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§ 1. Extensions of Pascal's theorem are already known if we
look at the matter from certain particular points of view- an
extension of the theorem from the more general point of view is
still a desideratum.

Thus an Oxford examination paper contains the question
" ABCD.EF is a skew hexagon in space, and the lines of inter-
section of pairs of planes (ABC, DEF) (BCD, EFA) (CDE, FAB)
lie in one plane. Prove that the six sides of the hexagon lie on a
quadric surface," while Salmon's Geometry of Three Dimensions,
Vol I, p. 142 (5th edition, 1912) gives the theorem

"The edges of a tetrahedron intersect a quadric in 12 points,
through which can be drawn 4 planes, each containing 3 points
lying on edges passing thro' the same angle of the tetrahedron : the
lines of intersection of each such plane with the opposite face
of the tetrahedron are generators of the same system of a certain
hyperboloid."

These are generalisations of particular aspects of Pascal's
theorem. The type of generalisation hinted at by Professor
Turnbull at the June meeting is to be made from the following
form of the theorem "given six points (xryrzr) r = 1.. 6, and points
ABC determined as (12, 45) (23, 56) (34, 61) then 'ABC are
collinear' implies ' the six points (xr yT zr) lie on -a conic,' and
vice versa."

Algebraically, the determinant |£i*fe£i|, where ABC are
respectively the points (£, ?/, Q (£2% £•) (̂ 3T?3Cs)' is equal to

This result is established by Reiss, Math. Annalen 2 (1870),
and also by Mertens Crelle 84 (1878).
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In three dimension?, nine points determine a locus of the
second degree and the condition that ten points should lie on such
a locus is expressed by the vanishing of

(a,)

The algebraical form of the generalisation of Pascal's theorem,
if such exist, is that some determinant or other expression vanishts
when 04 does, and that the vanishing of the expression implies the
coplanarity of some four points ABC£>, or a particular relationship
of some similar kind. Professor Turnbull has worked out an
expression for («.2) in the form

2 (abed) (aefg) {bejk) (efkh) (dghj) = 0 (ft)

where (12 3 4) is used to denote the determinant | x1yzz3wt | .
He suggests that the form (ft), by analogy with known facts in
two dimensions (compare Reiss, 1870) may imply the coplanarity
of some four points ABCD.

§ 2. Considerations of order and relation among the points.
In two dimensions, with the order 12 3 4 5 6, the three points

ABC which are to be collinear are given as the intersections of

1
2

3

0

3
4

with 4
5
6

5
6
1

A
B
C.

With the same cyclical order but a different first member, e.g.
2 3 4 5 6 1, the points A' B' C" are merely ABC in some order,

e.g. 2
3
4

3
4
5

with 5
6
1

6
1
2

A'
B'
C

= B
= C
= A.

It is obvious that the determinant | ^ ^ f s | is unaltered, save
possibly in sign. That its absolute value remains unaltered for
any change of order among the points 1 2...6 must be established
by means of the algebra which proves | Ci7hCs I = ±°-i •

When we extend to 3 dimensions, though we cannot expect
cyclical order to play an important part, yet there is much to be
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said for finding seme expression which is obviously unaltered when
we write 2 3...10 1 instead of 1 2 3...10. [desideratum (1).]

Moreover, in the two-dimensional scheme

12
2 3
34

4 5
56
6 1

1 occurs with 2 and 6 and not with the others.
2 „ , , 3 and 1 „ „ „ „ „ , and so on.

The relationship of any one point to the remaining five is of
the same type whatever point we take, [desideratum (2).]

I have been quite unable to determine a grouping of the 10
points in the three dimensional case which will define, by a simple
linear construction, four points ABCD, and at the same time
have either of the properties called above desiderata (1) and (2)
respectively.

On the other hand it is easy to find groupings of the 10 points,
used once or three times each, which define five lines and have one
or both of the properties in question.

§ 3. Possible groupings to determine four points.
The determinant (04) is of degree 20 in all, and of degree 2 in

each of the sets (xr y,. z, wr).
A determinant which expresses the coplanarity of four points

will be one of 4 rows and 4 columns. If this determinant, A say,
is to be equal to +a.;, its degree in all must be 20 and the possible
degrees of the columns (assuming row 1 to contain the ccoidinates
of A, row 2 those of B, etc.) are

5 5 5 5 (1)
5 59 1
1 9 9 1
4 6 6 4 etc.

Of these, the only one which offers any hope of satisfying
desideratum (2) is the first, and, on closer examination, it is found
that even this does not satisfy it. The only simple linear con-
struction which uses 5 points to determine a point A is that which
makes A the point of intersection of the plane 123 with the line 45.
In the arrangement (1), i.e. 5 pts. to determine each of ABCD,
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the 10 points from which we start must be uEid twice each and
must then fall into four groups of three and four groups of two.
This means that two of the points at least cannot be members of a
group of two.

Suppose 1 is a member of a group of two while 2 is not. The
relation of 1 to the remaining nine is quite different from the
relation of 2 to the remainder. Unless the algebra removes this
asymmetry, a possible but not very probable event, the determinant
expressing the coplanarity of ABCD will not be symmetrical in
each of the sets (xry,.z,.wr) r = 1 ...10.

To sum up the argument of this section, it does not seem
probable that we can find four points ABCD, determined by a
linear construction from the original ten points, whose coplanarity
will be expressed by the vanishing of an expression which is
symmetrical in the coordinates of the ten points and of degree 20
in these coordinates.

§ i. It is possible of course that A instead of being + a.,, may
be (ou)2 or (04)3 or ou times some other factor. The algebra of
these possibilities I have not examined in any great detail.

It may be remarked, at this point, that the algebra of
reducing A, once any mode of defining ABCD has been adopted,
into the form

2(abcd)(abfg)(. . . ) ( • • • ) ( • • • ) .

where (12 3 4) denotes | x1y2z3wi | , is by no means as trouble-
some as it might first appear.
e.g. if A is the point of intersection of plane 12 3 with line 6 7

B of 2 3 4 with 7 8
C of 8 9 10 with 5 4
D of 9 10 1 with 6 5

we can, by considering A as the point of intersection of the three
planes 12 3, 56 7, 678 readily express A in the above form, and
deduce the somewhat trivial theorem that, if the points 2...10 are
fixed, and ABCD are coplanar, the locus of 1 is a conicoid through
the points 2, 3, 6, 9, 10.

§ 5. The condition thai a line may be drawn to meet each of
jive lines.

As we have already stated in g 2, the symmetry of the grouping
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in Pascal's two-dimensional theorem is easily retained in the
grouping of 10 points used 3 times each, or once only, to define
5 lines.

Using line coordinates (/>"•'̂ "'r1*1 ! w ( w i i w ) a.= 1...5, the con-
ditions that each meets (PQRSTU) are

+ TqM+UrM = O a = l, 2...5.

From these — = — = . . . = — where the / ' s are of degree 1
/ i Jz Je

in each of the sets (pqrslu).
But since PS + QT + BU = 0, / , /« + / , / , + / , / , = 0.
Consider now the scheme *
line (1) is the intersection of the planes 12 3 and 6 7 8

,. (2) „ „ „ „ 234 , , 7 8 9
» (3) „ „ „ „ 34 5 „ 8 9 10
» (4) „ ,, „ „ 4 56 „ 9 10 1
,, (5) „ „ „ „ 5 67 „ 10 1 2

This scheme has the symmetry of the scheme defining the
Pascal line of six points in a plane: it has the properties
"desiderata 1 and 2" noted in §2. The condition that these five
lines may all meet one line is symmetrical in the points 1, 2 ... 10.
The degree is, however, sixty in all the sets (xryrzrwr), whereas
(<x-2) is of degree twenty.

Again, the condition that a line may be drawn to meet each of
the lines 16, 27, 38, 49, 5 10, is of the second degree in each
of the sets (xr yr zr wr) and of degree twenty in all.

§ 6. Summary.
To sum up the two lines of attack we have indicated in this

note, we see that the failures are due to the following genet al
characters,

(a) when we keep the degree right and try four coplanar points,
no scheme gives any semblance of symmetry in defining the points,

(6) when we concentrate on the symmetry of the defining
scheme we are led either to one which resembles Pascal's closely,
but leads to an equation of degree 60 instead of 20, or to one
which leads to an equation of degree 20, but the geometry of whose
derivation in no way suggests Pascal's theorem.

* That 5 lines may be the basis of a possible generalisation of Pascal's
theorem has occurred independently to Dr A. Young and Professor Turnbull.
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