Let

do(y) = min(lly — gllm@lg € Q) and dy(u(x)) = min|v - u(x)),

where Ju| = {3, u,?}l/2 and u = {u,, ..., u,).

DEFINITION 3.1. Let Z be a Banach space. A set S is said to be finite codimensional
in Z if there exists a point z € S such that Z, 2 span($ — z) is a finite codimensional
subspace of Z and co(S — z) has a nonempty interior in Z,.

We have the following result.

THEOREM 3.1. Let (P1)—(P3) hold, u(-) € %m? be an optimal control of Problem E o,
¥() = y(:, u) be an optimal state and Q be finite codimensional in Hy (?). Then there
exist y® € [-1,0], ¥' € [-1,0], E(x) = (§'(x),... ., E"(x), o e H ¥ € H} (),
such that

W° ¥ ) #0, (3.3)
(9, q()—y()) <0, VgeQ 34
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and () satisfies the following equation

[ . 9 _ d
- ,Z;l PP (a,-,- (x, u(x))ggx/f(x))

= fy(x, §(x), @(x) Y x) + ¢° [f;’(x, 5(), V5 (), a(x))

3.5
.9 - - _
- ; a—ifg(x, y(x), Vy(x), u(x))j| 2
|V =0

and the maximum condition

Kx) -ulx)= meag( Kx)-v, ae xe 3.6)
holds, where
Hx,u) =~ Z": a;(x, u)ii(x)iw(X)
ij=1 dx; 9x; 3.7
+ Y x)f (7)), w) + ¥OF °x, ¥(x), Vy(x), w),

N(x) € o, H(x, u(x)) and (3.9)
K(x)=N@)+ ¢'EW). (3.9)

Here £ (x) = 1 as u'(x) = a' and £'(x) = —1 as #'(x) = V', in which [a', b'] =
Pr0in coU, ux) = u'(x),...,u"x)).

PROOE. Now, for any u(-), v(-) € %, we define d(u(-), v(-)) by
d(u(-), v()) = esngplu(x) - v(x)|.

We know then that (%, d) is a complete metric space. Without loss of generality, we
may assume that J (&) = 0. For any ¢ > 0, we define F, :  — R by

12

2
F.(u(-)) = [[(J(u(-)) +£)+]2+ [/ du(u(X))dX] + [dg(y(-;u))]2] ;
Q

so that F, : (% ,d) — R is continuous. Furthermore, we have

Fo(u())>0, VYu() e,
Fe(u(-)) =& < inf{F,(u(-)) | u(-) e %} +¢.
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Hence, by Ekeland’s variational principle (see [6]), we can find u.(-) € %, such that

d@@(), u.(-)) < e, F.(u.()) < F.(u(-)),
(3.10)
—Vedu(), u. (")) < F(u(?)) — F.(u:(-)), Vu()e%.
Let z.(-) € Hy () satisfy the following relation
3
- Z (a., (X, e (x)) 5—=26(x)
lj"l J
= fy (x, ye(x), us(x))z:(x)
. 3 ]
+ ; i [(ai, (x, u(x)) — ay (x, m(x)))a—%yg(x)] .11
+f (x, }’e(x), M(X)) _f(x’ )’e(x)’ ue(x))v
kze lrn= O
and let

z = / [f (x, ye(x), Vye (x), 1 (x))z: (x)
+Zf; O, ye®), Uy ), us(x)) %)

+ 00, 3. (x), Vye(x), u(x)) = fO(x, ye(x), Vye(x), us(X))} dx. (3.12)

We set

Yu(x) =y(x;u) and y.(x) = y(x;u,).

By Theorem 2.1, we have

{yu(x) = () + 2:(0) + 1 (®), .
J@) = J(ue) +20 +r7
and
Nrellwiey = o(llu — Uell L), Irfl =o(llu — us"Lw(n))-
From (3.10), we obtain that
—ed(u, u;) < Fo(u) — Fe(u) (3.14)
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1
=gz [V + &)+ (J(u) + ) NI (W) + &) — (J () +£)*]

1
+ B /Q[du(u(X)) +dU(us(x))]dx/ [dy(u(x)) — dy(u.(x))]dx
& Q
1
+ E—[dg()’(ﬁ w)+do(y(C;u)ldo(y(; u)) — do(y(-; ue)l,
where B, = F,(u) + F.(u.). We define

1
O:——] +
%= T ug)( (ue) + &),

) S
1= o /Qdu(ua(X))dx, (3.15)

e = F. (ue)dQ(y ('; us))adQ(y('; us))’
E(x) = (£} (x), ..., & (x)),

in which §/(x) = 1 as u.(x) € [a',a' + ¢] and §/(x) = —1 as &' (x) € [b' — ¢, b],
[ai, b'] = Pr0in colU,u,(x) = (ﬁ:(x), ..., uZ(x)). From (3.14), we obtain that

~JVed(u, u;) < @22 +¢5/EE(X)[u(x)—ue(x)]dx
+ (@s, Ye)u-rm + o(lu — || Lo(ey). (3.16)

Let Y2 = —0, ¥! = —¢! and

—Z (a,,(x e () 5 — %(x))

= fy(x, ye(x), ue () Ye(x) + ¥ [fy"(x, Ye(x), Vy.(x), u.(x)) 3.17)

S
B Z Efc?(x’ Ye(x), Vye(x), ue(x)):| -
i=1 i

L lpe |FQ= O' )
From (3.11), (3.12) and (3.17), we have

9z = —¢72;
- fg v? l:ff(x, Ye(x), Vye(x), ue(x))

~—~ 3
— Z a_‘f;?(x, }’e(x), Vys(x), us(x)):l Ze(x) dx
i=1 i
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- f POLFOCE, yex), TyeCe), u(x)) — £ Ok, e (x), Ve ), u () Jdx

--/ [Za,,(x w3 a )7 x/re(x)
Q

ij=1

- fy(x7 ye(x), us(x))ws(x)zs(x)} dx — (¢,, )
- f VO OCx, ye(x), Vye(x), u(x)) — £O(x, e (x), Vy: (x), u(x))]dx

-/ [Z[a.,(x () — ay (c, 1D 32 00) o 2
Q

ij=1 Xi

=Y O (x, ye(x), u) — f (x, y(x), u:(x))]
Y O(x, ye(x), Vy(x), u(x)) — fOx, y.(x), Vy.(x), ue(x))]] dx

- ((pm Ze)
—/[H(x, u(x), &) — H(x, u:(x), &)ldx — (¢, z¢), (3.18)
Q

where

H(x,u,¢€) = Za.,(x u) ye(x) t/fs(x)

ij=1

+ @ & 3@, W) + tlfff"(x, Ye(®), Vye(), w).
Substituting (3.18) into (3.16), we obtain
~ Vel w) < [ (= HGut),0) = Hex, w00, 9)
C V) — w0} + ol — wlma).  G.19)
It is clear that
WD+ WD+ el =1,

So there exist ¥° € [—1,0), ¥' € [-1,0], . € H™" and a sequence of {2, ¥, , ¢5,},
such that

(W, ¥ 0} > (¥°, '@} weakly star.
Since d(u.(-), a(-)) < /€, when ¢ — 0, we have

ly. — )-’"H'(Q) - 0.
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It is known that there exists ¢ € H,(S2), which satisfies
— Z_l aix (a, x, a(x));,%x/f(x))
ij=
= f,(x, 5(0), B Y (x) + ¢° [ff(x, F(x), V3(x), a(x))

LN - _ -
=25 fie @), Vi), u(x))] -9,
i=1 ‘

¥ Ira=0.

Let
H(x,u) = Hi(x,uw) + Hy(x, u),
. z J _ d
Hlolc, u) = —‘; a; (x, “’a—x,.yo‘)a_x,""")’ (3.20)

Hy(x,u) = ¢ (0)f (x, y(x), 1) + ¥°f °(x, (), V3 (x), ).

‘From (3.19), we obtain
—Jed(u, u,) —/{[H(x, u(x))—H(x, uc(x)1-[H(x, u(x), &)—H (x, u,(x), £)]} dx.
Q
< f{-—[H(x, u(x)) — H(x, u,(x))] — ¥ 6 (x)[u(x) — u(x)]} dx
Q

+ o(llu — ugllLoe))- (3.21)

We may therefore obtain

f{[H(x, u(x))—H(x, us(x)1—[H (x, u(x), e)—H(x, u.(x), &)1} dx < CA.d(u, u,),
Q
where

A -
A = 1Y = yelluny + 1¥° — ¢

- d d
/ ) ay (x, @(x))s—y (X) 57— (P (x) — Y (x)) dx| .
Q X; an

ij=1 d

+

It is easy to see that A, — 0 as ¢ — 0. From (3.21), we have

—(Ve+ CA)d(u, u,) < f{—[H(x, u(x)) — H(x, u:(x))] (322)
Q

— Y &) [u(x) — u (O} dx + o(llu — uellL=@)-
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For any v € %, let
ux) = u.(x) + p(vx) — u.(x)),

then d(u, u,) = pd(v, u.). From (3.22), we have
—(We+ CA)d, ue) < /{-_Na(x) — Y, 6O v (x) — u.(x)]dx, (3.23)
Q

where

Ny(x) = Z": NJ (X)i'(X)illf(x) + Np:(x)

€ - = £ 8x,-y axj 2¢ ’
NJ(x) € 3,a;(x, u-(x)) and Ny (x) € 8, Hy(x, uc(x)).

We shall now discuss the case as ¢ — 0. We first want to prove that

{W° v 0} #0. (3.24)

Infact,if ¥° 3 Oor ¢! # 0then(3.24) holds. We shall suppose that ° = ¢! = Oand
attempt to prove that ¢ # 0. In fact, according to the definition of the subdifferential,
we have

(0do(y:()), q() —y:()) =0, Vq() € Q,
which implies that
(@e:q() = y:()) =0, Vq() € Q.
Furthermore, we have
8 2 (P, ¥ — ¥e()) < (003 —q()), Vg€ Q. (3.25)
Since d(u, (), i(-)) < /€, when &€ — 0, we have
e = Fllmay — 0.

Thus 8 — 0 as ¢ — 0. Since the set Q is finite codimensional in H,(2), from
[7, 12], we know that ¢ # 0, so (3.24) holds, that is, (3.3) holds. Furthermore, we
obtain (3.4) from (3.25).

Set

Ii(u) = / Hi(x,u(x))dx, i=1,2.
Q

https://doi.org/10.1017/50334270000011814 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000011814

560 Hang Gao and Xunjing Li [19]

Then
INIlle=@y < €, I Naelli=(y < C,
so there exist N¥ € L®(Q), N, € L®(Q), such that
NY - NY, N, — N, weakly starin L®(S2).
According to |lu, — ullp1@ — O and from [6], we know that N, € 31,(u), that is,

No(x) € 3,H,(x, u(x)). Furthermore, we have N¥ (x) dua;; (x, u(x)). We note that
&, is independent of &, so there exists £(x) such that lim,_, & (x) = &§(x). Let

- . J _ 7]
N@x) = ; NV (")EZY(")E“’(") + Ny(x).
From (3.23), we have

02 [(-N@ - ¥ @I - i) ds.

Q

We shall now set
K(x)=N@) +¢'Ex).
Applying Fillipov’s Lemma, we have
K&x)-u(x)=max K(x)-v=max K(x)-v, ae.x €.
vecol vel .

Theorem 3.1 is thus proved.

REMARK 3.1. In Theorem 3.1, if @ = HOI(SZ), then ¢ = 0; If U =coU, then
Yl =0.

REMARK 3.2. In Theorem 3.1, we suppose that Q is finite codimensional in Hj (S2).
If Q is not finite codimensional in H; (), then Theorem 3.1 may be trivial.

EXAMPLE 3.2. We consider the system

ol 0 (3.26)
u rn= ’

YUq = {u(x) € [—1, 11| u(-) is measurable on 2}

[—div[(l + u(x))Vy(x)] = u(x), xef,
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and we give a functional
J(u) = /{yu(x) +u@x)}dx.
Q

Let ug(x) = 0. Then Yo(-) = 0 is the solution of (3.26) corresponding to u = uy.
We shall now suppose that Q = {yo(-) = 0}. It is clear that #(x) = 0 is the optimal
control and y(x) = 0 is the optimal state. Suppose Theorem 3.1 holds. Then there
exists (¥, ¥ () # 0, where v (-) satisfies

—AYx)=y"+9, xeq, 327)
l// |Fg= 0,
H(x,u) = ¢ (x)u+ ¢ u
and
Kx)=vx)+v°
such that
0= max [¢ &)+ ¢¥u. (3.28)

ue[-1,1]

From (3.28), we obtain ¥ (x) = —y° = constant. From (3.27), we have ¥ (x) =
—y° = 0, which contradicts the assumption that (°, ¥ (-)) # 0.

Example 3.2 indicates that if Q is not finite codimensional in H} (2), then it may
be that K (x) = 0, that is, Theorem 3.1 may be trivial. Therefore, the condition that
Q is finite codimensional in Hy (2) is necessary.

We will now discuss the equivalent constraint problem. We define the equivalent
constraint to mean that for any u € %q, [, ui(x)dx = 1. Let

/u,(x)dx:l, i=1,... ,m}.
Q

PROBLEM E,. Find & € #,4, such that

Wad={u€%ad

J(u) = inf{J(u) | u € #a)-

To solve Problem E;, we introduce a new state equation

yi(u) = / u(x)dx € R™
Q
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and thus obtain a new system

n

-3 _887 <a,-,-(x, u(x))aixj)’(X)) = f &, y(x), ux)),

ij=1 i
yi(w) =_/ u(x)dx € R",
Vg = 0, ”
which has a solution (y, y,) € I-IOl () x R™ forany u € % . Let
Oy =H(Q)x(1,...,1).
Problem E, then becomes the problem of finding # € %, such that (y, y,) € Q, and
J(u) =inf{J(u) | u € Y}
It is clear that @, is finite codimensional in Ho1 (£2) x R™. We have the following
variation equation

SRR ,
— Z o (aij (x, ﬁ(x))g;z(x)) = f,(x, 5(x), #(x))z(x)
ij=1 i J

n 9 ] 5 ]
+ l; 3—x' [(aij (x‘, v(x)) — a; (x, u(x)))gx_jy(x):l

+Uf (x, y(x), v(x)) = f (x, y(x), u(x))],

7= f(v(x) — u(x)) dx,
Q

erﬂ = 0’
and the following conjugate equation

n P J
—_ Z g (a.j (xv ﬁ(x))aw(x))
ij=1 t

f)

= £, 0, 5O, BEYE) + §° [fy"(x, F(x), V5(x), i(x))

~\ 3
=2 o fi @), Vi), a(x))] :
i=1 i
]l,l =W,
{'/fh‘n = 0’

where u = (v, ... ,v,) forv; € [-1,1],i = 1,... , m. The Hamiltonian function
is

- a _ d
He,w) == 3 a; (6, 0)5=5(x) 7=y (x)
! J

ij=1
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+ YOS @, 3, w) + YO O, 5 (), VF), ) + (e, w).

THEOREM 3.2. Let (P1)~(P2) hold, ii(-) € W.q be an optimal control of Problem E,
and y(-) = y(-, &) be an optimal state. Then there exist ¥' € [-1,0], i = 0,1,
w= (@, v, v e[-1,11, i =1,...,m, §(x) given by Theorem 3.1 and
¥ € H}(RQ) satisfying (3.5), such that

WO+ () + llwli? = 1.

Let
2 J _ K]
H(x,u) = —;a (x, “)5;,.Y(x)a—xj'/’(")
+ Y Of (x, §x), ) + ¥OF Ox, F(x), V5 (x), u) + (u, u),
N(x) € 9,H(x, u(x))
and

K(x) = N@x)+¢'6(x).
We have that
Kx) ukx)= mag( Kx)-v, ae x €.

We shall now return to Problem D which was raised in Section 1 and shall describe
the optimal domain using the result of Theorem 3.2.

Suppose 2 € IT (given by (1.3)) is an optimal domain. This implies that the
function

u(x) = axq, (x) + bxag (x)
is an optimal control of Problem C. Thus the optimal state y (x) satisfies:

—div(a(x)Vy(x)) = f (x), x €G,
¥ Ire=0.

From Theorem 3.2, we know that there exist ¥‘ € [—-1,0],i = 0,1, v € [-1, 1],
E(x) = X, (x) — Xaz(x) and ¥ € HJ(R2), such that
WY+ @)+ )P =1,
i=1

_ . 9
—div(@(x) V¥ (1)) = ¢° [ff(x, F), VFGN =3 = £, 5(x), Vy'(x))] ,

1l’|ra =0.
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Let K(x) = =Vy(x) - Vi (x) + ¥'€(x) + v. Then

_ b, if K(x)>0,
ux) = .
a, if K(x) <0,
that is,

(xeG|K(x) <0} CQy, [xeG|Kkx)>0]CQap.

4. The case of U being a closed set

In this section, we consider the case of U being a general closed set. Let
dy(u) = inf{|lv — ull L= | v()) € %}

THEOREM 4.1. Let (P1)~(P3) hold, u(-) € ?/adQ be an optimal control of Problem E
and y(-) = y(-, u) be an optimal state. Let Q be finite codimensional in Ho1 (). Then
there exist y° € [-1,0], p € H™', § € L®(Q)* and ¢ € H, (), such that

W, &,9) #0, 4.1
(.q()—y()) <0, VYgeQ, (4.2)

Y (+) satisfies (3.5) and the following variational inequality holds:
0= [ NGO@) —ods + €70 Vo€ % 43)
Q
where N (x) is given by (3.7)—(3.8).

PROOF. This proofis similar to the proof of Theorem 3.1. Without loss of generality,
we may assume that J (&) = 0. For any € > 0, we define F, : % — R by

F.(u(-)) = {[(J () + &)*P + [dy@))* + [do(y (;; u) ]}, (4.4)

By Ekeland’s variational principle (see [6]), we can find u.(-) € %, such that

d(a(), u:()) < e, F.(u.()) < F.(a()),

4.5
~Ved(), u:()) < F(u()) — Fo(ue(-)), Yu() e . @3

Let z.(-) € Hy () satisfy (3.11) and let z? be given by (3.12). Set

Yulx) =y(x;u) and y.(x) = y(x;u.).
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By Theorem 2.1, we have

[yuoc) = 3:(x) + z.(x) + r:(x),

4.6)
J@) =J@w)+22+r°
and

Nrell ey = o(llu — ucll Loy,

72l = o(llu — ucllLm)-
From (4.5), we obtain

“.7)
—ed(u, u;) < F.(u) — Fo(u) 4.8

FLUG +)* + )+ ) + 6 = () +)")
+ -B}—E[du(u) + dy(u)ldy ) — dy(u)]

5oy i) + oy N id(y (1) = do(y(: i)
where B, = F,(u) + F.(u.;). We define

(]

¥ =

Ss =

1 +
o E)(J(ue) +e)7,

Fe(us)dU(ue)adU(ue),

“4.9)
Qe =

F) do(y (-5 u:))odo(y(; us)).
It is clear that

WD + (N ae@y) + Heella-)* = 1.
From (4.8), we obtain that

—ed(u, u) < 9lz) + (&, u — ue) + o(llu — uell =) (4.10)

Let ¥° = —¢? and suppose that . (x) satisfies (3.17). Then from (3.11), (3.12) and
(3.17), we have that

- f [H(x, u(x), &) — H(x, up(x), )] dx, @.11)
Q
where

H(x, u, e)——Za.,(x u)3— ye(x) V@)
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+ Y (0)f (%, 9 (x), ) + ¥2f °(x, y: (x), Vy:(x), u).

Substituting (4.11) into (4.10), we obtain

—Ved(u, u,) < —L[H(x, u(x), €) — H(x, u.(x), €)1 dx
+ (5o u — ue) + o(llu — uelle(e)- (4.12)
In a manner similar to that used for Theorem 3.1 we have
—(Ve+ CA)d(u, u;) < - f[H(x, u(x)) — H(x, u(x))) dx
| + (;:, u—u) + o(llu — uell o). (4.13)
For any v € %, let
u(x) = u(x) + p(v(x) — u:(x)),

then d(u, u,) = pd(v, u.). From (4.13), we have

—(Ve+ CA)d(v, u,) < f(—Ne(X))[v(X) —ue(x)ldx + (&, v—u;), (4.14)
Q

where N.(x) € 0,H(x, u.(x)). Ina manner similar to that used for Theorem 3.1,
there exist ¥° € [—1, 0}, § € (L™(RQ))*, ¢ € H!, such that ¢* — ¢ and

{8, e} > (£, ¢} weakly star,

such that (4.1) and (4.2) hold. From the proof of Theorem 3.1, we know that there
exists N(x) € 3,H {(x, u(x)) such that

0< f N()[ulx) — vix)ldx + (£, u — v).
Q

Theorem 4.1 is thus proved.
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