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KNOTS AND GRAVITY
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Abstract

In the loop representation theory of non-perturbative quantum gravity, gravitational states
are described by functionals on the loop space of a 3-manifold. In the order to gain a deeper
insight into the physical interpretation of loop states, a natural question arises: to wit, how
are gravitations related to loops? Some light will be shed on this question by establishing
a definite relationship between loops and 3-geometries of the 3-manifold.

1. Introduction

In the mid 80's, Ashtekar [1] formulated an alternative Hamiltonian approach to
General Relativity. This led Rovelli et al. [4, 6] to formulate Quantum Gravity in
terms of loops in a 3-manifold S. A loop in E is just a closed curve starting and
ending at the same point. An n-loop is the set {y1,.. . , y"} of n loops y' in E.

Very briefly, the loop representation of Quantum Gravity describes gravitational
states via complex functionals * on the space of multi-loops of E. The functionals
describing the physical states of gravity satisfy

(1) vj/ is a constant on knot classes;
(2) ^ has support on smooth multi-loops without intersections.3

The physical interpretation still remains an open question. However, Rovelli [5,
p. 1661] sketched a heuristic argument revealing the emergence of a discrete structure
to space-time at the Plank scale. It will be tersely shown here that certain choices of
Ko-loops relate to 3-geometries in a natural way. This in turn yield a deeper insight
into the way loops and gravity are related.
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3Extensions to piecewise smooth loops have also been done. Refer to [2, 3] for more details.
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2. Definitions and notations

All loops considered here will be piecewise smooth in some fixed 3-manifold E,
where E is assumed to be smooth, closed, compact, orientable and Riemannian. By a
Riemannian 3-metric q on E is meant a symmetric, covariant 2-tensor that is positive-
definite at each point x € E. The space of Riemannian 3-metrics on E will be denoted
by Ff and the space of (Riemannian) 3-geometries of E by «S == lY/Diff+(E), where
Diff+(E) denotes the group of smooth, orientation-preserving diffeomorphisms on E
and a 3-geometry is defined by the equivalence class [q] = {/ *q | / e Diff+(E)} of
metrics q € T^ related by coordinate transformations. The space Ff is endowed with
the compact C°°-topology and £2. is given the quotient topology.

Now, given curves y, r) : / ->• E, / = [0, 1], with y (0) = y(l), define y * rj by

\y(2t) f o r O ^ r ^ i ,
y * I ? ( ' ) = | , , ( 2 , - l ) for 1 ^ 1 .

Call a curve y a q-geodesic if y is a (parametrized) geodesic in E with respect to
q e T2

+.

DEFINITION 2.1. y is a piecewise geodesic loop if 3q e F% and n smooth #-
geodesies y\,... , yn : I -> E such that y = yi * • • • * yn.

Let D j C S denote a countably dense subset and let ^ o [iY], for each q e Vf,
be the set of X0-loops y = {/ ' :/ e N} such that

(1) V i, y' is a piecewise, affinely parametrized, ^-geodesic loop in E;
(2) y is in bijective4 correspondence with Dz under y' i-> y'(0).

It is easy to see that conditions (1) and (2) together imply that each y corresponds
to a unique 3-geometry [qy] e <S. For suppose y is both a ̂ -geodesic loop as well as
a ^'-geodesic loop. Then, with respect to charts Ua,

(91)' + r * ( < (*,')* (Kjy = 0 and (y-)' + ra(q%j W)* (yrf = 0

on y'(/) D Ua for each i (no summation over a), where fl.e. means that the equality
holds on I — {ti,... ,tn), with 0 ^ n < oo and « = 0 denoting the empty set. Hence,
(ra(q)'kj - ra(q%) (y')k (y')j = OVy' e y a n d a . Thus by (2), r(q)'kj(x) =
?(<]% (*) on a dense subset of E as \J[y'(I) \ y''• € y} s E by (2). So, invoking the
continuity of F(/i) forh = q, q', it follows at once that V(q) = V(q') on E. Now, with
respect to local coordinate basis, r(q)'kj = ^q'h(dkqhj + djqhk — \qkj) (and likewise

4This condition may be relaxed to a surjection.
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for q'); consequently, q and q' are related homothetically; that is, 3 c > 0 constant
such that q' = cq.5 More generally, q, q' are related to some smooth diffeomorphism.

As a converse remark, notice that if E were not separable or that yq = {ŷ  | i: e N}
were not chosen to satisfy (2), yq need not uniquely determine [q] e £1. Call

•^oo [r^~] = U9£r+ -^oo[q] the space of piecewise geodesic X0-loops. A suitable
topology will be constructed on this space below.

Let LE [iY] denote the set of all affinely parametrized, piecewise geodesic loops
in I! and let L|° [F^] denote the countably infinite (set-theoretic) product of LE [r^ ].
Define an equivalence relation R^ c L|° [ r^] x L~ [r2

+] by /?«, = {(y, y') : [y] =

[y1]}, where [rj] = [rj' e Lj [F^] : r) = (»?')^i} is just the set of components of the
Ko-loop IJ. Let nz : L~ [r2

+] -+ A [r2
+] = _£f~ [r+] //?«, be the natural map. If

j$n [ r^ ] denotes the set of (affinely parametrized) piecewise geodesic n-loops, then
•# [r2+] = U~ 1 -4tn [r2+]- Now, let Mx c %£ [r2

+] be a subset satisfying

(a) for each y = ( / ) £ , € M^, y' ^ y> Vi ̂  7,
(b) TT^MOO) = X [r2

+] c M [f2
+].

It is clear from the definition of Moo that there exists a family of subsets Ma c M^
satisfying

(i) Moo = \JaMa,
(ii) Ma C\Ma, = V> Va / a',

(iii) 7Tj; I MCT : Ma -> ^ x , [ r^ ] is a bijection.

Let /iff = TTE I MCT and for each y € ^ o [r2
+], set ya = h~l(y) e Ma.

6 The
subsets Afff can be endowed with a metric topology. A metric on Ma will now be
constructed. Firstly, fix a finite atlas i l on E. Secondly, note that if £2E = [y :
I -*• E I y(0) = y(l) , y continuous} denotes the loop space of E and if dq is
a (topological) metric on E (induced by a Riemannian 3-metric q) compatible with
its manifold topology, then dn(y, r)) = sup,G/ dq(y(t), r](t)) defines a metric on £2E

compatible with its compact-open topology.7

Now, given a pair of K0-loops y, r) e MCT, let

d̂  (y'\ ,') ^ ess sup {|Z)V'W - W ( 0 | | : / e /, A ^ 1},

where sup runs over all relevant (finite) charts (U,<p) € il, ess denoting that the
expression || Dky'(t) — Dkr)'(t) | is defined on / a.e. — that is, it is not defined only
on a finite (possibly zero) set of points in / wherein y1 and r]' are not differentiable,

5Note trivially that d&q,q' are positive-definite, c < 0 is not an admissible solution.
6The subscript a on Ya will be omitted if no confusion should arise from the context.
'Observe trivially that the dn-topology does not depend on the choice of the (admissible) 3-metric q
since all (topological) metrics on S induced by (admissible) Riemannian 3-metrics q are equivalent.
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and Dky'(t) denotes the fcth differential of y1 at t in abused notations. Finally, set

da(y, r)) = sup, dn (y1, r)') + sup, d'a (y1, rj'). It is routine to verify that da is indeed

a metric on Ma.

REMARK 2.2. It can be shown that the da -topology is compatible with the topology

on Ma generated by the subbasic sets Ne (y;(UaW, <PO(0-)£I> K) to be defined below,

where K c / is compact, y'(K) C Ua(i), and (£4(l), ^a( l )) e i t for each /, with i l

being the maximal atlas of S . Firstly, set a = {<*(/) | 1 ^ i ^ 00} and denote

(£4(o 1 <Pa«))i by (U, <p)a for notational convenience. Next, let

<«K (y'' V1) = ess sup {\\Dk<paU) o y\t) - Dk<pa(i) o i , ' (r) | : r € ^ , it ^ 1}

whenever )/'(/«:), ??'(^) C C4(0 Vi. Then, for a fixed y € MCT such that yl(K) c

f4(0 "
where
f4( 0 Vi, let Nt{y\{U;<p)a, K) = {JJ 6 Mff | 4,«*(y, 1?) < e , *l'(K) C f4( 0 Vi},

— dcf , . ..

i i

In particular, the da -topology does not depend on the particular choice of (admissible)
finite atlas i l of E. Hence, in this sense, the da -topology is well-defined.

It is easy to see from the construction that haa, : Ma —y Ma* given by ya •->• ya>,
where ha{ya) = y = ha>(ya>), defines a homeomorphism. The existence of haa>
follows immediately from properties (a) and (iii) above. Hence, it is possible to
endow JC<x [rf] with a topology so that each ha : Ma -> M^ [r^"] defines a
homeomorphism. In this paper, ^(^ [F^] will be equipped with this topology. As an

aside, if Moo were given the sum topology, MM = ©CT Ma, then h : Moo -*• - ^ » [r^"]
defined by h \ Ma = ha is a continuous open surjection.

3. Knots and 3-geometries

First of all, recall that a smooth ambient isotopy is a smooth deformation of one
loop into another such that the surrounding manifold is smoothly transformed. More
precisely, it is a smooth map F : E x / - * E x / given by (x, t) H-> (F,(X), t) such
that Fo = idE and F, e Diff (E) Vf e / . Let Sf+ C C°°(E x / , E x / ) be the set of
(smooth) orientation-preserving, ambient isotopies on E.

If y, r) € j£fE are any pair of loops and y is ambiently isotopic to rj under some
F € Sfa

+, denote this by F : y ~ rj. Now, given any pair of K0-loops y. *1 £ ^«.
define an equivalence relation R generated by ~ on ^#00 [ r ^ ] as follows:

y ~ r) <F=^> 3F €&+ such that F • y = r),

00
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where F • y = {F, o y1, F, o y 2 , . . .} and F : y'i ~ ??' Vj. Then the space J f [r+]
of equivalence classes of N0-loops in -#<» [^2] *s defined to be the quotient space
Jt^ [rf] /R. Henceforth, for simplicity, call an element [y] = [rj e ^ x [r2

+] :
T) ~ y) of the quotient space Jf [i^"] a (piecewise geodesic) K0-knot and let *<„ :
•^00 [^2] ~* •& [^2] denote the natural map. In the interest of simplicity, call
y € J#oo [r^] a piecewise (No, q)-geodesic loop whenever the 3-metric q is required
to be specified.

LEMMA 3.1. Lety,y € .^x, [T^bepiecewise (Ko, <?)-W(Ko, q)-geodesicloops
respectively. Ify ~ y, f/ien 3 / e Diff+(S) 5MC/I that q—f*q.

PROOF. Let F 6 #a
+ be an ambient isotopy of y and y : F • y = y. Then,

evidently, y is a piecewise (Ko, (F,~')*<7)-geodesic. However, y is also a piecewise
(No, g)-geodesic; hence, by (2), 3 / € Diff+(S) such that q = f*q, as required.

The main results of this paper will now be stated. In fact, the correspondence
between loops and geometries can be easily sought simply by noting that each element
in ^#oo [ r^ ] corresponds to a unique 3-geometry [q] of E by construction.

THEOREM 3.2. There exists a continuous, open surjection x '• -^oo [^2] ~* &
given by yq H> [q], where yq is a (piecewise) (No, q)-geodesic loop and q e [q\.

PROOF. The details can be found in [7, Theorem 4.1].

COROLLARY 3.3. The map x induces a continuous, open surjection x '• <& \yt\ ~*
£1 given by [y9] i-»- x (>«). where yq € K^ ([y,]) is any fixed representative.

PROOF. The map x is well-defined by Lemma 3.1. The result now follows im-
mediately from Theorem 3.2, the openness of the projection map *«, and from the
commutativity of the following diagram:

2.

4. Discussion

It is easy to observe from Theorem 3.2 that at the classical level, each K0-loop
y 6 .^00 [^2] contains enough information to restrict the 3-manifold S together with
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its 3-geometry [q]. To see this, it is sufficient to note firstly that x maps y to a unique
3-geometry [q]. Then, by choosing any representative of [q] and defining the closure
°f U {^'O I y' e y] w r m respect to the metric induced by q yields the Riemannian
manifold (E, q).

This in turn suggests that K0-loops are suitable candidates for the description of
gravitational states. Heuristically, we may interpret a knot state \[y]}, [y] e X \?i\
as a state associated with a 3-manifold together with its Riemannian 3-geometry
(£, x([y]))- That is, each knot state |[y]) corresponds to the global degrees of
freedom of gravity. Secondly, functionals on JSfE which describe gravitational states
are constant on the Sfa

+-orbits of ̂  — ^[y] = "ir\y'\ Wy, y' e [y], where \jr : j£fE ->•
C is a loop functional — due to the diffeomorphism constraint of general relativity (in
the loop representation) [6, p. 132]. Surprisingly, this condition follows immediately
from Corollary 3.3. For let C(J2, C) be the set of continuous functionals on <£? and
C{X[r+], C) that of JV[r2

+]. Then, V * € C(^ , Q , * o ^ € C(JT[r2
+] , C);

that is, x* (C(<S, Q ) C C(Jf [r2
+] , C), and the assertion thus follows.

This paper will conclude by outlining a prime motivation for studying the relation-
ship between knots and geometries. It is possible to show, by relaxing the bijective
condition of (2) imposed on y — that is, y' i-> y'(0) is a bijection — to a surjective
one, and by imposing additional conditions on the K0-loops, that the resulting K0-loop
space ^"oo admits a smooth manifold structure modelled on a locally convex topolog-
ical vector space. This has the implication that M^ can be regarded as a configuration
space for gravity in the sense of geometric quantization. Thus, in this sense, ^ x , has
the interpretation of being the 'dynamical' space where 3-geometries evolve. This is
of course rather speculative, and work in this area is currently in progress.
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