KNOTS AND GRAVITY

TZE-CHUEN TOH1 and MALCOLM R. ANDERSON2

(Received 27 February 1995)

Abstract

In the loop representation theory of non-perturbative quantum gravity, gravitational states are described by functionals on the loop space of a 3-manifold. In the order to gain a deeper insight into the physical interpretation of loop states, a natural question arises: to wit, how are gravitations related to loops? Some light will be shed on this question by establishing a definite relationship between loops and 3-geometries of the 3-manifold.

1. Introduction

In the mid 80's, Ashtekar [1] formulated an alternative Hamiltonian approach to General Relativity. This led Rovelli *et al.* [4, 6] to formulate Quantum Gravity in terms of loops in a 3-manifold Σ . A *loop* in Σ is just a closed curve starting and ending at the same point. An *n-loop* is the set $\{\gamma^1, \ldots, \gamma^n\}$ of *n* loops γ^i in Σ .

Very briefly, the loop representation of Quantum Gravity describes gravitational states via complex functionals Ψ on the space of multi-loops of Σ . The functionals describing the physical states of gravity satisfy

- (1) Ψ is a constant on knot classes;
- (2) Ψ has support on smooth multi-loops without intersections.³

The physical interpretation still remains an open question. However, Rovelli [5, p. 1661] sketched a heuristic argument revealing the emergence of a discrete structure to space-time at the Plank scale. It will be tersely shown here that certain choices of \aleph_0 -loops relate to 3-geometries in a natural way. This in turn yield a deeper insight into the way loops and gravity are related.

¹Department of Theoretical Physics, Research School of Physical Science and Engineering, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.

²School of Engineering and Mathematics, Edith Cowan University, Joondalup Drive, Joondalup, Western Australia 6027, Australia.

[©] Australian Mathematical Society 1999, Serial-fee code 0334-2700/99

³Extensions to piecewise smooth loops have also been done. Refer to [2, 3] for more details.

2. Definitions and notations

All loops considered here will be piecewise smooth in some fixed 3-manifold Σ , where Σ is assumed to be smooth, closed, compact, orientable and Riemannian. By a *Riemannian* 3-metric q on Σ is meant a symmetric, covariant 2-tensor that is positive-definite at each point $x \in \Sigma$. The space of Riemannian 3-metrics on Σ will be denoted by Γ_2^+ and the space of (Riemannian) 3-geometries of Σ by $\mathscr{Q} \stackrel{\text{def}}{=} \Gamma_2^+/\text{Diff}^+(\Sigma)$, where $\text{Diff}^+(\Sigma)$ denotes the group of smooth, orientation-preserving diffeomorphisms on Σ and a 3-geometry is defined by the equivalence class $[q] \stackrel{\text{def}}{=} \{f^*q \mid f \in \text{Diff}^+(\Sigma)\}$ of metrics $q \in \Gamma_2^+$ related by coordinate transformations. The space Γ_2^+ is endowed with the compact C^∞ -topology and \mathscr{Q} is given the quotient topology.

Now, given curves $\gamma, \eta: I \to \Sigma, I \stackrel{\text{def}}{=} [0, 1]$, with $\gamma(0) = \gamma(1)$, define $\gamma * \eta$ by

$$\gamma * \eta(t) = \begin{cases} \gamma(2t) & \text{for } 0 \le t \le \frac{1}{2}, \\ \eta(2t-1) & \text{for } \frac{1}{2} \le t \le 1. \end{cases}$$

Call a curve γ a *q-geodesic* if γ is a (parametrized) geodesic in Σ with respect to $q \in \Gamma_2^+$.

DEFINITION 2.1. γ is a piecewise geodesic loop if $\exists q \in \Gamma_2^+$ and n smooth q-geodesics $\gamma_1, \ldots, \gamma_n : I \to \Sigma$ such that $\gamma = \gamma_1 * \cdots * \gamma_n$.

Let $D_{\Sigma} \subset \Sigma$ denote a countably dense subset and let $\mathscr{M}_{\infty}\left[\Gamma_{2}^{+}\right]$, for each $q \in \Gamma_{2}^{+}$, be the set of \aleph_{0} -loops $\gamma = \{\gamma^{i} : i \in \mathbb{N}\}$ such that

- (1) $\forall i, \gamma^i$ is a piecewise, affinely parametrized, q-geodesic loop in Σ ;
- (2) γ is in bijective⁴ correspondence with D_{Σ} under $\gamma^i \mapsto \gamma^i(0)$.

It is easy to see that conditions (1) and (2) together imply that each γ corresponds to a unique 3-geometry $[q_{\gamma}] \in \mathcal{Q}$. For suppose γ is both a q-geodesic loop as well as a q'-geodesic loop. Then, with respect to charts U_{α} ,

$$\left(\ddot{\gamma}_{\alpha}^{i}\right)^{l} + \Gamma_{\alpha}(q)_{kj}^{l} \left(\dot{\gamma}_{\alpha}^{i}\right)^{k} \left(\dot{\gamma}_{\alpha}^{i}\right)^{j} \stackrel{\text{a.e.}}{=} 0 \quad \text{and} \quad \left(\ddot{\gamma}_{\alpha}^{i}\right)^{l} + \Gamma_{\alpha}(q')_{kj}^{l} \left(\dot{\gamma}_{\alpha}^{i}\right)^{k} \left(\dot{\gamma}_{\alpha}^{i}\right)^{j} \stackrel{\text{a.e.}}{=} 0$$

on $\gamma^i(I) \cap U_\alpha$ for each i (no summation over α), where a.e. means that the equality holds on $I - \{t_1, \ldots, t_n\}$, with $0 \le n < \infty$ and n = 0 denoting the empty set. Hence, $\left(\Gamma_\alpha(q)_{kj}^l - \Gamma_\alpha(q')_{kj}^l\right) \left(\dot{\gamma}_\alpha^i\right)^k \left(\dot{\gamma}_\alpha^i\right)^j \stackrel{\text{a.e.}}{=} 0 \ \forall \ \gamma^i \in \gamma \ \text{and} \ \alpha$. Thus by (2), $\Gamma(q)_{kj}^l(x) \equiv \Gamma(q')_{kj}^l(x)$ on a dense subset of Σ as $\overline{\bigcup \{\gamma^i(I) \mid \gamma^i \in \gamma\}} \equiv \Sigma$ by (2). So, invoking the continuity of $\Gamma(h)$ for h = q, q', it follows at once that $\Gamma(q) \equiv \Gamma(q')$ on Σ . Now, with respect to local coordinate basis, $\Gamma(q)_{kj}^l = \frac{1}{2}q^{ih}(\partial_k q_{hj} + \partial_j q_{hk} - \partial_h q_{kj})$ (and likewise

⁴This condition may be relaxed to a surjection.

for q'); consequently, q and q' are related homothetically; that is, $\exists c > 0$ constant such that q' = cq.⁵ More generally, q, q' are related to some smooth diffeomorphism.

As a converse remark, notice that if Σ were not separable or that $\gamma_q = \{\gamma_q^i \mid i \in \mathbb{N}\}$ were not chosen to satisfy (2), γ_q need not uniquely determine $[q] \in \mathcal{Q}$. Call $\mathcal{M}_{\infty}\left[\Gamma_2^+\right] \stackrel{\text{def}}{=} \bigcup_{q \in \Gamma_2^+} \mathcal{M}_{\infty}[q]$ the space of *piecewise geodesic* \aleph_0 -loops. A suitable topology will be constructed on this space below.

Let $L_{\Sigma}\left[\Gamma_{2}^{+}\right]$ denote the set of all affinely parametrized, piecewise geodesic loops in Σ and let $L_{\Sigma}^{\infty}\left[\Gamma_{2}^{+}\right]$ denote the countably infinite (set-theoretic) product of $L_{\Sigma}\left[\Gamma_{2}^{+}\right]$. Define an equivalence relation $R_{\infty} \subset L_{\Sigma}^{\infty}\left[\Gamma_{2}^{+}\right] \times L_{\Sigma}^{\infty}\left[\Gamma_{2}^{+}\right]$ by $R_{\infty} = \{(\gamma, \gamma') : [\gamma] = [\gamma']\}$, where $[\eta] \stackrel{\text{def}}{=} \{\eta^{i} \in L_{\Sigma}\left[\Gamma_{2}^{+}\right] : \eta = (\eta^{i})_{i=1}^{\infty}\}$ is just the set of components of the \aleph_{0} -loop η . Let $\pi_{\Sigma}: L_{\Sigma}^{\infty}\left[\Gamma_{2}^{+}\right] \to \mathcal{M}\left[\Gamma_{2}^{+}\right] \stackrel{\text{def}}{=} \mathcal{L}_{\Sigma}^{\infty}\left[\Gamma_{2}^{+}\right]/R_{\infty}$ be the natural map. If $\mathcal{M}_{n}\left[\Gamma_{2}^{+}\right]$ denotes the of (affinely parametrized) piecewise geodesic n-loops, then $\mathcal{M}\left[\Gamma_{2}^{+}\right] \equiv \bigcup_{n=1}^{\infty} \mathcal{M}_{n}\left[\Gamma_{2}^{+}\right]$. Now, let $M_{\infty} \subset \mathcal{L}_{\Sigma}^{\infty}\left[\Gamma_{2}^{+}\right]$ be a subset satisfying

- (a) for each $\gamma \stackrel{\text{def}}{=} (\gamma^i)_{i=1}^{\infty} \in M_{\infty}, \gamma^i \neq \gamma^j \ \forall i \neq j$,
- (b) $\pi_{\Sigma}(M_{\infty}) = \mathscr{M}_{\infty}\left[\Gamma_{2}^{+}\right] \subset \mathscr{M}\left[\Gamma_{2}^{+}\right].$

It is clear from the definition of M_{∞} that there exists a family of subsets $M_{\sigma} \subset M_{\infty}$ satisfying

- (i) $M_{\infty} = \bigcup_{\sigma} M_{\sigma}$,
- (ii) $M_{\sigma} \cap M_{\sigma'} = \emptyset \ \forall \sigma \neq \sigma'$,
- (iii) $\pi_{\Sigma} \mid M_{\sigma} : M_{\sigma} \to \mathcal{M}_{\infty} \left[\Gamma_{2}^{+} \right]$ is a bijection.

Let $h_{\sigma} \stackrel{\text{def}}{=} \pi_{\Sigma} \mid M_{\sigma}$ and for each $\gamma \in \mathcal{M}_{\infty} \left[\Gamma_{2}^{+} \right]$, set $\gamma_{\sigma} = h_{\sigma}^{-1}(\gamma) \in M_{\sigma}$. The subsets M_{σ} can be endowed with a metric topology. A metric on M_{σ} will now be constructed. Firstly, fix a finite atlas \mathfrak{U} on Σ . Secondly, note that if $\Omega_{\Sigma} = \{ \gamma : I \to \Sigma \mid \gamma(0) = \gamma(1), \gamma \text{ continuous} \}$ denotes the loop space of Σ and if d_{q} is a (topological) metric on Σ (induced by a Riemannian 3-metric q) compatible with its manifold topology, then $d_{\Omega}(\gamma, \eta) \stackrel{\text{def}}{=} \sup_{t \in I} d_{q}(\gamma(t), \eta(t))$ defines a metric on Ω_{Σ} compatible with its compact-open topology.

Now, given a pair of \aleph_0 -loops γ , $\eta \in M_{\sigma}$, let

$$d'_{\Omega}\left(\gamma^{i},\eta^{i}\right) \stackrel{\text{def}}{=} \operatorname{ess sup}\left\{\left\|D^{k}\gamma^{i}(t) - D^{k}\eta^{i}(t)\right\| : t \in I, \ k \geq 1\right\},\,$$

where sup runs over all relevant (finite) charts $(U, \varphi) \in \mathfrak{U}$, ess denoting that the expression $||D^k \gamma^i(t) - D^k \eta^i(t)||$ is defined on I a.e. — that is, it is *not* defined only on a *finite* (possibly zero) set of points in I wherein γ^i and η^i are not differentiable,

⁵Note trivially that as q, q' are positive-definite, c < 0 is not an admissible solution.

⁶The subscript σ on γ_{σ} will be omitted if no confusion should arise from the context.

⁷Observe trivially that the d_{Ω} -topology does not depend on the choice of the (admissible) 3-metric q since all (topological) metrics on Σ induced by (admissible) Riemannian 3-metrics q are equivalent.

and $D^k \gamma^i(t)$ denotes the kth differential of γ^i at t in abused notations. Finally, set $d_{\sigma}(\gamma, \eta) \stackrel{\text{def}}{=} \sup_i d_{\Omega}(\gamma^i, \eta^i) + \sup_i d'_{\Omega}(\gamma^i, \eta^i)$. It is routine to verify that d_{σ} is indeed a metric on M_{σ} .

REMARK 2.2. It can be shown that the d_{σ} -topology is compatible with the topology on M_{σ} generated by the subbasic sets $N_{\varepsilon}\left(\gamma; (U_{\alpha(i)}, \varphi_{\alpha(i)})_{i=1}^{\infty}, K\right)$ to be defined below, where $K \subset I$ is compact, $\gamma^{i}(K) \subset U_{\alpha(i)}$, and $(U_{\alpha(i)}, \varphi_{\alpha(i)}) \in \overline{\mathfrak{U}}$ for each i, with $\overline{\mathfrak{U}}$ being the *maximal* atlas of Σ . Firstly, set $\alpha \stackrel{\text{def}}{=} \{\alpha(i) \mid 1 \leq i \leq \infty\}$ and denote $(U_{\alpha(i)}, \varphi_{\alpha(i)})_{i}$ by $(U, \varphi)_{\alpha}$ for notational convenience. Next, let

$$d'_{\sigma\alpha K}\left(\gamma^{i}, \eta^{i}\right) \stackrel{\text{def}}{=} \operatorname{ess sup}\left\{\left\|D^{k} \varphi_{\alpha(i)} \circ \gamma^{i}(t) - D^{k} \varphi_{\alpha(i)} \circ \eta^{i}(t)\right\| : t \in K, \ k \geq 1\right\}$$

whenever $\gamma^i(K)$, $\eta^i(K) \subset U_{\alpha(i)} \, \forall i$. Then, for a fixed $\gamma \in M_\sigma$ such that $\gamma^i(K) \subset U_{\alpha(i)} \, \forall i$, let $N_\varepsilon (\gamma; (U, \varphi)_\alpha, K) \stackrel{\text{def}}{=} \{ \eta \in M_\sigma \mid \bar{d}_{\sigma\alpha K}(\gamma, \eta) < \varepsilon, \eta^i(K) \subset U_{\alpha(i)} \, \forall i \}$, where

$$\bar{d}_{\sigma\alpha K}(\gamma, \eta) \stackrel{\mathsf{def}}{=} \sup_{i} d_{\Omega} \left(\gamma^{i}, \eta^{i} \right) + \sup_{i} d'_{\sigma\alpha K} \left(\gamma^{i}, \eta^{i} \right).$$

In particular, the d_{σ} -topology does not depend on the particular choice of (admissible) finite atlas \mathfrak{U} of Σ . Hence, in this sense, the d_{σ} -topology is well-defined.

It is easy to see from the construction that $h_{\sigma\sigma'}: M_{\sigma} \to M_{\sigma'}$ given by $\gamma_{\sigma} \mapsto \gamma_{\sigma'}$, where $h_{\sigma}(\gamma_{\sigma}) = \gamma = h_{\sigma'}(\gamma_{\sigma'})$, defines a homeomorphism. The existence of $h_{\sigma\sigma'}$ follows immediately from properties (a) and (iii) above. Hence, it is possible to endow $\mathcal{M}_{\infty}\left[\Gamma_{2}^{+}\right]$ with a topology so that each $h_{\sigma}: M_{\sigma} \to \mathcal{M}_{\infty}\left[\Gamma_{2}^{+}\right]$ defines a homeomorphism. In this paper, $\mathcal{M}_{\infty}\left[\Gamma_{2}^{+}\right]$ will be equipped with this topology. As an aside, if M_{∞} were given the sum topology, $M_{\infty} \stackrel{\text{def}}{=} \bigoplus_{\sigma} M_{\sigma}$, then $h: M_{\infty} \to \mathcal{M}_{\infty}\left[\Gamma_{2}^{+}\right]$ defined by $h \mid M_{\sigma} = h_{\sigma}$ is a continuous open surjection.

3. Knots and 3-geometries

First of all, recall that a smooth *ambient isotopy* is a smooth deformation of one loop into another such that the surrounding manifold is smoothly transformed. More precisely, it is a smooth map $F: \Sigma \times I \to \Sigma \times I$ given by $(x, t) \mapsto (F_t(x), t)$ such that $F_0 = \mathrm{id}_{\Sigma}$ and $F_t \in \mathrm{Diff}(\Sigma) \ \forall t \in I$. Let $\mathscr{G}_a^+ \subset C^{\infty}(\Sigma \times I, \Sigma \times I)$ be the set of (smooth) orientation-preserving, ambient isotopies on Σ .

If $\gamma, \eta \in \mathscr{L}_{\Sigma}$ are any pair of loops and γ is ambiently isotopic to η under some $F \in \mathscr{G}_a^+$, denote this by $F : \gamma \simeq \eta$. Now, given any pair of \aleph_0 -loops $\gamma, \eta \in \mathscr{M}_{\infty}\left[\Gamma_2^+\right]$, define an equivalence relation R generated by \simeq on $\mathscr{M}_{\infty}\left[\Gamma_2^+\right]$ as follows:

$$\gamma \simeq \eta \quad \Longleftrightarrow \quad \exists \ F \in \mathscr{G}_a^+ \text{ such that } \ F \cdot \gamma = \eta,$$

where $F \cdot \gamma \stackrel{\text{def}}{=} \{F_1 \circ \gamma^1, F_1 \circ \gamma^2, \ldots\}$ and $F : \gamma^i \simeq \eta^i \ \forall i$. Then the space $\mathscr{K}\left[\Gamma_2^+\right]$ of equivalence classes of \aleph_0 -loops in $\mathscr{M}_\infty\left[\Gamma_2^+\right]$ is defined to be the quotient space $\mathscr{M}_\infty\left[\Gamma_2^+\right]/R$. Henceforth, for simplicity, call an element $[\gamma] \stackrel{\text{def}}{=} \{\eta \in \mathscr{M}_\infty\left[\Gamma_2^+\right]: \eta \simeq \gamma\}$ of the quotient space $\mathscr{K}\left[\Gamma_2^+\right]$ a (piecewise geodesic) \aleph_0 -knot and let $\kappa_\infty: \mathscr{M}_\infty\left[\Gamma_2^+\right] \to \mathscr{K}\left[\Gamma_2^+\right]$ denote the natural map. In the interest of simplicity, call $\gamma \in \mathscr{M}_\infty\left[\Gamma_2^+\right]$ a piecewise (\aleph_0, q) -geodesic loop whenever the 3-metric q is required to be specified.

LEMMA 3.1. Let $\gamma, \tilde{\gamma} \in \mathcal{M}_{\infty}\left[\Gamma_{2}^{+}\right]$ be piecewise (\aleph_{0}, q) - and (\aleph_{0}, \tilde{q}) -geodesic loops respectively. If $\gamma \simeq \tilde{\gamma}$, then $\exists f \in \text{Diff}^{+}(\Sigma)$ such that $q = f^{*}\tilde{q}$.

PROOF. Let $F \in \mathcal{G}_a^+$ be an ambient isotopy of γ and $\tilde{\gamma}: F \cdot \gamma = \tilde{\gamma}$. Then, evidently, $\tilde{\gamma}$ is a piecewise $(\aleph_0, (F_1^{-1})^*q)$ -geodesic. However, $\tilde{\gamma}$ is also a piecewise (\aleph_0, \tilde{q}) -geodesic; hence, by (2), $\exists f \in \text{Diff}^+(\Sigma)$ such that $q = f^*\tilde{q}$, as required.

The main results of this paper will now be stated. In fact, the correspondence between loops and geometries can be easily sought simply by noting that each element in $\mathcal{M}_{\infty}\left[\Gamma_{2}^{+}\right]$ corresponds to a unique 3-geometry [q] of Σ by construction.

THEOREM 3.2. There exists a continuous, open surjection $\hat{\chi}: \mathcal{M}_{\infty}\left[\Gamma_{2}^{+}\right] \to \mathcal{Q}$ given by $\gamma_{q} \mapsto [q]$, where γ_{q} is a (piecewise) (\aleph_{0}, \tilde{q}) -geodesic loop and $q \in [q]$.

PROOF. The details can be found in [7, Theorem 4.1].

COROLLARY 3.3. The map $\hat{\chi}$ induces a continuous, open surjection $\chi: \mathcal{K}\left[\Gamma_2^+\right] \to \mathcal{Q}$ given by $\left[\gamma_q\right] \mapsto \hat{\chi}\left(\gamma_q\right)$, where $\gamma_q \in \kappa_{\infty}^{-1}\left(\left[\gamma_q\right]\right)$ is any fixed representative.

PROOF. The map χ is well-defined by Lemma 3.1. The result now follows immediately from Theorem 3.2, the openness of the projection map κ_{∞} and from the commutativity of the following diagram:

$$\begin{array}{ccc} \mathscr{M}_{\infty}\left[\Gamma_{2}^{+}\right] & \stackrel{\hat{\chi}}{\longrightarrow} & \mathscr{Q} \\ & & \downarrow_{\mathrm{id}} & & \downarrow_{\mathrm{id}} \\ \mathscr{K}\left[\Gamma_{2}^{+}\right] & \stackrel{\chi}{\longrightarrow} & \mathscr{Q}. \end{array}$$

4. Discussion

It is easy to observe from Theorem 3.2 that at the classical level, each \aleph_0 -loop $\gamma \in \mathcal{M}_{\infty}\left[\Gamma_2^+\right]$ contains enough information to restrict the 3-manifold Σ together with

its 3-geometry [q]. To see this, it is sufficient to note firstly that χ maps γ to a unique 3-geometry [q]. Then, by choosing any representative of [q] and defining the closure of $\bigcup \{\gamma^i(I) \mid \gamma^i \in \gamma\}$ with respect to the metric induced by q yields the Riemannian manifold (Σ, q) .

This in turn suggests that \aleph_0 -loops are suitable candidates for the description of gravitational states. Heuristically, we may interpret a *knot state* $|[\gamma]\rangle$, $[\gamma] \in \mathcal{K}\left[\Gamma_2^+\right]$, as a state associated with a 3-manifold together with its Riemannian 3-geometry $(\Sigma, \chi([\gamma]))$. That is, each knot state $|[\gamma]\rangle$ corresponds to the global degrees of freedom of gravity. Secondly, functionals on \mathscr{L}_{Σ} which describe gravitational states are constant on the \mathscr{G}_a^+ -orbits of $\mathscr{L}_{\Sigma} - \psi[\gamma] = \psi[\gamma'] \ \forall \gamma, \gamma' \in [\gamma]$, where $\psi : \mathscr{L}_{\Sigma} \to \mathbb{C}$ is a loop functional — due to the diffeomorphism constraint of general relativity (in the loop representation) [6, p. 132]. Surprisingly, this condition follows immediately from Corollary 3.3. For let $C(\mathscr{Q}, \mathbb{C})$ be the set of continuous functionals on \mathscr{Q} and $C(\mathscr{K}\left[\Gamma_2^+\right], \mathbb{C})$ that of $\mathscr{K}\left[\Gamma_2^+\right]$. Then, $\forall \tilde{\Psi} \in C(\mathscr{Q}, \mathbb{C}), \tilde{\Psi} \circ \chi \in C(\mathscr{K}\left[\Gamma_2^+\right], \mathbb{C})$; that is, $\chi^*(C(\mathscr{Q}, \mathbb{C})) \subset C(\mathscr{K}\left[\Gamma_2^+\right], \mathbb{C})$, and the assertion thus follows.

This paper will conclude by outlining a prime motivation for studying the relationship between knots and geometries. It is possible to show, by relaxing the bijective condition of (2) imposed on γ — that is, $\gamma^i \mapsto \gamma^i(0)$ is a bijection — to a surjective one, and by imposing additional conditions on the \aleph_0 -loops, that the resulting \aleph_0 -loop space \mathscr{M}_∞ admits a smooth manifold structure modelled on a locally convex topological vector space. This has the implication that \mathscr{M}_∞ can be regarded as a configuration space for gravity in the sense of geometric quantization. Thus, in this sense, \mathscr{M}_∞ has the interpretation of being the 'dynamical' space where 3-geometries evolve. This is of course rather speculative, and work in this area is currently in progress.

Acknowledgement

The first author thanks L. Tassie and S. Scott for some helpful conversations.

References

- A. Ashtekar, "New Hamiltonian formulation of general relativity", Phys. Rev. D36 (1987) 1587– 1602.
- [2] M. P. Blencowe, "The Hamiltonian constraint in quantum gravity", Nucl. Phys. B341 (1990) 213–251.
- [3] B. Brügmann and J. Pullin, "On the constraints of quantum gravity in the loop representation", Nucl. Phys. B390 (1993) 399–438.
- [4] T. Jacobson and L. Smolin, "Nonperturbative quantum geometries", Nucl. Phys. B299 (1988) 295–345.

- [5] C. Rovelli, "Ashtekar's formulation of general relativity and loop-space non-perturbative quantum gravity: a report", Class. Quantum Grav. 8 (1991) 1613-1675.
- [6] C. Rovelli and L. Smolin, "Loop representation of quantum general relativity", *Nucl. Phys.* B331 (1990) 80-152.
- [7] T.-C. Toh and M. R. Anderson, "Knots and classical 3-geometries", J. Math. Phys. 36 (1995) 596-604.