
JFP 34, e7, 44 pages, 2024. c© The Author(s), 2024. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796824000054

Signature restriction for polymorphic algebraic
effects

T A R O SEKIYAMA
National Institute of Informatics & SOKENDAI, Tokyo, Japan

(e-mail: tsekiyama@acm.org)

T A K E S H I T S U K A D A
Chiba University, Chiba, Japan

(e-mail: tsukada@math.s.chiba-u.ac.jp)

A T S U S H I I G A R A S H I
Graduate School of Informatics, Kyoto University, Kyoto, Japan

(e-mail: igarashi@kuis.kyoto-u.ac.jp)

Abstract

The naive combination of polymorphic effects and polymorphic type assignment has been well
known to break type safety. In the literature, there are two kinds of approaches to this problem:
one is to restrict how effects are triggered and the other is to restrict how they are implemented. This
work explores a new approach to ensuring the safety of the use of polymorphic effects in polymor-
phic type assignment. A novelty of our work is to restrict effect interfaces. To formalize our idea,
we employ algebraic effects and handlers, where an effect interface is given by a set of operations
coupled with type signatures. We propose signature restriction, a new notion to restrict the type sig-
natures of operations and show that signature restriction ensures type safety of a language equipped
with polymorphic effects and unrestricted polymorphic type assignment. We also develop a type-
and-effect system to enable the use of both of the operations that satisfy and those that do not satisfy
the signature restriction in a single program.

1 Introduction

1.1 Background: Polymorphic type assignment with computational effects

Computational effects are pervasive in programming, including mutable memory cells,
backtracking, exception handling, concurrency/parallelism, and I/O processing for termi-
nals, files, networks, etc. These effects have a variety of roles: I/O processing enables
interaction with external environments; memory manipulation and concurrency/paral-
lelism make software efficient; and backtracking and exceptions provide structured
operations that make it unnecessary to write boilerplate code. These effects have also been
proven convenient in functional programming (Gordon et al., 1979; Wadler, 1992; Peyton
Jones and Wadler, 1993).

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796824000054
https://orcid.org/0000-0001-9286-230X
mailto:tsekiyama@acm.org
https://orcid.org/0000-0002-2824-8708
mailto:tsukada@math.s.chiba-u.ac.jp
https://orcid.org/0000-0002-5143-9764
mailto:igarashi@kuis.kyoto-u.ac.jp
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796824000054&domain=pdf
https://doi.org/10.1017/S0956796824000054

2 T. Sekiyama et al.

In return for convenience, however, computational effects can introduce weird, coun-
terintuitive behavior into programs and complicate program reasoning and verification.
For example, incorporating effects into dependent type theory could easily lead to incon-
sistency (Pédrot and Tabareau, 2020). This fact encourages dependent type systems to
separate term-level computation from types (Xi, 2007; Casinghino et al., 2014; Swamy
et al., 2016; Sekiyama and Igarashi, 2017; Ahman, 2017; Cong and Asai, 2018). For
program reasoning, the state transitions caused by effectful computations have to be
tracked (Pitts and Stark, 1998; Ahmed et al., 2009; Dreyer et al., 2010).

These kinds of gaps between pure and effectful computations are also found in our
target: polymorphic type assignment. Although pure expressions can safely be assigned
polymorphic types (Leivant, 1983), unrestricted polymorphic type assignment to effectful
expressions may break type safety. This problem with polymorphic type assignment has
been discovered in call-by-value languages with polymorphic effects, which are effects
caused by polymorphic operations. For example, ML-style references are an instance of
polymorphic effects because the operations for memory cell creation, assignment, and
dereference are polymorphic (Milner et al., 1990; Leroy et al., 2020). Gordon et al.
(1979) showed that the ML-style references cannot cooperate safely with unrestricted
polymorphic type assignment owing to the polymorphism of the operations. Another
example is control effects, which are triggered by control operators such as call/cc (Clinger
et al., 1985) and shift/reset (Danvy and Filinski, 1990). These operators can be assigned
polymorphic types but the polymorphic control operators may cause unsafe behavior in
unrestricted polymorphic type assignment (Harper and Lillibridge, 1993). This fault even
occurs in let-polymorphic type assignment (Milner, 1978) where quantifiers only appear at
the outermost positions.

Many approaches to the safe use of polymorphic effects in polymorphic type assignment
have been proposed (Tofte, 1990; Leroy and Weis, 1991; Appel and MacQueen, 1991;
Hoang et al., 1993; Wright, 1995; Garrigue, 2004; Asai and Kameyama, 2007; Kammar
and Pretnar, 2017; Sekiyama and Igarashi, 2019). These approaches are classified into two
groups. The first group—to which most of the approaches belong—aims at restricting how
effects are triggered. For example, the value restriction (Tofte, 1990) restricts polymorphic
expressions to be only values in order to prevent polymorphic expressions from triggering
effects. The other group aims at restricting how effects are implemented. For example,
Sekiyama and Igarashi (2019) proposed a type system that does not restrict the use of
effects and, instead, allows only the safe effects, i.e., the effects that do not cause programs
to get stuck no matter how they are used. Their type system examines the implementations
of effects to judge the safety of the effects.

1.2 Our work

This work explores a new approach to safe polymorphic type assignment for effectful call-
by-value languages. A novelty of our approach lies in restriction on effect interfaces. In
this work, the effect interfaces are represented by sets of operations coupled with type
signatures. For example, an interface for exceptions consists of a single operation raise
to raise an exception and its type signature ∀ α. unit ↪→ α, which means that raise takes
the unit value as an argument and returns a value of any type α if the control gets back to

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 3

the caller at all. Quantification in the signature not only provides the clients of the operation
with flexibility—they can instantiate α with any desired type and put a call of raise in any
context—but also constrains its implementations in that they have to abstract over types.
We discover that the abstract nature of type variables in the type signatures can ensure
the safety of the polymorphic effects. Based on this finding, we propose a criterion that
decides the safety of an effect only by examining the type signatures of its operations. For
example, we can find raise safe by this criterion. Our criterion is simple in that it only
mentions the occurrences of bound type variables α in a type signature, robust in that it is
independent of how effects are implemented, and permissive in that it is met by many safe
effects—including exception, nondeterminism, and input streaming. We call the restriction
based on this criterion signature restriction.

To formalize our idea, we choose algebraic effects and handlers (Plotkin and Pretnar,
2009, 2013) as a means to represent effects. Algebraic effects and handlers are a program-
ming mechanism to accommodate user-defined control effects in a modular way, splitting
an effect into an interface (i.e., a set of operations with type signatures) and an interpreta-
tion. Since our idea is to restrict effect interfaces, we can incorporate signature restriction
into the framework of algebraic effects and handlers naturally.

We provide two polymorphic type assignment systems for a λ-calculus equipped with
algebraic effects and handlers. The first is a simple polymorphic type system based on
Curry-style System F (Leivant, 1983) (i.e., it supports implicit, full polymorphism1). This
type system allows arbitrary terms (rather than only values) that may invoke effects freely
to be polymorphic. Despite the unrestricted use of effects, this type system is sound if
signature restriction is enforced. The minimality of this simple type system reveals the
essence of signature restriction. The second type assignment system is a polymorphic type-
and-effect system. Using this system, we show that signature restriction can be applied to
typecheck programs in which both safe and unsafe polymorphic effects may happen.2

The contributions of our work are summarized as follows.

• We define a λ-calculus λeff with algebraic effects and handlers and provide a type
system that supports implicit full polymorphism and allows any effectful expression
to be polymorphic. We formalize signature restriction for λeff and prove sound-
ness of the type system under the assumption that all operations satisfy signature
restriction.

• As a technical development to justify signature restriction, we equip the type system
with Mitchell’s type containment (Mitchell, 1988), which is an extension of type
instantiation. In the literature (Peyton Jones et al., 2007; Dunfield and Krishnaswami,
2013), the proof of type soundness of a calculus equipped with type containment
rests on translation to another calculus, such as System F (Reynolds, 1974; Girard,

1 We mean by full polymorphism that the type constructor ∀ can appear at any position of types, as in
System F (Reynolds, 1974; Girard, 1972). Polymorphism is implicit if no type annotations are required, unlike
System F.

2 As we will show in the article, signature restriction is permissive and actually we find no useful effect that
invalidates it. However, the universal enforcement of signature restriction might give rise to inconvenience in
some cases, and we consider the capability of avoiding such (potential) inconvenience important in designing
a general-purpose programming language.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

4 T. Sekiyama et al.

1972).3 Unlike the prior work, we show soundness of our type system directly, i.e.,
without translation to any other calculus. As far as we know, this is the first work that
proves soundness of a type system involving type containment without translation.

• We extend λeff and its type system with standard programming features such as
products, sums, and lists to demonstrate the generality and extensibility of signature
restriction.

• We develop an effect system for λeff, which enables a single program to use both
safe and unsafe polymorphic effects. In this effect system, an expression can be
polymorphic if all the effect operations performed by the expression satisfy signature
restriction. It also indicates that signature restriction can cooperate with the value
restriction naturally.

We employ implicit full polymorphism and type containment to show type sound-
ness, but either of them makes even type checking undecidable (Wells, 1994; Tiuryn
and Urzyczyn, 1996). It is thus desirable to identify a subset of our system where type
checking—and type inference as well hopefully—is decidable. To prove the feasibility of
this idea, we implement an interpreter for a subset of the extended λeff in which poly-
morphism is restricted to let-polymorphism (Milner, 1978; Damas and Milner, 1982) (the
effect system is not supported either). This restriction on polymorphism ensures that both
type checking and type inference are decidable, but it is still expressive so that all of the
motivating well-typed examples in this article (except for those in Section 6, which rest on
the effect system) are typechecked. The implementation is provided as the supplementary
material; alternatively, it can also be found at: https://github.com/skymountain/
MLSR .

Finally, we briefly relate our work with the relaxed value restriction (Garrigue, 2004)
here. It is similar to our signature restriction in that both utilize the occurrences of type
variables to ensure soundness of polymorphic type assignment in the permissive use of
polymorphic effects. Indeed, a strong version of signature restriction (which is introduced
in Section 2.4) can be justified similarly to the relaxed value restriction. The strong sig-
nature restriction is, however, too restrictive and rejects many useful, safe effects. We
generalize it to what we call signature restriction and prove its correctness with different
techniques such as type containment. Readers are referred to Section 8.1 for further details.

1.3 Relation to the prior publication

This article revises and extends the paper presented at ICFP’20 (Sekiyama et al., 2020). In
summary, the following are added.

• The improvement of certain notations (e.g., for free type variables occurring
negatively/positively/strictly positively).

• A discussion about relaxing the signature restriction (Section 4.6.2).
• A discussion about design decisions for adapting the signature restriction to effect

systems (Section 6.3).

3 The translation inserts, as a replacement for type containment, functions that are computationally meaningless
but work as type conversion statically.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://github.com/skymountain/MLSR
https://github.com/skymountain/MLSR
https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 5

• A reduction of the restriction on effect implementations (Sekiyama and Igarashi,
2019) to the signature restriction (Section 7).

1.4 Organization

The remainder of this article is organized as follows. We start with an overview of this
work (Section 2) and then define our base calculus λeff (Section 3). Section 4 introduces
a polymorphic type system for λeff, formalizes signature restriction, and shows soundness
of the polymorphic type system under the assumption that all operations satisfy signature
restriction. Section 5 extends λeff, the polymorphic type system, and signature restriction
with products, sums, and lists. Section 6 presents an effect system to allow programs to use
both safe and unsafe effects. We finally relate the restriction on effect implementations to
the signature restriction in Section 7, discuss other related work in Section 8, and conclude
in Section 9.

In this article, we may omit the formal definitions of some well-known notions and
the statements and proofs of auxiliary lemmas for type soundness. The full definitions,
statements, and proofs are provided in Appendix.

2 Overview

This section presents an overview of our work. After reviewing algebraic effects and
handlers, their extension to polymorphic effects, and why a naive extension results in
unsoundness, we describe our approach of signature restriction and informally discuss why
it resolves the unsoundness problem. All program examples in this article follow ML-like
syntax.

2.1 Review: Algebraic effects and handlers

Algebraic effects and handlers (Plotkin and Pretnar, 2009, 2013) are a mechanism that
enables users to define their own effects. They are successfully able to separate the syntax
and semantics of effects. The syntax of an effect is given by a set of operations, which are
used to trigger the effect. For example, exception is triggered by the operation raise and
store manipulation is triggered by put and get, which are used to write to and read from,
respectively, a store. The semantics is given by handlers, which decide how to interpret
operations performed by effectful computation.

Our running example is nondeterministic computation which enumerates all of the possi-
ble outcomes (Plotkin and Pretnar, 2009, 2013). This computation utilizes two operations:
select, which chooses an element from a given list, and fail, which signals that the
current control flow is undesired and the computation should abort.4 For simplicity, we fix
the list element type to be the type int of integers here; the polymorphic version shall be
discussed in Section 2.2.

4 This describes only intended semantics; one can also give an unintended handler, e.g., one that always returns
an integer 42 for a call to select. Certain unintended handlers can be excluded in a polymorphic setting, as
is shown in Section 2.2.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

6 T. Sekiyama et al.

For example, consider an implementation of a filtering function using these operations:

1 effect select : int list ↪→ int
2 effect fail : unit ↪→ unit
3
4 let filter (l : int list) (f : int → bool) =
5 handle
6 let x = #select(l) in
7 let _ = if f x then () else #fail() in
8 x
9 with

10 return z → [z]
11 select l → concat (map l (λy. resume y))
12 fail z → []
13
14 filter [3; 5; 10] (λx. x mod 2 = 1) (* will evaluate to [3; 5] *)

The first two lines declare the operations select and fail, which have the type signa-
tures int list ↪→ int and unit ↪→ unit, respectively. A type signature A ↪→ B of
an operation signifies that the operation is called with an argument of type A and, when
the control gets back to the caller, it receives a value of B. We refer to A and B as the
parameter type and arity type, respectively (Plotkin and Pretnar, 2008).

The function filter in Lines 4–12 operates select and fail to filter out the elements
of a list l that do not meet a given predicate f. Now, let’s take a closer look at the body of
the function, which consists of a single handle–with expression of the form handle M
with H . This expression installs a handler H during the evaluation of M , which we refer
to as the handled expression.

The handled expression (Lines 6–8) chooses an integer selected from the list l by calling
select, tests whether the selected integer x satisfies f, and returns x if f x is true; other-
wise, it aborts the computation by calling fail. We write #op(M) to call operation op with
argument M . We now explain the handler in Lines 10–12, which collects all the values in
l that satisfy f as a list, along with an intuitive meaning of handle–with expressions.

The handler H in handle M with H consists of a single return clause and zero or more
operation clauses. The return clause takes the form return x → M and computes the
entire result M of the handle–with expression using the value of the handled expression,
which M refers to by x. For example, the return clause in this example is return z →
[z]. Because z will be bound to the result of the handled expression x, the entire result
is the singleton list consisting of x. An operation clause of the form op x → M for an
operation op decides how to interpret the operation op called by the handled expression.
Variable x will be bound to the argument of the call to op and M is the entire result of
the handle–with expression. For example, the operation clause fail z → [] means
that, if fail is called, the computation is aborted—similarly to exception handling—and
the entire handle–with expression returns the empty list, meaning that there is no result
satisfying f .

Unlike exception handling, which discards the continuation of where an exception is
raised, handlers can resume computation from the point at which the operation was called.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 7

The ability to resume a computation suspended by the operation call provides algebraic
effects and handlers with the expressive power to implement control effects (Bauer and
Pretnar, 2015; Leijen, 2017; Forster et al., 2019). In our language, we use the expression
resume M to resume the computation of the handled expression with the value of M .

The operation clause for select enumerates all the possible outcomes by using resume.
The clause first resumes the computation from the point at which select was called,
with each integer y of a given list l as a return value of the call to select. The handled
expression in the example calls select only once, so each resumed computation (which
is performed under the same handler5) returns either a singleton list (produced by the
return clause) or the empty list (produced by the clause for fail). The next step after
the completion of all the resumed computations is to concatenate their results. The two
steps are expressed by concat (map l (λy. resume y)), where the function concat
concatenates a list of lists and map returns a new list obtained by applying a given function
to each element of a given list.

More formally, the suspended computation is expressed as a delimited continua-
tion (Felleisen, 1988; Danvy and Filinski, 1990), and resume simply invokes it. For
example, let us consider evaluating filter [3; 5; 10] (λx. x mod 2 = 1) in the
last line. This reduces to the following expression:

handle
let x = #select([3; 5; 10]) in
let _ = if (λx. x mod 2 = 1) x then () else #fail() in
x

with H

where H denotes the same handler as that in the example. At the call to select, the
run-time system constructs the following delimited continuation c

c
def=

handle
let x = [] in
let _ = if (λx. x mod 2 = 1) x then () else #fail() in
x

with H

(where [] is the hole to be filled with a resumption argument), and then evaluates the
operation clause for select. The resumption expression in the operation clause invokes
the delimited continuation c after filling the hole with an integer in the list [3; 5; 10].
For the case of filling the hole with 3, the remaining computation c[3] to resume is:

handle
let x = 3 in
let _ = if (λx. x mod 2 = 1) x then () else #fail() in
x

with H .

5 In this article, we suppose deep effect handlers (Kammar et al., 2013), which remain in captured continuations.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

8 T. Sekiyama et al.

Because 3 is an odd number, it satisfies the predicate (λx. x mod 2 = 1), and therefore
the final result of this computation is the singleton list [3]. The case of 5 behaves similarly
and produces [5]. In the case of 10, because the even number 10 does not meet the given
predicate, the remaining computation c[10] would call fail and, from the operation clause
for fail, the final result of c[10] would be the empty list. The operation clause for select
concatenates all of these resulting lists of the resumptions and finally returns [3; 5]. This
is the behavior that we expect of filter exactly.

The handler in the example works even when select is called more than once, e.g.:

handle
let x = #select([2; 3]) in
let y = #select([10; 20]) in
let z = x * y in
let _ = if z > 50 then #fail() else () in
z

with H .

This program returns a list of the values of the handled expression that are computed with
(x, y) ∈ {2, 3} × {10, 20} such that the multiplication x * y does not exceed 50.

Typechecking. We also review the procedure to typecheck an operation clause op x →
M for op of type signature A ↪→ B. Since the operation op is called with an argument of A,
the typechecking assigns type A to argument variable x. As the value of M is the result of
the entire handle–with expression, the typechecking checks M to have the same type as
the other clauses including the return clause. The typechecking of resumption expressions
resume M ′ is performed as follows. Since the value of M ′ will be used as a result of calling
op in a handled expression, M ′ has to be of the type B, the arity type of the operation op.
On the other hand, since the resumption expression returns the evaluation result of the
entire handle–with expression, the typechecking assumes it to have the same type as all
of the clauses in the handler.

For example, let us consider the typechecking of the operation clause for select in the
function filter. Since the type signature of select is int list ↪→ int, the variable
l is assigned the type int list. Here, we suppose map and concat to have the following
types:

map : int list → (int → int list) → int list list
concat : int list list → int list

(these types can be inferred automatically). The type of map requires that the arguments
l and λy.resume y have the types int list and int → int list, respectively, and
they do indeed. The requirement for l is met by the type assigned to l. We can derive that
λy.resume y has type int → int list as follows: first, the typechecking assigns the
bound variable y type int and checks resume y to have int list. An argument of a
resumption expression has to be of the type int, which is the arity type of select, and
y has that type indeed. Then, the typechecking assumes that resume y has the same type
as the clauses of the handler, which is the type int list. Thus, λy.resume y has the
desired type.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 9

2.2 Polymorphic effects

Polymorphic effects are a particular kind of effects that incorporate polymorphism,6 pro-
viding a set of operations with polymorphic type signatures. We also call such operations
polymorphic. We write a polymorphic type signature as ∀α1. ... ∀αn. A ↪→ B, which quan-
tifies the type variables α1 . . . αn occurring in the parameter type A and those in the arity
type B. To avoid ambiguity, we denote a type signature with a polymorphic parameter type
∀ α. A by (∀ α. A) ↪→ B.

For example, we can assign select and fail polymorphic signatures and write the
program as follows:

1 effect select : ∀α. α list ↪→ α

2 effect fail : ∀α. unit ↪→ α

3
4 handle
5 let b = #select([true; false])
6 let x = if b then #select([2; 3]) else #select([20; 30]) in
7 if x > 20 then #fail() else x
8 with
9 return z → [z]

10 select l → concat (map l (λy. resume y))
11 fail z → []

This program evaluates to the list [2; 3; 20] (30 is filtered out by the call to fail).
Polymorphic type signatures enable operation calls with arguments of different types.

For example, #select([2; 3]) and #select([true; false]) are legal operation
calls that instantiate the bound type variable α of the type signature with int and bool,
respectively. The calls to the same operation are handled by the same operation clause,
even if the calls involve different type instantiations. It is also interesting to see that the
use of polymorphic type signatures makes programs more natural and succinct: Thanks to
its polymorphic arity type, a call to fail can be put anywhere, making it possible to put x
in the else-branch, unlike the monomorphic case in Section 2.1.

Another benefit of polymorphic type signatures is that they contribute to the exclusion
of undesired operation implementations. For example, the polymorphic signature of fail
ensures that, once we call fail, the control never gets back and that of select ensures
that no other values than elements in an argument list are chosen. Parametricity (Reynolds,
1983) enables formal reasoning for this; readers are referred to Biernacki et al. (2020) for
parametricity with the support for polymorphic algebraic effects and handlers.

2.3 Naive polymorphic typechecking is unsound

Naive typechecking of operation clauses for polymorphic operations is obtained by extend-
ing the monomorphic setting. The only difference is that the operation clauses have to
abstract over types. Namely, an operation clause op x → M for op of polymorphic type

6 Another way to incorporate polymorphism is parameterized effects, where the declaration of an operation is
parameterized over types (Wadler, 1992).

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

10 T. Sekiyama et al.

signature ∀α. A ↪→ B is typechecked as follows. The typechecking process allocates a fresh
type variable α, which is bound in M , and assigns type A (which may refer to the bound
type variable α) to variable x. Resumption expressions resume M ′ in M are typechecked
as in the monomorphic setting; that is, the typechecking checks M ′ to be of B (which may
refer to α) and assumes the resumption expressions to have the same type as the clauses in
the handler. Finally, the typechecking checks whether M is of the same type as the other
clauses in the handler. It is easy to see that the polymorphic versions of the select and
fail example typecheck.

However, this naive extension is unsound under unrestricted polymorphic type assign-
ment. In what follows, we revisit the counterexample given by Sekiyama and Igarashi
(2019), which is an analogue to that found by Harper and Lillibridge (1993, 1991) for
call/cc (Clinger et al., 1985).

1 effect get_id : ∀α. unit ↪→ (α → α)
2
3 handle
4 let f = #get_id() in (* f : ∀α. α → α *)
5 if (f true) then ((f 0) + 1) else 2
6 with
7 return x → x
8 get_id x → resume (λz1. let _ = resume (λz2. z1) in z1)

We first check that this program is well typed. The handled expression first binds the
variable f to the result returned by get_id. In polymorphic type assignment, we can assign
a polymorphic type ∀α. α → α to f by allocating a fresh type variable α, instantiating the
type signature of get_id with α, and generalizing α finally. The polymorphic type of f
allows viewing f both as a function of the type bool → bool and of the type int →
int. Thus, the handled expression is well typed. Turning to the operation clause, since the
type signature of get_id is ∀α. unit ↪→ (α → α), typechecking first allocates a fresh
type variable α and assigns the type unit to the argument variable x. The signature also
requires the arguments of the resumption expressions to have the type α → α, and both
arguments λz1. ... z1 and λz2. z1 do indeed. The latter function is typed at α → α

because the requirement for the former ensures that z1 has α. Thus, the entire program is
well typed.

However, this program gets stuck. The evaluation starts with the call to get_id in the
handled expression. It constructs the following delimited continuation:

c
def=

handle
let f = [] in
if (f true) then ((f 0) + 1) else 2

with
return x → x
get_id x → resume (λz1. let _ = resume (λz2. z1) in z1) .

The run-time system then replaces the resumption expressions with the invocation of the
delimited continuation. Namely, the entire program evaluates to

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 11

M
def= c[λz1. let _ = c[λz2. z1] in z1] .

The evaluation of M proceeds as follows.

M =
handle
let f = (λz1. let _ = c[λz2. z1] in z1) in
if (f true) then ((f 0) + 1) else 2

with ...

−→ handle if (λz1. let _ = c[λz2. z1] in z1) true then ... with ...

−→ handle if (let _ = c[λz2. true] in true) then ... with ...

Subsequently, the term c[λz2. true] is to be evaluated. The delimited continuation c
expects the hole to be filled with a polymorphic function of ∀α. α → α but the function
λz2. true is not polymorphic. As a result, the term gets stuck:

c[λz2. true] =
handle
let f = λz2. true in
if (f true) then ((f 0) + 1) else 2

with ...

−→∗ handle ((λz2. true) 0) + 1 with ...

−→ handle true + 1 with ...

A standard approach to this problem is to restrict operation calls in polymorphic expres-
sions (Tofte, 1990; Leroy and Weis, 1991; Appel and MacQueen, 1991; Hoang et al., 1993;
Wright, 1995; Garrigue, 2004; Asai and Kameyama, 2007). While this kind of approach
prevents #get_id() from having a polymorphic type, it disallows calls to any polymor-
phic operation inside polymorphic expressions even when the calls are safe; interested
readers can be referred to Sekiyama and Igarashi (2019) for further discussion. Sekiyama
and Igarashi (2019) have proposed a complementary approach to this problem, that is,
restricting, by typing, the handler of a polymorphic operation, instead of restricting handled
expressions. While this approach allows polymorphic expressions to use any polymorphic
effect, it requires all effect handlers to meet the proposed typing discipline. That is, effects
implemented with effect handlers violating the discipline cannot be used anywhere—even
in monomorphic contexts, although the use of polymorphic effects in such contexts should
be safe (Tofte, 1990).

2.4 Our work: Signature restriction

This work takes a new approach to ensuring the safety of any call of an operation. Instead
of restricting how it is used or implemented, we restrict its type signature: An operation op
: ∀α. A ↪→ B should not have a “bad” occurrence of α in A or B. We refer to this restriction
as signature restriction.

To see how the signature restriction works, let us explain why type preservation is
not easy to prove with the following example, where type abstraction �β. M and type
application M{A} are explicit for the ease of readability:

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

12 T. Sekiyama et al.

handle let f = �β. #op{β}(v) in M with H .

Here, we suppose the type signature of op to be ∀α. A ↪→ B. Notice that the type variable
α in the signature ∀α. A ↪→ B is instantiated to β, which is locally bound by �β. Handling
of operation op constructs the following delimited continuation:

c
def= handle let f = �β. [] in M with H .

The problem is that an appropriate type cannot be assigned to it under the typing context
of the handler H : the type of the hole should be B[β/α], but the type variable β is not in
the scope of H . This is a kind of scope extrusion. We have focused on the scope extrusion
via the continuation, but the operation argument v may cause a similar problem when its
type A[β/α] contains the type variable β.

This analysis suggests that polymorphic operations instantiated with closed types, i.e.,
types without free type variables (especially β here), are safe to be performed because then
the types of the hole and the operation argument should not contain β and, thus, the contin-
uation and the argument could be typed under the typing context of H .7 However, allowing
only instantiation with closed types is too restrictive. For example, it even disallows a
function λx. #select(x) wrapping select to have a polymorphic type ∀α. α list→ α

because, for the function to have this type, the bound type variable of the type signature of
select has to be instantiated with a non-closed type α.

As another solution to the scope extrusion, we introduce strong signature restriction,
which requires that, for each polymorphic operation op : ∀α. A ↪→ B, the type variable α

occur only negatively in A and only positively in B. This is a sufficient condition to prove
type preservation. Consider, for example, the expression

M1
def= handle let f = �β1 . . . βn. #op{C}(v) in M with H

where v is a value and C is a type with free type variables β1, . . . , βn. The idea is to rewrite
this expression, immediately before the call of op, to

M ′
1

def= handle let f = �β1 . . . βn. #op{∀β1 . . . βn.C}(v) in M with H

(where the rewritten part is shaded). In M ′
1, because the type variable α in op : ∀α. A ↪→ B

is instantiated with a closed type ∀β1 . . . βn. C, this operation call should be safe provided
that M ′

1 is well typed. This expression is indeed typable if the strong signature restriction
is enforced, as seen below. To ensure that M ′

1 is typable, we need to have

v : A[∀β1 . . . βn. C/α] (for typing #op {∀β1 . . . βn. C}(v))
#op {∀β1 . . . βn. C}(v) : B[C/α] (for type preservation) .

7 More precisely, (the typing derivation for) the argument may refer to free type variables even when the type of
the argument does not. However, we could address this situation successfully by eliminating them with closing
type substitution as in Sekiyama and Igarashi (2019).

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 13

To this end, we employ type containment (Mitchell, 1988), which is also known as “sub-
typing for second-order types” (Tiuryn and Urzyczyn, 1996). Type containment � accepts
the following key judgments:

A[C/α] � A[∀β1 . . . βn. C/α]

B[∀β1 . . . βn. C/α] � B[C/α] ,

which follow from the acceptance of type instantiation (∀β1 . . . βn. C) � C and the
strong signature restriction which assumes that α occurs only negatively in A and
only positively in B. Since M1 is typable, we have v : A[C/α] and, by subsump-
tion, v : A[∀β1 . . . βn. C/α]. Therefore, the operation #op{∀β1 . . . βn. C} is applicable
to v and we have #op{∀β1 . . . βn. C}(v) : B[∀β1 . . . βn. C/α]. Again, by subsumption,
#op{∀β1 . . . βn. C}(v) : B[C/α] as desired. Therefore, M ′

1 is also typable. Note that the
translation from M1 to M ′

1 does not change the underlying untyped term, but only the types
of (sub)expressions; hence, if M ′

1 does not get stuck, neither does M1.
However, the strong signature restriction is still unsatisfactory in that the type signa-

tures of many operations do not conform to it. For example, the signature of select :
∀α. α list ↪→ α in Section 2.2 does not satisfy the requirement of the strong signature
restriction, which disallows the positive occurrences of bound type variables in parameter
types (the left-hand side of ↪→).

Signature restriction is a relaxation of the strong signature restriction, allowing the type
variable α in the signature ∀α. A ↪→ B to occur at strictly positive positions in A in addition
to negative positions. The proof of type preservation in this generalized case is essentially
the same as above but two changes. First, we close the value v by quantifying the type
variables β1, . . . , βn. Namely, we further rewrite M ′

1 to

handle let f = �β1 . . . βn. #op{ ∀β1 . . . βn. C}(�β1 . . . βn.v) in M with H .

Second, we use the following type containment for the parameter type A:

∀β1 . . . βn. A[C/α] � A[∀β1 . . . βn. C/α] ,

which is derivable using the polarity conditions of the signature restriction and an
additional type containment rule, known as the distributive law:

∀α. A → B � A → ∀α. B (if α does not occur free in A) .

The signature restriction is relaxed enough to accept many useful effects. For example,
the type signature of select conforms to the signature restriction—α only occurs at a
strictly positive position in the parameter type α list. As a result, we can ensure the safety
of the calls to select in polymorphic expressions. Nevertheless, the signature restriction
is still sound in that it rejects unsafe operations. For example, get_id does not conform to
the signature restriction because, in its type signature ∀α. unit ↪→ (α → α), the bound
type variable α occurs negatively in the arity type α → α.

The signature restriction has the following advantages over the previous approaches. By
contrast with the approaches that restrict the use of effects, it allows polymorphic expres-
sions to invoke any effect meeting the required restriction. By contrast with the approach
that restricts effect handlers, the signature restriction is easily adaptable to allow the use of
any polymorphic effect in monomorphic contexts, as shown in Section 6. Furthermore, the

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

14 T. Sekiyama et al.

Fig. 1. Syntax of λeff.

signature restriction is easy to understand once one admits the notion of polarities of type
variables.

3 A λ-Calculus with algebraic effects and handlers

This section defines the syntax and semantics of our base language λeff, a λ-calculus
extended with algebraic effects and handlers. They are based on those of the core calculus
of the language Koka (Leijen, 2017). The only difference is that the Koka core calcu-
lus is equipped with let-expressions whereas λeff is not because we focus on implicit full
polymorphism, rather than only on let-polymorphism. We will present a polymorphic type
system for λeff that takes into account signature restriction in Section 4.

3.1 Syntax

Figure 1 presents the syntax of λeff. We use the metavariables x, y, z, f , k for variables
and op for effect operations. Our language λeff is parameterized over constants, which are
ranged over by c and may include basic values, such as Boolean and integer values, and
basic operations for them, such as not, +, −, mod, etc.

Terms, ranged over by M , are from the λ-calculus, augmented with constructs for
algebraic effects and handlers. They are composed of: variables; constants; lambda abstrac-
tions λx.M , where variable x is bound in M ; function applications M1 M2; operation calls
#op(M) with arguments M ; and handle–with expressions handle M with H , which install a
handler H to interpret effect operations performed during the evaluation of M . A resump-
tion expression resume M that appears in Section 2 is the syntactic sugar of function
application k M where k is a variable that denotes delimited continuations and is intro-
duced by an operation clause in a handler (we will see the definition of operation clauses
shortly). The definition of evaluation contexts, ranged over by E, is standard; it indicates
that the semantics of λeff is call-by-value and terms are evaluated from left to right.

Handlers, ranged over by H , consist of a single return clause and zero or more operation
clauses. A return clause takes the form return x → M , where x is bound in M . The body
M is evaluated once a handled expression produces a value, to which x is bound in M . An
operation clause op(x, k) → M , where x and k are bound in M , is an implementation of
the effect operation op. The body M is evaluated once a handled expression performs op,
referring to the argument of op by x. Variable k denotes the delimited continuation from the
point where op is called up to the handle–with expression that installs the operation clause.
We suppose that a handler may contain at most one operation clause for each operation.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 15

Fig. 2. Semantics of λeff.

Here, we introduce a few notions about syntax; they are standard, and therefore we omit
their formal definitions. We write M1[M2/x] for the term obtained by substituting M2 for x
in M1 in a capture-avoiding manner. A term M is closed if it has no free variable. We also
write E[M] and E[E′] for the term and evaluation context obtained by filling the hole of E
with M and E′, respectively.

3.2 Semantics

This section defines the semantics of λeff. It consists of two binary relations over closed
terms: the reduction relation �, which gives the notion of basic computation such as
β-reduction, and the evaluation relation −→, which defines how to evaluate programs
(namely, closed terms). These relations are defined by the rules shown in Figure 2.

The reduction relation is defined by four rules. The rule (R_CONST) is for constant appli-
cations. The semantics of functional constants are given by ζ , which is a partial mapping
from pairs of a constant c and a value v to the value that is the result of applying c to v.
A function application (λx.M) v reduces to M[v/x], as usual, by (R_BETA). The other two
rules are for computation in terms of algebraic effects and handlers. The rule (R_RETURN)
is for the case that a handled expression evaluates to a value. In such a case, the return
clause of the installed handler is evaluated with the value of the handled expression. We
write H return for the return clause of a handler H . The rule (R_HANDLE) is the core of
effectful computation in algebraic effects and handlers. It looks for an operation clause to
interpret an operation invoked by a handled expression. The redex is a handle–with expres-
sion that takes the form handle E[#op(v)] with H where the handled expression E[#op(v)]
performs the operation op and E does not install handlers to interpret it. We call evaluation
contexts that install no handler to interpret op op-transparent, which is formally defined as
follows.

Definition 1 (op-transparent evaluation contexts). Evaluation context E is op-transparent,
written op 	∈ E, if and only if, there exist no E1, E2, and H such that E =
E1[handle E2 with H] and H has an operation clause for op.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

16 T. Sekiyama et al.

Fig. 3. The type language.

We also denote the operation clause for op in H by H(op). Then, the conjunction
of op 	∈ E and H(op) = op(x, k) → M in (R_HANDLE) means that the operation clause
op(x, k) → M installed by the handle–with expression is the innermost among the opera-
tion clauses for op from the point at which op is invoked. The handle–with expression with
such an operation clause reduces to the body M of the operation clause after substituting
the argument v of the operation call for x and the functional representation of the delimited
continuation λy.handle E[y] with H for k.

The evaluation proceeds according to the evaluation rule (E_EVAL) in Figure 2. A pro-
gram is decomposed into the evaluation context E and the redex M1 and evaluates to the
term E[M2] obtained by filling the hole of E with the reduction result M2 of the redex M1.

4 A polymorphic type system for signature restriction

This section defines a polymorphic type system for λeff that incorporates subsumption by
type containment. We then formalize signature restriction and show that the type system
is sound if all operations satisfy signature restriction. The type system in this section does
not track effect information for simplicity. Therefore, a well-typed program may terminate
at an unhandled operation call; we will present an effect system that can reject programs
causing unhandled operation calls in Section 6.

4.1 Type language

Figure 3 presents the type language of the polymorphic type system. It is the same as that
of System F (Reynolds, 1974; Girard, 1972) with base types. We use metavariables α, β,
γ for type variables and ι for base types such as bool and int. Types, ranged over by A,
B, C, D, consist of: type variables; base types; function types A → B; and polymorphic
types ∀ α. A, where type variable α is bound in type A. Typing contexts, ranged over by

, are sequences of bindings of variables coupled with their types and type variables. We
suppose that the metafunction ty assigns to each constant c a first-order closed type ty(c) of
the form ι → · · · → ιn. We state the assumption on the consistency between the types and
semantics of constants later (Assumption 1).

We use the following shorthand and notions. We write αI for α = α1, · · · , αn with the
index set I = {1, ..., n}. We apply this bold-font notation to other syntax categories as well.
For example, AI denotes a sequence of types. We often omit the index sets (I , J , K) if
they are clear from the context or irrelevant. For instance, we may abbreviate αI to α. We
also write ∀ αI . A for ∀α1. ... ∀αn. A with I = {1, ..., n}. We may omit the index sets and
write ∀ α. A simply. We write ∀ αI . AJ for a sequence of types ∀ αI . A1, . . . , ∀ αI . An with
J = {1, . . . , n}. The notions of free type variables and capture-avoiding type substitution

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 17

are defined as usual. We write ftv(A) for the set of free type variables of type A and A[B/α]
for the type obtained by substituting each type of the sequence B for the corresponding
type variable of the sequence α simultaneously (here we suppose that B and α share the
same, omitted index set).

4.2 Polymorphic type system

We present a polymorphic type system for λeff, which consists of four judgments: well-
formedness judgment

, which states that a typing context
 is well formed; type
containment judgment

 A � B, which states that, for the types A and B, which are
assumed to be well formed under
, the inhabitants of A are contained in B; term typ-
ing judgment

 M : A, which states that term M evaluates to a value of type A after
applying an appropriate substitution for variables and type variables in
; and handler typ-
ing judgment

 H : A ⇒ B, which states that handler H handles operations called by a
handled term of type A and produces a value of type B after applying appropriate substi-
tution according to
 (we refer to A and B as the input and output types of the handler,
respectively). These judgments are defined as the smallest relations that satisfy the rules in
Figure 4.

The well-formedness rules are standard. A typing context is well formed if (1) vari-
ables and type variables bound by it are unique and (2) it assigns well-formed types to
the variables. We write dom(
) for the set of variables and type variables bound by
. A
type A is well formed under typing context
, which is expressed by

 A, if and only if
ftv(A) ⊆ dom(
) (i.e.,
 binds all of the free type variables in A).

The type containment rules originate from the work of Tiuryn and Urzyczyn (1996),
which simplifies the rules of type containment of Mitchell (1988). The rules (C_REFL)
and (C_TRANS) indicate that type containment is a preorder. The rule (C_INST) instan-
tiates polymorphic types with well-formed types. The rule (C_GEN) may add a universal
quantifier ∀ if the quantifier does not bind free type variables. The rules (C_POLY) and
(C_FUN) are for compatibility; note that type containment is a kind of subtyping and hence
it is contravariant on the domain types of function types. The rule (C_DFUN) is a simplified
version (Tiuryn and Urzyczyn, 1996) of the original “distributive” law (Mitchell, 1988),
which is the core of type containment. This rule allows ∀ that quantifies a function type to
move to its codomain type if the quantified type variable does not occur free in the domain
type. This rule is justified by the fact that we can supply a function from ∀ α. A → B to
A → ∀ α. B in System F and the result of applying type erasure to it is equivalent to the
identity function (Mitchell, 1988). This rule is crucial for allowing the parameter type of
a type signature to refer to quantified type variables in strictly positive positions, which
makes signature restriction permissive.

The typing rules for terms are almost standard, coming from Mitchell (1988) for poly-
morphism and Plotkin and Pretnar (2013) for effects. The rule (T_INST) converts types by
type containment. The rule (T_OP) is for operation calls. We formalize a type signature of
an operation as follows.

Definition 2 (Type signature). The metafunction ty assigns to each effect operation op
a type signature ty (op) of the form ∀α1. ... ∀αn. A ↪→ B for some n, where α1, ..., αn are

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

18 T. Sekiyama et al.

Fig. 4. Polymorphic type system for λeff.

bound in the parameter type A and arity type B. It may be abbreviated to ∀ αI . A ↪→ B
or, more simply, to ∀ α. A ↪→ B. We suppose that ∀α1. ... ∀αn. A ↪→ B is closed, i.e.,
ftv(A), ftv(B) ⊆ {α1, · · · , αn}.

We note that parameter and arity types may involve polymorphic types.
The rule (T_OP) instantiates the type signature of the operation with well-formed

types and checks that an argument is typed at the parameter type of the instantiated
type signature. We use notation

 C for the conjunction of

 C1, · · ·,

 Cn when
C = C1, · · ·, Cn.

The typing rules for handlers are also ordinary (Plotkin and Pretnar, 2013). A return
clause return x → M is typechecked by (TH_RETURN), which allows the body M to
refer to the values of the handled expression via bound variable x. An operation clause

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 19

op(x, k) → M is typechecked by (TH_OP). Let the type signature of op be ∀ α. C ↪→ D. In
typechecking M , variable x is assumed to have the parameter type C since variable x will
be bound to the arguments to the operation op. Variable k is given type D → B where the
type B is the output type of the handler. This is because k will be bound to the functional
representations of delimited continuations such that: the delimited continuations suppose
that their holes are filled with values of the arity type D of the type signature; and they are
wrapped by the handle–with expression installing the handler and therefore they would
produce values of the type B.

4.3 Desired properties for type soundness

As mentioned in Section 2.3, the polymorphic type system is unsound—a well-typed pro-
gram can get stuck—if we impose no further restriction on it. This section details the proof
sketch of type preservation provided in Section 2.4 and formulates two propositions such
that they do not hold in the polymorphic type system but, if they did, the type system
would be sound. In Section 4.4.2, we show that the propositions hold if all operations
satisfy signature restriction.

We start by considering an issue that arises when proving soundness of the polymorphic
type system. This issue relates to the handling of an operation call by (R_HANDLE), which
enables the following reduction:

handle E[#op(v)] with H�M[v/x][λy.handle E[y] with H/k] (4.1)

where op 	∈ E and H(op) = op(x, k) → M . The problem is that the RHS term does not
preserve the type of the LHS term. If this type preservation were successful, we would
be able to prove soundness of the polymorphic type system, but it is contradictory to the
existence of the counterexample presented in Section 2.3.

A detailed investigation of this problem reveals two propositions that are lacking but
sufficient to make the polymorphic type system sound.

Proposition 1. If ty (op) = ∀ αI . A ↪→ B and

 M : ∀ βJ . A[CI/αI], then

 M :
A[∀ βJ . CI/αI].

Proposition 2. If ty (op) = ∀ αI . A ↪→ B and

 M : B[∀ βJ . CI/αI], then

 M :
∀ βJ . B[CI/αI].

In what follows, we show how these two propositions allow us to prove type soundness.
Before that, we first fix and examine the type information of the terms appearing in the
LHS term of reduction (4.1). Assume that ty (op) = ∀ αI . A ↪→ B and that the LHS term
has a type D under a typing context
. We can then find that

, αI , x : A, k : B → D
 M : D (4.2)

must have held by the use of the typing rule (TH_OP). Turning to the handled expression
E[#op(v)], we can find two facts about the typing judgment for the value v. The first fact
originates from (T_OP): since the value v is an argument of operation op, it should be of
type A[CI/αI], which is a type obtained by substituting certain types CI for type variables

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

20 T. Sekiyama et al.

αI in the parameter type A of the operation op. The second is from (T_GEN), which allows
the generalization of types anywhere. Thus, the value v is well typed under a typing con-
text
, βJ , an extension of
 with some type variables βJ (note that I 	= J in general). In
summary, the typing judgment for the value v takes the following form:

, βJ
 v : A[CI/αI] . (4.3)

Now, we show that Proposition 1 makes M[v/x] typed at the type D. First, we can derive

 v : ∀ βJ . A[CI/αI]

by the typing derivation of judgment (4.3) and (T_GEN). Proposition 1 enables us to prove

 v : A[∀ βJ . CI/αI] . (4.4)

We can also derive

, x : A [∀ βJ . CI/αI], k : B[∀ βJ . CI/αI] → D
 M : D

by substituting ∀ βJ . CI for αI in the typing judgment (4.2); note that the type variables
in αI do not occur free in D because they are bound by the type signature. Thus, we can
derive

, k : B[∀ βJ . CI/αI] → D
 M[v/x] : D (4.5)

using an ordinary substitution lemma with the derivation for judgment (4.4).
Next, we show that Proposition 2 makes M[v/x][λy.handle E[y] with H/k] typed at the

type D. This is possible if

 λy.handle E[y] with H : B[∀ βJ . CI/αI] → D

is derivable, jointly with the derivation of typing judgment (4.5). Namely, it suffices to
derive

, y : B [∀ βJ . CI/αI]
 handle E[y] with H : D .

By an observation similar to the value v, we find that #op(v) is typed at the type B[CI/αI]
under
, βJ (note that B is the arity type of op). Thus, for the above typing judgment to
hold, it suffices for the variable y to have the same type as #op(v). Hence, we will derive

, y : B [∀ βJ . CI/αI], βJ
 y : B[CI/αI] . (4.6)

Because
, y : B [∀ βJ . CI/αI], βJ
 y : B[∀ βJ . CI/αI], we can derive

, y : B [∀ βJ . CI/αI], βJ
 y : ∀ βJ . B[CI/αI]

by Proposition 2. Furthermore, by instantiating ∀ βJ . B[CI/αI] to B[CI/αI] with βJ in the
typing context, we have succeeded in deriving the typing judgment (4.6).

Thus, if Propositions 1 and 2 held, we could derive

 M[v/x][λy.handle E[y] with H/k] : D .

The polymorphic type system in Section 4.2 does not actually support these properties, but
imposing signature restriction produces a type system that does.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 21

4.4 Signature restriction

This section formalizes signature restriction for λeff and shows that it implies
Propositions 1 and 2.

4.4.1 Definition

As described in Section 2.4, signature restriction rests on the polarity of the occurrences of
quantified type variables in a type signature. The polarity is defined in a standard manner,
as follows.

Definition 3 (Polarity of type variable occurrence). The sets ftv(A)+ and ftv(A)− of type
variables that occur positively and negatively, respectively, in type A are defined by
induction on A, as follows.

ftv(α)+ def= {α}
ftv(α)− def= ∅
ftv(A → B)± def= ftv(A)∓ ∪ ftv(B)±

ftv(∀ α. A)± def= ftv(A)± \ {α}
The set ftv(A)+ns of type variables that occur non-strictly positively in type A is defined

as follows.

ftv(α)+ns
def= ∅

ftv(A → B)+ns
def= ftv(A)− ∪ ftv(B)+ns

ftv(∀ α. A)+ns
def= ftv(A)+ns \ {α}

Now, we define signature restriction. We write {αI} to view the sequence αI as a set by
ignoring the order.

Definition 4 (Signature restriction). An operation op with type signature ty (op) =
∀ α. A ↪→ B satisfies the signature restriction if and only if: (1) the occurrences of each
type variable of α in the parameter type A are only negative or strictly positive (i.e.,
{α} ∩ ftv(A)+ns = ∅) and (2) the occurrences of each type variable of α in the arity type B
are only positive (i.e., {α} ∩ ftv(B)− = ∅).

The signature restriction allows quantified type variables to occur at strictly positive
positions of the parameter type of a type signature. This is crucial for some operations, such
as select, to conform to signature restriction. The rule (C_DFUN) plays an important role
to permit this capability, as seen in the next section.

We can easily confirm whether an operation satisfies the signature restriction. For exam-
ple, it is easy to determine that get_id does not satisfy the signature restriction: since its
type signature is ∀ α. unit ↪→ α → α, the quantified type variable α occurs not only at a
positive position but also at a negative position in the arity type α → α. By contrast, the
operations raise and fail given in Section 2 satisfy the signature restriction because their
type signature ∀ α. unit ↪→ α meets the conditions in Definition 4. To determine whether
select satisfies the signature restriction, we need to extend λeff and the polymorphic type

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

22 T. Sekiyama et al.

system by introducing other programming constructs such as lists. Particulars of this exten-
sion are presented in Section 5, but, briefly speaking, the type signature ∀ α. α list ↪→ α of
select satisfies the signature restriction because the type variable α occurs only strictly
positively in the parameter type α list and only positively in the arity type α.

4.4.2 Proofs of the desired properties

The signature restriction enables us to prove Propositions 1 and 2, which are crucial to
show that reduction preserves typing. Below is the key lemma for that.

Lemma 1. Assume that

 and α 	∈ ftv(A).

1. If β 	∈ ftv(A)+ns, then

 ∀ α. A[B/β] � A[∀ α. B/β].
2. If β 	∈ ftv(A)−, then

 A[∀ α. B/β] � ∀ α. A[B/β].

This lemma means that an operation op conforming to the signature restriction sat-
isfies Propositions 1 and 2. For Proposition 1: assume ty (op) = ∀ αI . A ↪→ B and

M : ∀ βJ . A[CI/αI]; since op satisfies the signature restriction, we can apply case (1)
of Lemma 1, which implies

 ∀ βJ . A[CI/αI] � A[∀ βJ . CI/αI]; thus, we can derive

 M : A[∀ βJ . CI/αI] by (T_INST). Proposition 2 is proven similarly by using case (2)
of Lemma 1 instead of case (1).

We start by proving that any type A can be regarded as a type constructor contravariant
and covariant with respect to a type variable α if α occurs only negatively and positively,
respectively, in A.

Lemma 2. Assume that

 B � C.

1. If α 	∈ ftv(A)+, then

 A[C/α] � A[B/α].
2. If α 	∈ ftv(A)−, then

 A[B/α] � A[C/α].

Proof Straightforward by induction on A. �

Now, we prove Lemma 1 (2) using Lemma 2, and then Lemma 1 (1) using Lemma 1 (2)
and (C_DFUN), which is the key rule for the signature restriction to allow strictly positive
occurrences of quantified type variables in the parameter type of a type signature.
Proof of Lemma 1 (2). By (C_TRANS), it suffices to show that

 A[∀ α. B/β] �
∀ α. A[∀ α. B/β] and

 ∀ α. A[∀ α. B/β] � ∀ α. A[B/β]. The former is derived by
(C_GEN). The latter is derived as follows, where we have

, α because we can assume
that α 	∈ dom(
) without loss of generality:

, α

, α
 ∀ α. B � B
(C_INST)

, α
 A[∀ α. B/β] � A[B/β]
by Lemma 2

 ∀ α. A[∀ α. B/β] � ∀ α. A[B/β]
(C_POLY)

�

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 23

Proof of Lemma 1 (1). By induction on type A. Here, we consider only the interesting
cases: A is a function type or a polymorphic type; see the supplementary material for the
other cases.

Case A = C → D for some C and D: By the assumption β 	∈ ftv(A)+ns = ftv(C → D)+ns,
we have β 	∈ ftv(C)− and β 	∈ ftv(D)+ns. By (C_TRANS), it suffices to show the
following two type containment judgments:

 ∀ α. C[B/β] → D[B/β] � (∀ α. C[B/β]) → ∀ α. D[B/β]

 (∀ α. C[B/β]) → ∀ α. D[B/β] � C[∀ α. B/β] → D[∀ α. B/β] .

The former is derived using (C_TRANS) with the following two derivations:

, α

, α
 ∀ α. C[B/β] � C[B/β]
(C_INST)

, α

, α
 D[B/β] � D[B/β]
(C_REFL)

, α
 C[B/β] → D[B/β] � (∀ α. C[B/β]) → D[B/β]
(C_FUN)

 ∀ α. C[B/β] → D[B/β] � ∀ α. (∀ α. C[B/β]) → D[B/β]
(C_POLY)

and

 α 	∈ ftv(∀ α. C[B/β])

 ∀ α. (∀ α. C[B/β]) → D[B/β] � (∀ α. C[B/β]) → ∀ α. D[B/β]
(C_DFUN)

.

The latter is derived as follows:

β 	∈ ftv(C)−

 C[∀ α. B/β] � ∀ α. C[B/β]
by Lemma 1 (2)

β 	∈ ftv(D)+
ns

 ∀ α. D[B/β] � D[∀ α. B/β]
by the IH

 (∀ α. C[B/β]) → ∀ α. D[B/β] � C[∀ α. B/β] → D[∀ α. B/β]
(C_FUN)

Note that α 	∈ ftv(C) ∪ ftv(D) = ftv(A).
Case A = ∀ γ . C for some γ and C: Without loss of generality, we can assume that γ 	∈

{α, β} ∪ dom(
) ∪ ftv(B). Because β 	∈ ftv(A)+ns, we have β 	∈ ftv(C)+ns. Furthermore,

, γ as

, and α 	∈ ftv(C) as α 	∈ ftv(A). Thus, by the IH,
, γ
 ∀ α. C[B/β] �
C[∀ α. B/β]. By (C_POLY),

 ∀ γ .∀ α. C[B/β] � ∀ γ . C[∀ α. B/β]. Because the type
containment allows the commutation of universal quantifiers (see Lemma 9 in the sup-
plementary material for detail), we have

 ∀ α.∀ γ . C[B/β] � ∀ γ .∀ α. C[B/β]. Thus,
by (C_TRANS),

 ∀ α.∀ γ . C[B/β] � ∀ γ . C[∀ α. B/β], that is,

 ∀ α. A[B/β] �
A[∀ α. B/β].

�

4.5 Type soundness

This section shows soundness of the polymorphic type system under the assumption that
all operations satisfy the signature restriction. As usual, our proof rests on two properties:
progress and subject reduction (Wright and Felleisen, 1994). As discussed in Sections 4.3
and 4.4, the signature restriction, together with type containment, enables us to prove
subject reduction.

Type containment is thus a key notion to prove type soundness, but proving its inver-
sion properties is complicated. In the literature (Peyton Jones et al., 2007; Dunfield and

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

24 T. Sekiyama et al.

Krishnaswami, 2013), type soundness of a language with subtyping based on type contain-
ment has been shown by translation to another language—typically, System F—where the
use of subtyping is replaced by “coercions” (i.e., certain term representations for type con-
version by subtyping). This approach is acceptable in the prior work because the semantics
of the source language is determined by the target language. However, this approach is not
acceptable in our setting because the terms checked by our type system should be inter-
preted by the semantics of λeff as they are. We thus show soundness of the polymorphic
type system directly, without translation to other languages.

The most difficult property to prove is the inversion of type containment judgments
relating function types.

Lemma 3 (Type containment inversion: monomorphic function types). If

 A1 → A2 �
B1 → B2, then

 B1 � A1 and

 A2 � B2.

We cannot prove this lemma as it is by induction on the derivation of

 A1 → A2 �
B1 → B2 because a premise in the derivation may relate the (monomorphic) function type
on one side to a polymorphic function type on the other side. Thus, we need to general-
ize the assumption to a type containment judgment that may relate polymorphic function
types:

 ∀ αI . A1 → A2 � ∀ βJ . B1 → B2. By investigating the type containment rules,
we find that αI is split into three sequences α

I01
01 , α

I02
02 , and α

I03
03 depending on how the rules

handle the type variables in αI : those of α
I01
01 stay in βJ ; those of α

I02
02 are quantified in the

return type B2; and those of α
I03
03 are instantiated with some types CI03

0 . Furthermore, we
have to take into account certain, unrevealed type variables γ K that initially emerge at the
outermost position by (T_GEN) and are subsequently distributed into subcomponent types.
For example:

A1 → A2 � ∀ γ . A1 → A2 � (∀ γ . A1) → (∀ γ . A2)

where γ 	∈ ftv(A1) ∪ ftv(A2).
These observations are formulated in the following inversion lemma for type contain-

ment, which implies Lemma 3. We write {αI} � {βJ } for the union of disjoint sets {αI}
and {βJ }.

Lemma 4 (Type containment inversion: polymorphic function types). If

 ∀ αI . A1 →
A2 � ∀ βJ . B1 → B2, then there exist α

I1
1 , α

I2
2 , γ K, and CI1 such that

• {αI} = {αI1
1 } � {αI2

2 },
•
, βJ , γ K
 CI1 ,
•
, βJ
 B1 � ∀ γ K . A1[CI1/α

I1
1],

•
, βJ
 ∀ α
I2
2 .∀ γ K . A2[CI1/α

I1
1] � B2, and

• {γ K} ∩ (ftv(A1) ∪ ftv(A2)) = ∅.

In the statement, the sequence α
I2
2 corresponds to α

I02
02 in the above informal description

and α
I1
1 includes the type variables that remain in βJ (i.e., α

I01
01) and those instantiated

with some types in CI1 (i.e., α
I03
03). Type substitution [CI1/α

I1
1] replaces a type variable in

α
I01
01 with itself. We omit the detailed proof of Lemma 4 from the article because of its

complexity; interested readers are referred to the supplementary material.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 25

Now, we show progress, subject reduction, and type soundness. In what follows, the
metavariable � ranges over typing contexts that consist only of type variable bindings.
Note that the polymorphic type system is not equipped with a mechanism to track effects,
so the operations that are carried out may not be handled. For proving progress and subject
reduction, we assume the consistency between the type and semantics of every functional
constant as follows.

Assumption 1. We assume the following for any constants c1 and c2: (1) ζ (c1, c2) is
defined if and only if ty(c1) = ι → A and ty(c2) = ι for some ι and A; and (2) if ζ (c1, c2)
is defined, ζ (c1, c2) is a constant and ty(ζ (c1, c2)) = A where ty(c1) = ι → A for some ι

and A.

Lemma 5 (Progress). If �
 M : A, then:

• M −→ M ′ for some M ′;
• M is a value; or
• M = E[#op(v)] for some E, op, and v such that op 	∈ E.

Lemma 6 (Subject reduction). Assume that all operations satisfy the signature restriction.

1. If �
 M1 : A and M1�M2, then �
 M2 : A.
2. If �
 M1 : A and M1 −→ M2, then �
 M2 : A.

Proof By induction on the typing derivation for M1. The only interesting cases are for
function applications and handle–with expressions. The case for function applications uses
Lemma 4 to relate the type information of function bodies to that of function applications.
The case for handle–with expressions is proven as described in Section 4.3 with Lemma 1.
We refer to the supplementary material for the details of the proof. �

We write −→∗ for the reflexive, transitive closure of −→ and M 	−→ to mean that there
exists no term M ′ such that M −→ M ′.

Theorem 1 (Type soundness). Assume that all operations satisfy the signature restriction.
If �
 M : A and M −→∗ M ′ and M ′ 	−→, then:

• M ′ is a value; or
• M ′ = E[#op(v)] for some E, op, and v such that op 	∈ E.

Proof By progress (Lemma 5) and subject reduction (Lemma 6). �

4.6 Is it possible to relax the signature restriction further?

It is natural to ask whether the signature restriction can be further relaxed. This section
examines the condition of strictly positive occurrences of quantified type variables on
parameter types (Section 4.6.1) and other criteria for the cases that, given a type signature,
its bound type variables occur only in the parameter type (Section 4.6.2) or in the arity type
(Section 4.6.3).

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

26 T. Sekiyama et al.

4.6.1 The condition of strictly positive occurrences is necessary

Consider a type signature ∀ α. A ↪→ B. We show that a nonstrictly positive occurrence of
α in the parameter type A is problematic. Let us consider a calculus with int, bool, and
sum types D1 + D2 for simplicity (we write inl M and inr M for injection into sum types).
Consider an operation op of the signature ∀ α. ((α → int) → α) ↪→ α and let

v
def= λf .λx.inr (f (λy.inl x)) : ((β → (β + int)) → int) → (β → (β + int))

M
def= let g = #op(v) in case g 0 of inl z → z; inr z → E[g true] : int,

where E is an evaluation context such that x : bool + int
 E[x] : int and E[inr true] causes
a run-time error (it is easy to construct such E). It is not difficult to check that M has
type int. In #op(v), the type variable α bound by the type signature is instantiated with
β → (β + int), and thus g has type ∀ β. β → (β + int). The type variable β is instantiated
with int in g 0 and with bool in g true. Then the counterexample is given by

handle M with return x → x; op(x, k) → k (x k) : int,

which is reduced to handle E[inr true] with return x → x; op(x, k) → k (x k) and causes an
error.

4.6.2 Further relaxation for closed arity types is possible

Consider an operation op : ∀α. A ↪→ B where the type variable α does not appear in the
arity type B. This operation can be regarded as being safe even if α occurs nonstrictly
positively in the parameter type A. This is justified by a simple program transformation,
regarding the polymorphic operation op : ∀α. A ↪→ B as a monomorphic operation op’ :
(∃α.A) ↪→ B.8 To justify this translation, a key observation is that, if α has no occurrence in
a type D, the polymorphic function type ∀α. C → D is isomorphic to the type (∃α. C) → D
in the sense that a term of the former type also has the latter type.

• For a caller of the operation, the operation op is seen as a term of type ∀α. A → B;
the translation replaces a term op of a type ∀α. A → B by another term op’ of an
isomorphic type (∃α.A) → B and hence preserves the typability of the caller.

• A handler of op : ∀α. A → B is essentially a term of type ∀α. A → ((B → C) → C)
where C is the output type of the handler, which has no occurrence of α, and B → C
is the type of continuations. Similarly, a handler of op’ is a term of type (∃α.A) →
((B → C) → C). Since the two types for handlers are isomorphic, the translation
preserves the typability of handlers as well.

In general, given an operation op : ∀β1 . . . βm.∀α1 . . . αn. A ↪→ B where the type variables
α1, . . . , αn do not appear in the arity type B, it suffices for the safety of the operation to
check whether ∀β1 . . . βm.(∃α1 . . . αn. A) ↪→ B satisfies the signature restriction.

4.6.3 Further relaxation for closed parameter types is harder

One may expect that the safety of an operation op : ∀α. A ↪→ B where the type variable
α does not appear in the parameter type A is reducible to the safety of op’ : A ↪→ (∀α.B).

8 We assume a calculus extended with existential types here and in Section 7.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 27

Unfortunately, this is not true. A counterexample is get_id : ∀α. unit ↪→ (α → α) and
get_id’ : unit ↪→ (∀α.α → α), of which the former is unsafe as we have seen but the
latter is safe by the signature restriction. Actually, the translation replacing op with op’
does not preserve the typability of the handler. A handler of op can be seen as a term of
type

∀α. A → ((B → C) → C),

where the type C is the output type of the handler, the type B → C is of continuations, and
the type variable α never occurs in the output type C. This type is isomorphic to

A → ∀α.((B → C) → C)

and

A → (∃α.(B → C)) → C

but differs from the type for a handler for op’

A → ((∀α.B) → C) → C;

the latter is stronger than the former, i.e., a term of the former type does not necessarily
have the latter type, although the converse implication holds.

5 An extension of λeff

This section demonstrates the extensibility of the signature restriction. To this end, we
extend λeff, the polymorphic type system, and the signature restriction with products,
sums, and lists and show soundness of the extended polymorphic type system under the
extended signature restriction. We also provide a few examples of operations that satisfy
the extended signature restriction.

5.1 Extended language

The extension of λeff and the polymorphic type system is shown in Figures 5 and 6,
in which the extended part of the syntax is highlighted. Terms support: pairs; projec-
tions; injections; case expressions for sums; the nil constant; cons expressions; case
expressions for lists; and the fixed-point operator. A case expression matching injections
case M of inl x → M1; inr y → M2 binds x in M1 and y in M2; a case expression matching
lists case M of nil → M1; cons x → M2 binds x in M2; the fixed-point operator fix f .λx.M
binds f and x in M . Pairs, injections, and cons expressions are values if their immediate
subterms are also values. Types are extended with product types, sum types, and list types.
The extension of evaluation contexts follows that of terms. For the semantics, the reduc-
tion rules for projections, case expressions, and the fixed-point operator are augmented.
The extension of the polymorphic type system is also straightforward. Type containment
is extended by adding six rules: the three rules on the left in Figure 6 are for compatibility
and the three rules on the right are for distributing ∀ over immediate subcomponent types.
All of the additional typing rules are standard.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

28 T. Sekiyama et al.

Fig. 5. The extended part of the syntax and semantics.

Fig. 6. The extended part of the type system.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 29

Remark 1. The type containment rule (C_DSUM) in Figure 6 may look peculiar or
questionable. Actually, there exists no term M in (implicitly typed) System F such
that x : ∀ α. (A + B)
 M : (∀ α. A) + (∀ α. B), and thus the expected coercion function of
(∀ α. (A + B)) → (∀ α. A) + (∀ α. B) is not definable in System F. A justification can be
given by the following fact: for every closed value
 v : ∀ α. (A + B), one has
 v :
(∀ α. A) + (∀ α. B). In fact
 v : ∀ α. (A + B) implies v = inl v′ or inr v′′. Assuming the
former for definiteness, α
 v′ : A and thus
 v′ : ∀ α. A.

We also extend the polarity of the occurrences of a type variable. The polarity of the
occurrences in type variables, function types, and polymorphic types is defined as in
Definition 3 and that in product, sum, and list types is defined as follows.

Definition 5 (Polarity of type variable occurrence in product, sum, and list types). The sets
ftv(A)+ and ftv(A)− of type variables that occur positively and negatively, respectively, in
type A are extended to product types, sum types, and list types, as follows.

ftv(A × B)± def= ftv(A)± ∪ ftv(B)±

ftv(A + B)± def= ftv(A)± ∪ ftv(B)±

ftv(A list)± def= ftv(A)±

The set ftv(A)+ns of type variables that occur nonstrictly positively in type A is extended
as follows.

ftv(A × B)+ns
def= ftv(A)+ns ∪ ftv(B)+ns

ftv(A + B)+ns
def= ftv(A)+ns ∪ ftv(B)+ns

ftv(A list)+ns
def= ftv(A)+ns

The signature restriction for the extended language is defined as in Definition 4 except
that the polarity of occurrences of type variables is defined by both of Definitions 3 and
5. The type soundness of the extended language can be proven, as in Section 4.5, under
the assumption that all operations conform to the signature restriction extended to product,
sum, and list types. See the supplementary material for detail.

5.2 Examples

This section presents two operations that satisfy the signature restriction in the extended
language.

The first example is select, which is an operation given in Section 2.1 for nonde-
terministic computation. The operation has the type signature ∀ α. α list ↪→ α, where the
quantified type variable α occurs only at a strictly positive position in the parameter type
α list and only at a positive position in the arity type α. Thus, select satisfies the signature
restriction and, therefore, it can be safely called by any polymorphic expression.

The second example is from Leijen (2017), who implemented parser combinators using
algebraic effects and handlers. The effect for parsing provides a basic operation satisfy
which has the type signature

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

30 T. Sekiyama et al.

∀ α. (str → (α × str) + unit) ↪→ α

where str is the type of strings. This operation takes a parsing function of str → (α ×
str) + unit such that: the parsing function returns the unit value if an input string does not
conform to the grammar; otherwise, it returns the parsing result of α and the unparsed,
remaining string. The operation satisfy would return the result of parsing if it succeeds.
For example, we can give satisfy a parsing function that returns the first character of a
given input—and returns the unit value if the input is the empty string—as follows:

#satisfy(λx.if (length x) > 0 then inl (first x, last x) else inr ()).

Here: length is a function of str → int that returns the length of a given string; first is
of str → char (char is the type of characters) that returns the first character of a given
string; and last is of str → str that returns the same string as an input except that it does
not contain the first character of the input. In this example, the call of satisfy is of the
type char because the argument function is of the type str → (char × str) + unit, which
requires the quantified type variable α to be instantiated to char. The operation satisfy
satisfies the signature restriction clearly. The quantified type variable α occurs only at a
strictly positive position in the parameter type str → (α × str) + unit of the type signature,
and it also occurs only at a positive position in the arity type α.

6 Cooperation of safe and unsafe effects

This section describes an effect system for λext
eff , which enables the type-safe cooperation

of safe and unsafe effects in a single program. Our effect system allows expressions to
be polymorphic if their evaluation performs only operations that satisfy the signature
restriction. This capability makes it possible for the effect system to incorporate value
restriction—i.e., any value can be polymorphic—because values perform no operation.
The definition of signature restriction changes to take into account effect information on
types. Soundness of the effect system ensures that programs handle all the operations
performed at run time.

Our effect system is inspired by Kammar et al. (2013), where the effect system tracks
invoked effect operations by their names together with their type signatures. There are,
however, two differences between Kammar et al.’s and our effect systems. The first differ-
ence comes from that of the evaluation strategies the calculi adopt: the calculus of Kammar
et al. is based on call-by-push-value (CBPV) (Levy, 2001), and we adopt call-by-value
(CBV). This difference influences the design of effect systems because the two strategies
have different notions for the value representations of suspended computations and effect
systems have to reason about the effects caused by their run. CBPV views functions as (not
suspended) computations, and thus Kammar et al. did not equip function types with effect
information; instead, they augmented the types of thunks (which are value representations
of suspended computations in CBPV) with it. By contrast, because CBV views functions
as values that represent suspended computations, our effect system equips function types
with effect information. The second difference is that we include only operation names
and not their type signatures in the effect information. This is merely for simplifying the
presentation but it makes the calculus nonterminating (Kammar and Pretnar, 2017).

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 31

Fig. 7. The effect system (excerpt).

6.1 Effect system

Figure 7 shows only the key part of the effect system; the full definition is found in the
supplementary material.

The type language includes effect information. Effects, ranged over by ε, are finite sets
of operations. Function types are augmented with effects that may be triggered in applying
the functions of those types.

Typing judgments also incorporate effects. A term typing judgment

 M : A | ε asserts
that M is a computation that produces a value of A possibly with effect ε. A handler typing
judgment

 H : A | ε ⇒ B | ε′ asserts that H handles a computation that produces values
of A possibly with effect ε and the handling produces values of B possibly with effect
ε′. Type containment judgments

 A � B and well-formedness judgments

 take the
same forms as those of the polymorphic type system in Section 4.

Most of the typing rules for terms are almost the same as those of the polymorphic type
system except that they take into account effect information. The rule (TE_APP) shows

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

32 T. Sekiyama et al.

how effects are incorporated into the typing rules: the effect triggered by a term is deter-
mined by its subterms. Besides, (TE_APP) requires effect ε′ triggered by a function to be
a subset of the effect ε of the subterms. The rule (TE_GEN) is the key of the effect system,
allowing a term to have a polymorphic type if it triggers only safe effects. The safety of
an effect ε is checked by the predicate SR (ε), which asserts that any operation in ε sat-
isfies the signature restriction for the type language in Figure 7; we will formalize SR (ε)
after explaining the type containment rules. A by-product of adopting (TE_GEN) is that the
effect system incorporates the value restriction (Tofte, 1990) successfully: it allows values
to have polymorphic types because the values perform no operation (thus, their effects can
be the empty set ∅) and SR (∅) obviously holds. The rule (TE_FIX) gives any effect ε′ to
the fixed-point operator. This means that the fixed-point operator can be viewed as a pure
computation because it only produces a lambda abstraction without triggering effects. The
rule (TE_WEAK) weakens the effect information of a term.

There are two rules for deriving a handler typing judgment

 H : A | ε ⇒ B | ε′. They
state that the effect of a handle–with expression installing H consists of the operations that
the handled expression may call but H does not handle and those that the return clause or
some operation clause of H may call. The effect ε � {op} is the same as ε ∪ {op} except
that it requires op 	∈ ε.

Most of the type containment rules of the effect system are the same as those of
the polymorphic type system. The exception is the rules for function types (C_FUN)
and (C_DFUN), which are replaced by (C_FUNEFF) and (C_DFUNEFF) to take into
account effect information. The rule (C_DFUNEFF) for deriving

 ∀ α. A →ε B � A →ε

∀ α. B has an additional condition that SR (ε) must hold. This condition originates from
(TE_GEN). The rule (C_DFUNEFF) allows that, if a lambda abstraction λx.M has a poly-
morphic type ∀ α. A →ε B, the body M may also have another polymorphic type ∀ α. B. In
general, M may be a nonvalue term. In such a case, only (TE_GEN) justifies that M has a
polymorphic type; however, to apply (TE_GEN) the effect ε triggered by M has to meet
SR (ε). This is the reason why (C_DFUNEFF) requires that SR (ε) hold.

Now, we formalize the predicate SR (ε), which states that any operation in ε satisfies sig-
nature restriction extended by effect information. In what follows, we suppose the notions
of positive/negative/nonstrictly positive occurrences of a type variable for the type lan-
guage in Figure 7; they are defined naturally as in Definitions 3 and 5. In addition, we can
decide whether a type occurs at a strictly positive position in a type by generalizing the
polarity of the occurrences of type variables to those of types.

Definition 6 (Signature restriction on effects). The predicate SR (ε) holds if and only if,
for any op ∈ ε such that ty (op) = ∀ α. A ↪→ B:

• {α} ∩ ftv(A)+ns = ∅;
• {α} ∩ ftv(B)− = ∅; and
• for any function type C →ε′

D occurring at a strictly positive position in the type A,
if {α} ∩ ftv(D) 	= ∅, then SR (ε′).

The first and second conditions of Definition 6 are the same as those of Definition 4,
signature restriction without effect information. The third condition is necessary to apply

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 33

(C_DFUNEFF). The signature restriction in the polymorphic type system allows type
variables α in type signature ∀ α. A ↪→ B to occur at a strictly positive position in the
type A (see Definition 4). As discussed in Section 4.4.2, this capability originates from
(C_DFUN). In the effect system, the counterpart (C_DFUNEFF) is applied to retain this
capability, but (C_DFUNEFF) requires the effect of a function type to satisfy SR. This
is the reason why the signature restriction for the effect system imposes the third condi-
tion. Note that, if {α} ∩ ftv(D) = ∅ (as well as {α} ∩ ftv(C) = ∅), then we can derive

 ∀ α. C →ε′

D � C →ε′ ∀ α. D without (C_DFUNEFF). Thus, the third condition does
not require SR (ε′) if {α} ∩ ftv(D) = ∅.

We finally state soundness of the effect system, which ensures that a well-typed program
handles all the operations performed at run time. We prove it by progress and subject
reduction; their formal statements and proofs are found in the supplementary material.

Theorem 2 (Type soundness). If �
 M : A | ∅ and M −→∗ M ′ and M ′ 	−→, then M ′ is a
value.

6.2 Example

The effect system allows us to use both safe and unsafe effects in a single program. For
example, let us consider the following program (which can be represented in λext

eff).

let f : ∀α. α →{get_id} α = λx. #get_id() x in
let g : ∀α. α →{get_id} α = #select([λx. x; f]) in
if g true then (g 2) + 1 else 0

This example would be rejected if we were to enforce all operations to follow the signa-
ture restriction as in Section 4 because it uses the unsafe operation get_id. By contrast,
the effect system accepts it because: the polymorphic expression λx. #get_id() x calls
no operation (because it is a value) and #select([λx. x; f]) calls only select, which
satisfies the signature restriction, during the evaluation; therefore, they can have the poly-
morphic type ∀α. α →{get_id} α by (TE_GEN). Note that the effect system still rejects the
counterexample given in Section 2.3 because it disallows polymorphic expressions to call
operations that do not satisfy the signature restriction, such as get_id.

6.3 Alternative designs

When defining the effect system presented thus far, we kept simplicity in mind, which
affected the design of the effect system. Specifically, we decided that 1) the type signatures
of operations are assumed to be assigned globally and 2) type containment does not involve
subeffecting (it is used only for type instantiation). This section informally discusses the
alternatives of these decisions: local assignment of type signatures and type containment
with subeffecting.

6.3.1 Local assignment of type signatures

In the formalized system, effects are sets only of operations, and their type signatures are
uniquely determined by metafunction ty. We call this assignment of type signatures global.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

34 T. Sekiyama et al.

The global type signature assignment models the treatment of effects in programming lan-
guages, such as Koka (Leijen, 2023) and Frank (Lindley et al., 2022), where every effect
operation has to be declared with a type signature before used.

An alternative is to represent effects as sets of pairs of an operation and its type
signature (Kammar et al., 2013), as

εlocal ::= {op1 : ∀ α
I1
1 . A1 ↪→ B1, . . . , opn : ∀ αIn

n . An ↪→ Bn} .

In this representation, we can assign different type signatures to different occurrences of
the same operation. Hence, we call this type assignment local. For example, consider the
following function application:

(handle #op(1) with H1) (handle #op(true) with H2)

where the function part supposes operation op’s type signature to be int ↪→ A for some
type A, while the argument part supposes it to be bool ↪→ B for some type B. The handlers
H1 and H2 should involve operation clauses conforming to these type signatures, respec-
tively. More interestingly, the same operation can be given different type signatures per
occurrence even in the same effect. For example, consider the following effect:

{op : A1 ↪→ (B1 →{op:C1↪→C2} B2)} .

It states that operation op returns a function of the type B1 →{op:C1↪→C2} B2, that is, when
the returned function is applied and then invokes operation op with an argument of type
C1, the caller expects the operation to return a value of type C2. One critical difference
between the local and global assignment of type signatures is in program termination: one
can write divergent programs under the global assignment, whereas the local assignment
can guarantee well-typed programs terminating (Kammar and Pretnar, 2017). The local
assignment is employed by, e.g., the links programming language (The Links team, 2022).

To adapt the signature restriction to the local type signature assignment, we need to make
changes to the definitions of the polarities of type variables, type containment’s distribu-
tive law, and type generalization, in addition to a minor change that the type signature of an
operation is found in an effect, not assigned by the metafunction ty. We describe the details
of the three major changes below, but it is left open whether only these changes (includ-
ing the minor one) can ensure soundness of an effect system that assigns type signatures
locally.

Change 1: Polarities of type variables. Effects in the local assignment may contain free
type variables. Therefore, we need to extend the polarities of type variables to take effects
into account, as follows:

ftv(A →εlocal B)± def= ftv(A)∓ ∪ ftv(B)± ∪ ftv(εlocal)±

ftv(εlocal)±
def= ((ftv(A1)∓ ∪ ftv(B1)±) \ {αI1

1 }) ∪ . . . ∪
((ftv(An)∓ ∪ ftv(Bn)±) \ {αIn

n })
ftv(A →εlocal B)+ns

def= ftv(A)− ∪ ftv(B)+ns ∪ ftv(εlocal)+ns

ftv(εlocal)+ns
def= ((ftv(A1)− ∪ ftv(B1)+ns) \ {αI1

1 }) ∪ . . . ∪
((ftv(An)− ∪ ftv(Bn)+ns) \ {αIn

n })
where εlocal is supposed to be {op1 : ∀ α

I1
1 . A1 ↪→ B1, . . . , opn : ∀ αIn

n . An ↪→ Bn}.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 35

Change 2: Type containment’s distributive law. The distributive law can be modified so
that ∀ quantifying a function type moves not only to its codomain type but also to the arity
types of the type signatures in its latent effect. Namely, the adapted distributive law can be
given as

εlocal = {op1 : ∀ β
I1
1 . C1 ↪→ D1, . . . , opn : ∀ β In

n . Cn ↪→ Dn}
ε′

local = {op1 : ∀ β
I1
1 . C1 ↪→ ∀ α. D1, . . . , opn : ∀ β In

n . Cn ↪→ ∀ α. Dn}

 α 	∈ ftv(A) ∪ ftv(C1) ∪ · · · ∪ ftv(Cn) SR (εlocal)

 ∀ α. A →εlocal B � A →ε′
local ∀ α. B

First, this rule means that, as (C_DFUNEFF), given a function of a type ∀ α. A →εlocal B, its
body can be regarded as a polymorphic computation of the type ∀ α. B. Suppose that the
body performs operation, say, opi. The effect εlocal in the LHS type requires opi to return
a value of type Di where type variable α has been replaced by, say, a type A′, while the
effect ε′

local in the RHS type means that an implementation of the operation has to return a
polymorphic value of the type ∀ α. Di. This gap is bridged as follows: given a value of type
∀ α. Di, the body can instantiate it with the type A′ used to instantiate the body. Because
the instantiated value should be of type D[A′/α], it meets the requirement of the LHS type.

The above rule can be generalized slightly using existential types: when existential types
of the form ∃ α. A are available, we can allow α to occur in the parameter types C1, . . . , Cn

and instead set the type signature of each opi in ε′
local to ∀ β

Ii
i . (∃ α. Ci) ↪→ ∀ α. Di. Because

an operation clause conforming to this type signature must be independent of the concrete
type for α in Ci and return a value polymorphic over α in Di, it can interpret any call to opi

in the function body no matter what type A′ is used to instantiate the body.
The two presented variants of the distributive law are designed so that the latent effect

ε′
local satisfies the signature restriction. However, it is open whether such a property is

necessary to prove type soundness. If it turns out to be unnecessary, the typing rule could
be further generalized by setting the type signature of opi in ε′

local to ∀ β
Ii
i .∀ α. (Ci ↪→ Di).

Note that ∀ β
Ii
i .∀ α. (Ci ↪→ Di) invalidates the signature restriction if α occurs nonstrictly

positively in Ci or negatively in Di. Because ∀ β
Ii
i . (∃ α. Ci) ↪→ ∀ α. Di is a “subtype” of

∀ β
Ii
i .∀ α. (Ci ↪→ Di), the former imposes more restrictions on operation clauses for opi

than the latter.

Change 3: Type generalization. A simple way to adapt type generalization to the local
assignment is to allow type generalization only when effects do not refer to type variables
being quantified:

, α
 M : A | εlocal SR (εlocal) α 	∈ ftv(εlocal)

 M : ∀ α. A | εlocal

where ftv(εlocal) is the set of type variables that occur free in εlocal. This rule can also be
generalized to allow α to occur in εlocal, as discussed in the previous paragraph, by assign-
ing M an effect ε′

local where: the parameter and arity types of the type signatures quantify
α existentially and universally, respectively; or the type signatures universally quantify α

(if ε′
local does not have to satisfy the signature restriction to show type soundness).

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

36 T. Sekiyama et al.

Table 1. Features of type systems for polymorphic algebraic effects

Approach Signature
Handler

(with result type C)
Safety

Naive
All signatures of

the form ∀ α. A ↪→ B
All terms of type

∀ α. A → (B → C) → C
�

Ours Restricted All �

Sekiyama and Igarashi All Restricted �
(2019)

6.3.2 Type containment with subeffecting

The type containment rule (C_FUNEFF) for function types requires the latent effects of the
RHS and LHS types to be the same. However, we can relax this requirement by involving
subeffecting in type containment, which allows the latent effect of the LHS type to be a
subset of that of the RHS type, as in the previous work (Bauer and Pretnar, 2014). Although
our type containment does not adopt subeffecting for simplicity, we can simulate it by
eta-expansion. For example, given a function v of a type A →ε B and effect ε′ ⊇ ε, the
eta-expansion λx.v x of v can be of type A →ε′

B because the body v x can be typed with ε′

by (TE_WEAK). Therefore, we suspect that there is no challenge to support subeffecting
in type containment.

7 Restriction on signatures versus restriction on handlers

Sekiyama and Igarashi (2019) proposed another approach to safe polymorphic algebraic
effects, which ensures the safety by posing an additional constraint on handler implemen-
tations. Table 1 summarizes the differences between their approach and ours (as well
as the naive unsound approach). Perhaps surprisingly, despite these differences, the two
approaches to sound polymorphic algebraic effects are closely related. This section aims to
give a brief discussion on this connection, namely a translation from the Sekiyama-Igarashi
(SI) type system to our type system.

Let us first explain the basic idea of the SI type system. The exposition here is informal
and incomplete; see the paper (Sekiyama and Igarashi, 2019) for the formal and complete
description of the type system.

Recall the following counterexample to the safety of the naive polymorphic algebraic
effect system.

1 effect get_id : ∀α. unit ↪→ (α → α)
2
3 handle
4 let f = #get_id() in (* f : ∀α. α → α *)
5 if (f true) then ((f 0) + 1) else 2
6 with

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 37

7 return x → x
8 get_id x → resume (λz1. let _ = resume (λz2. z1) in z1)

Since this is not type safe, a sound type system must reject this example. Sekiyama and
Igarashi (2019) focused on the handler implementation:

get_id x → resume (λz1. let _ = resume (λz2. z1) in z1) .

This handler has the two occurrences of resume, which takes arguments of the same type
α → α, and Sekiyama and Igarashi (2019) revealed that the source of the problem is the
types for the arguments of the two occurrences of resume being the same. Actually, in the
problematic run of the above program illustrated in Section 2.3, the type of the argument of
the outer resume is instantiated to bool → bool but that of the inner resume is int → int.
Therefore, their proposal is to regard the two occurrences of α → α as different types, say
α1 → α1 for the argument of the outer resume and α2 → α2 for the argument of the inner
resume. Then the above handler is not typable, since the argument of the inner resume
has type α2 → α1 while it is expected to have α2 → α2. We call a type system extended
only with this idea (i.e, assigns fresh type variables to each occurrence of resume) the SI0

system; the SI system is more powerful as seen shortly.
The idea of the SI0 system can be explained in terms of the type signature of the effect

get_id. Instead of the above given signature ∀ α. unit ↪→ (α → α), we should regard the
type of get_id as unit ↪→ (∀ α. α → α). Then the types of the two occurrences of the
arguments of resume are ∀ α. α → α. Since the type variable α in the type is bound, α

for the outer resume actually differs from α for the inner resume. The resulting type
signature satisfies the signature restriction (since both the argument and return types have
no free type variable), and hence the type safety of the program is ensured by the argument
of this article.

In general, the following two conditions are equivalent for every handler:

• it is typable in the SI0 system as a handler of op : ∀ α. A ↪→ B; and
• it is typable in our system as a handler of op : (∃ α. A) ↪→ (∀ α. B).

The safety of the latter follows from the signature restriction. Hence, our type system
explains the SI system’s mechanism of fresh type variable assignment for resume.

However, the SI system is more powerful than the SI0 system. To explain the difference,
consider the following example, which is a minor modification of the previous example:

1 effect get_id’ : ∀α. α ↪→ (α → α)
2
3 handle
4 ...
5 with
6 ...
7 get_id’ x → resume (λz1. let _ = resume (λz2. x) in x) .

Note that the type of the argument of the operation get_id’ has the type variable α. This
program is safe independent of an expression between handle and with (except for the
case that the expression itself is unsafe). Unfortunately, this program cannot be typed in

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

38 T. Sekiyama et al.

the SI0 system, which only assigns fresh type variables to each occurrence of resume.
Let α1 → α1 and α2 → α2 be the types of the arguments of the outer and inner resume,
respectively. Then one occurrence of x requires that x : α1 whereas the other implies x : α2,
a contradiction.

The SI system has another mechanism that makes the above safe program well-typed.
As we have seen, if the type of resume has a type variable α, each occurrence of resume
in a handler introduces its fresh copy, say αi. Their type system puts a special status to the
arguments of the operator (x in the above example): a type variable α for the arguments can
be identified with any copy αi. This identification does not need to be consistent, i.e., x : α
can be seen as x : α1 in an occurrence of resume and x : α2 in another occurrence.

One can mimic this mechanism in our type system by program transformation. The
second mechanism allows an argument x of the operation may have many different types
α, α1, α2, . . . depending on the occurrence of x; the number of the types for x is 1 +
(the number of the occurrences of resume). We regard that x of different types are actually
different variables (or different copies of x); each occurrence of resume takes a new copy
of x. The translation �−→ is given by

op : ∀ α. A ↪→ B �−→ op′ : (∃ α. A) ↪→ (∀ α. A → B)
op(M) �−→ let x = M in op′(x) x
op(x) → . . . (resumeM) . . . �−→ op′(x) → . . . (resume (λx.M))

After the translation, the caller passes the same argument twice and each resume in the
handler takes a copy of x. This translation maps a well-typed program in the SI system to
a well-typed program in our system.9

8 Related work

8.1 Restriction for the use of effects in polymorphic type assignment

The problem that type safety is broken in naively combining polymorphic effects and
polymorphic type assignment was initially discovered in a language with polymorphic ref-
erences (Gordon et al., 1979) and later in one with polymorphic control operators (Harper
and Lillibridge, 1991, 1993). Researchers have developed many approaches to recon-
cile these conflicting features thus far (Tofte, 1990; Leroy and Weis, 1991; Appel and
MacQueen, 1991; Hoang et al., 1993; Wright, 1995; Garrigue, 2004; Asai and Kameyama,
2007; Sekiyama and Igarashi, 2019).

A major direction shared among them is to prevent the generalization of type variables
assigned to an expression if the type variables are used to instantiate polymorphic effects
triggered by the expression. Leroy and Weis (1991) called such type variables dangerous.
The value restriction (Tofte, 1990; Wright, 1995), which allows only syntactic values to be
polymorphic, is justified by this idea because these values trigger no effect and therefore no
dangerous type variable exists. Similarly, Asai and Kameyama (2007) and Leijen (2017)
allowed only observationally pure expressions to be polymorphic. Tofte (1990) proposed

9 What is left is the preservation of the operational semantics by the translation �−→. We have not given any
formal proof of the semantics preservation, which is left for future development. This property should be
obvious for some special cases, e.g., the case that arguments of resume are values that are hereditary effect-
free.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 39

another approach that classifies type variables into applicative ones, which cannot be used
to instantiate effects, and imperative ones, which may be used, and allows the general-
ization of only applicative type variables. Weak polymorphism (Appel and MacQueen,
1991; Hoang et al., 1993) extends this idea by assigning to a type variable the number of
function applications necessary to trigger effects instantiated with the type variable. If the
numbers assigned to type variables are positive, effects instantiated with the type variables
are not triggered; therefore, they are not dangerous and can be generalized safely. Leroy
and Weis (1991) prevented the generalization of dangerous type variables by making the
type information of free variables in closures accessible. These approaches focused on a
specific effect (especially, the ML-style reference effect), but they can be applied to other
effects as well.

One view for relating our work to these prior works is that, while the prior works suppose
that no dangerous type variables can be generalized safely, our work discovers that they
can be if the polymorphic effect of interest meets the signature restriction. Note that the
assumption of the prior works is natural because they focus on the reference effect, which
does not comply with the signature restriction. To see it, assume that we are given a type
constructor A ref for references pointing to values of type A. We also suppose that the
reference effect supports an operation to create a new reference cell, and it is equipped
with type signature ∀α.α ↪→ α ref. Because the polarities of the type variables appearing
in a reference type A ref are invariant (i.e., positive and negative), the type signature does
not meet the signature restriction.

Garrigue (2004) proposed the relaxed value restriction, which allows the generalization
of type variables assigned to an expression if the type variables occur only at positive
positions in the type of the expression. The polarity condition on generalized type vari-
ables makes it possible to use the empty type as a surrogate of the type variables and, as
a result, prevents instantiating effects with the type variables. The relaxed value restric-
tion is similar to signature restriction in that both utilize the polarity of type variables.
In fact, the strong signature restriction, introduced in Section 2.4, is explainable by using
the empty type zero and subtyping <: for it (i.e., deeming zero a subtype of any type)
as in the relaxed value restriction. First, let us recall the key idea of the strong signature
restriction: it is to rewrite an operation call �β1 . . . βn. #op{C}(v) for op : ∀α. A ↪→ B to
�β1 . . . βn. #op{∀β1 . . . βn. C}(v) to close the type argument C and to use provable type
containment judgments A[C/α] � A[∀β1 . . . βn. C/α] and B[∀β1 . . . βn. C/α] � B[C/α]
for typing the latter term. We can rephrase this idea with zero, instead of ∀β1 . . . βn. C, as
follows: the operation call is rewritten to �β1 . . . βn. #op{zero}(v), and this term can be
typed by using the subtyping judgments A[C/α] <: A[zero/α] and B[zero/α] <: B[C/α],
which are provable owing to the polarity condition of the strong signature restriction (i.e.,
the type variable α occurs only negatively in the type A and only positively in the type B).
However, this argument does not extend to the (non-strong) signature restriction because it
allows the bound type variable α to occur at strictly positive positions in the parameter type
A and then A[C/α] <: A[zero/α] no longer holds. Thus, our technical contributions include
the findings that the type argument C and value argument v can be closed by quantifying
them and that ∀β1 . . . βn. A[C/α] � A[∀β1 . . . βn. C/α] is provable by type containment,
where the distributive law plays a key role. This change renders the signature restriction
quite permissive.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

40 T. Sekiyama et al.

Sekiyama and Igarashi (2019) followed another line of research: they restricted the def-
initions of effects instead of their usage. As discussed in Section 7, their type system can
be explained in our type system without effects. Furthermore, we provide an effect sys-
tem that allows the use of both of the operations that satisfy and those that do not satisfy
the restriction criterion—inasmuch as they are performed appropriately. The effect system
utilizes the benefit of the signature restriction that it only depends on the type interfaces of
effects.

Effect systems have been used to safely introduce effects in polymorphic type assign-
ment thus far. Asai and Kameyama (2007) and Leijen (2017) utilized effect systems for the
control operators shift/reset (Danvy and Filinski, 1990) and algebraic effects and handlers,
respectively, to ensure that polymorphic expressions are observationally pure. Kammar
and Pretnar (2017) proposed an effect system for parameterized algebraic effects, which
are declared with type parameters and invoked with type arguments. Unlike polymorphic
effects, parameterized effects invoked with different type arguments are deemed different.
Kammar and Pretnar utilized the effect system to prevent the generalization of the type
variables involved by type arguments of parameterized effects.

8.2 User-defined effects

Our work employs algebraic effects and handlers as a technical development to describe
a variety of effects. Algebraic effects were originally proposed as a denotational frame-
work to describe the meaning of an effect by separating the interface of an effect, which
is given by a set of operations, and its interpretation, which is given by the equational
theory over the operations (Plotkin and Power, 2003). Plotkin and Pretnar (2013, 2009)
introduced effect handlers in order to represent the semantics of exception handling in an
equational theory. The idea of separating an effect interface and its interpretation makes it
possible to handle user-defined effects in a modular way and encourages the emergence of
languages equipped with algebraic effect handlers, such as Eff (Bauer and Pretnar, 2015),
Koka (Leijen, 2017), Frank (Lindley et al., 2017), and Multicore OCaml (Dolan et al.,
2017). We also utilize the separation and restrict only effect interfaces in order to achieve
type safety in polymorphic type assignment.

Another approach to user-defined effects is to use control operators, which enable pro-
grammers to make access to continuations. Many control operators have been developed
thus far—e.g., call/cc (Clinger et al., 1985), control/prompt (Felleisen, 1988), shift/re-
set (Danvy and Filinski, 1990), fcontrol/run (Sitaram, 1993), and cupto/prompt (Gunter
et al., 1995). These operators are powerful and generic, but, in return for that, it is unsafe
to naively combine them with polymorphic type assignment (Harper and Lillibridge,
1993). They do not provide a means to assign fine-grained type interfaces to individual
effects. Thus, it is not clear how to apply the idea of signature restriction for the effects
implemented by control operators.

Monads can also express the interpretation of an effect in a denotational manner (Moggi,
1991) and have been used as a long-established, programmable means for user-defined
effects (Wadler, 1992; Peyton Jones and Wadler, 1993). Filinski (2010) extracted the
essence of monadic effects and proposed a language equipped with a type system and
an operation semantics for them. We expect our idea of restriction on effect interfaces

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 41

to be applicable to monadic effects as well, but for that we would first need to consider
how to introduce polymorphic effects into a monadic language because Filinski’s language
supports parametric effects but not polymorphic effects.

9 Conclusion

This work addresses a classic problem with polymorphic effects in polymorphic type
assignment. Our key idea is to restrict the type interfaces of effects. We formalized our idea
with polymorphic algebraic effects and handlers, propose the signature restriction, which
restricts the type signatures of operations by the polarity of occurrences of quantified type
variables, and proved that a polymorphic type system is sound if all operations satisfy
the signature restriction. We also gave an effect system in which operations performed by
polymorphic expressions have to satisfy the signature restriction but those performed by
monomorphic expressions do not have. This effect system enables us to use both the oper-
ations that satisfy and those that do not satisfy the signature restriction in a single program
safely.

There are several directions for future work. First, we are interested in analyzing the
signature restriction from a more semantic perspective. For example, the semantics of
a language with control effects is often given by transformation to continuation-passing
style (CPS). It would be interesting to study CPS transformation for implicit polymor-
phism by taking the signature restriction into account. Recently, Sekiyama and Tsukada
(2021) developed a type-preserving CPS transformation for Curry-style System F with the
call-by-value semantics. The crux of their CPS transformation is that System F uses con-
tinuations only linearly. Type-preserving CPS transformation for the signature restriction
would need a finer-grained constraint on continuations because the presence of algebraic
effects and handlers allows the multiple uses of continuations. Another direction is to
apply the signature restriction to evaluation strategies other than call-by-value. Harper and
Lillibridge (1993) showed that polymorphic type assignment and the polymorphic version
of the control operator call/cc can be reconciled safely in call-by-name at the small cost of
the expressive power and by changing the timing of type instantiation slightly. However, it
is unclear—and we would imagine impossible—whether similar reconcilement is achiev-
able in other strategies such as call-by-need and call-by-push-value. Exporting the idea of
signature restriction to other evaluation strategies would be beneficial also for testing the
robustness and developing a more in-depth understanding of signature restriction.

Acknowledgments

We would like to thank Yusuke Matsushita for a fruitful discussion at an early stage
of the research and the anonymous reviewers of ICFP 2020 PC/AEC and JFP for their
close reading and valuable comments. This work was supported in part by ERATO
HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST and
JSPS KAKENHI Grant Numbers JP19K20247 (Sekiyama), JP19K20211 (Tsukada), and
JP15H05706 (Igarashi).

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054

42 T. Sekiyama et al.

Conflicts of interest

None.

Supplementary material

For supplementary material for this article, please visit https://doi.org/10.1017/
S0956796824000054.

References

Ahman, D. (2017) Fibred Computational Effects. Ph.D. thesis. University of Edinburgh.
Ahmed, A., Dreyer, D. & Rossberg, A. (2009) State-dependent representation independence. In

Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2009, pp. 340–353.

Appel, A. W. & MacQueen, D. B. (1991) Standard ML of New Jersey. In 3rd International
Symposium Programming Language Implementation and Logic Programming, PLILP 1991,
Proceedings, pp. 1–13.

Asai, K. & Kameyama, Y. (2007) Polymorphic delimited continuations. In 5th Asian Symposium
Programming Languages and Systems, APLAS 2007, Proceedings, pp. 239–254.

Bauer, A. & Pretnar, M. (2014) An effect system for algebraic effects and handlers. Log. Methods
Comput. Sci. 10(4).

Bauer, A. & Pretnar, M. (2015) Programming with algebraic effects and handlers. J. Log. Algebr.
Methods Program. 84(1), 108–123.

Biernacki, D., Piróg, M., Polesiuk, P. & Sieczkowski, F. (2020) Binders by day, labels by night:
effect instances via lexically scoped handlers. PACMPL. 4(POPL), 48:1–48:29.

Casinghino, C., Sjöberg, V. & Weirich, S. (2014) Combining proofs and programs in a depen-
dently typed language. The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2014, pp. 33–46.

Clinger, W. D., Friedman, D. P. & Wand, M. (1985) A scheme for a higher-level semantic algebra.
In Algebraic Methods in Semantics, Nivat, M. & Reynolds, J. C. (eds), chapter 6, Cambridge
University Press, pp. 237–250.

Cong, Y. & Asai, K. (2018) Handling delimited continuations with dependent types. PACMPL.
2(ICFP), 69:1–69:31.

Damas, L. & Milner, R. (1982) Principal type-schemes for functional programs. In Conference
Record of the Ninth Annual ACM Symposium on Principles of Programming Languages,
pp. 207–212.

Danvy, O. & Filinski, A. (1990) Abstracting control. In LISP and Functional Programming, pp. 151–
160.

Dolan, S., Eliopoulos, S., Hillerström, D., Madhavapeddy, A., Sivaramakrishnan, K. C. & White,
L. (2017) Concurrent system programming with effect handlers. In Trends in Functional
Programming - 18th International Symposium, TFP 2017, Revised Selected Papers, pp. 98–117.

Dreyer, D., Neis, G. & Birkedal, L. (2010) The impact of higher-order state and control effects on
local relational reasoning. In Proceeding of the 15th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2010, pp. 143–156.

Dunfield, J. & Krishnaswami, N. R. (2013) Complete and easy bidirectional typechecking for higher-
rank polymorphism. In ACM SIGPLAN International Conference on Functional Programming,
ICFP 2013, pp. 429–442.

Felleisen, M. (1988) The theory and practice of first-class prompts. In Conference Record of the
Fifteenth Annual ACM Symposium on Principles of Programming Languages, POPL 1988,
pp. 180–190.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000054
https://doi.org/10.1017/S0956796824000054
https://doi.org/10.1017/S0956796824000054

Signature restriction for polymorphic algebraic effects 43

Filinski, A. (2010) Monads in action. In Proceedings of the 37th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2010, pp. 483–494.

Forster, Y., Kammar, O., Lindley, S. & Pretnar, M. (2019) On the expressive power of user-defined
effects: Effect handlers, monadic reflection, delimited control. J. Funct. Program. 29, e15.

Garrigue, J. (2004) Relaxing the value restriction. In 7th International Symposium Functional and
Logic Programming, FLOPS 2004, Proceedings, pp. 196–213.

Girard, J. Y. (1972) Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. Thèse de doctorat d’état. Université Paris 7.

Gordon, M. J. C., Milner, R. & Wadsworth, C. P. (1979) Edinburgh LCF. vol. 78. Lecture Notes in
Computer Science. Springer.

Gunter, C. A., Rémy, D. & Riecke, J. G. (1995) A generalization of exceptions and control in ml-like
languages. In Proceedings of the Seventh International Conference on Functional Programming
Languages and Computer Architecture, FPCA 1995, pp. 12–23.

Harper, R. & Lillibridge, M. (1991) ML with callcc is unsound. Announcement on the Types
Electronic Forum.

Harper, R. & Lillibridge, M. (1993) Explicit polymorphism and CPS conversion. In Conference
Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 206–219.

Harper, R. & Lillibridge, M. (1993) Polymorphic type assignment and CPS conversion. Lisp Symb.
Comput. 6(3-4), 361–380.

Hoang, M., Mitchell, J. C. & Viswanathan, R. (1993) Standard ML-NJ weak polymorphism and
imperative constructs. In Proceedings of the Eighth Annual Symposium on Logic in Computer
Science (LICS ’93), pp. 15–25.

Kammar, O., Lindley, S. & Oury, N. (2013) Handlers in action. In ACM SIGPLAN International
Conference on Functional Programming, ICFP 2013, pp. 145–158.

Kammar, O. & Pretnar, M. (2017) No value restriction is needed for algebraic effects and handlers.
J. Funct. Program. 27, e7.

Leijen, D. (2017) Type directed compilation of row-typed algebraic effects. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
pp. 486–499.

Leijen, D. (2023) The Koka programming langauge. https://koka-lang.github.io/koka/
doc/index.html.

Leivant, D. (1983) Polymorphic type inference. In Conference Record of the Tenth Annual ACM
Symposium on Principles of Programming Languages, POPL 1983, pp. 88–98.

Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D. & Vouillon, J. (2020) The OCaml system
release 4.10: Documentation and user’s manua.

Leroy, X. & Weis, P. (1991) Polymorphic type inference and assignment. In Proceedings of the 18th
Annual ACM Symposium on Principles of Programming Languages, pp. 291–302.

Levy, P. B. (2001) Call-by-push-value. Ph.D. thesis. Queen Mary University of London, UK.
Lindley, S., McBride, C. & McLaughlin, C. (2017) Do be do be do. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, pp. 500–514.
Lindley, S., McBride, C., McLaughlin, C. & Convent, L. (2022) The Frank programming langauge
https://github.com/frank-lang/frank.

Milner, R. (1978) A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17(3),
348–375.

Milner, R., Tofte, M. & Harper, R. (1990) The Definition of Standard ML. MIT Press.
Mitchell, J. C. (1988) Polymorphic type inference and containment. Inf. Comput. 76(2/3), 211–249.
Moggi, E. (1991) Notions of computation and monads. Inf. Comput. 93(1), 55–92.
Pédrot, P. & Tabareau, N. (2020) The fire triangle: how to mix substitution, dependent elimination,

and effects. PACMPL. 4(POPL), 58:1–58:28.
Peyton Jones, S. L., Vytiniotis, D., Weirich, S. & Shields, M. (2007) Practical type inference for

arbitrary-rank types. J. Funct. Program. 17(1), 1–82.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

https://koka-lang.github.io/koka/doc/index.html
https://koka-lang.github.io/koka/doc/index.html
https://github.com/frank-lang/frank
https://doi.org/10.1017/S0956796824000054

44 T. Sekiyama et al.

Peyton Jones, S. L. & Wadler, P. (1993) Imperative functional programming. In Conference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 71–84.

Pitts, A. & Stark, I. (1998) Operational reasoning for functions with local state. In Higher Order
Operational Techniques in Semantics, Gordon, A. & Pitts, A. (eds). Publications of the Newton
Institute, Cambridge University Press, pp. 227–273. Available at: http://www.inf.ed.ac.uk/
~stark/operfl.html.

Plotkin, G. D. & Power, J. (2003) Algebraic operations and generic effects. Appl. Categor. Struct.
11(1), 69–94.

Plotkin, G. D. & Pretnar, M. (2008) A logic for algebraic effects. In Proceedings of the Twenty-
Third Annual IEEE Symposium on Logic in Computer Science, LICS. IEEE Computer Society,
pp. 118–129.

Plotkin, G. D. & Pretnar, M. (2009) Handlers of algebraic effects. In 18th European Symposium
on Programming Programming Languages and Systems, ESOP 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2009, Proceedings, pp. 80–94.

Plotkin, G. D. & Pretnar, M. (2013) Handling algebraic effects. Logical Methods in Computer
Science. 9(4).

Reynolds, J. C. (1974) Towards a theory of type structure. In Programming Symposium, Proceedings
Colloque sur la Programmation, pp. 408–423.

Reynolds, J. C. (1983) Types, abstraction and parametric polymorphism. In IFIP Congress,
pp. 513–523.

Sekiyama, T. & Igarashi, A. (2017) Stateful manifest contracts. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, pp. 530–544.

Sekiyama, T. & Igarashi, A. (2019) Handling polymorphic algebraic effects. In Programming
Languages and Systems – 28th European Symposium on Programming, ESOP 2019, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Proceedings, pp. 353–380.

Sekiyama, T. & Tsukada, T. (2021) CPS transformation with affine types for call-by-value implicit
polymorphism. Proc. ACM Program. Lang. 5(ICFP), 1–30.

Sekiyama, T., Tsukada, T. & Igarashi, A. (2020) Signature restriction for polymorphic algebraic
effects. Proc. ACM Program. Lang. 4(ICFP), 117:1–117:30.

Sitaram, D. (1993) Handling control. In Proceedings of the ACM SIGPLAN’93 Conference on
Programming Language Design and Implementation (PLDI), pp. 147–155.

Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S., Bhargavan, K.,
Fournet, C., Strub, P., Kohlweiss, M., Zinzindohoue, J. K. & Béguelin, S. Z. (2016) Dependent
types and multi-monadic effects in F. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, pp. 256–270.

The Links team. (2022) The Links programming langauge https://links-lang.org/.
Tiuryn, J. & Urzyczyn, P. (1996) The subtyping problem for second-order types is undecidable.

Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science (LICS ’96), pp. 74–85.
Tofte, M. (1990) Type inference for polymorphic references. Inf. Comput. 89(1), 1–34.
Wadler, P. (1992) The essence of functional programming. In Conference Record of the Nineteenth

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 1–14.

Wells, J. B. (1994) Typability and type-checking in the second-order lambda-calculus are equivalent
and undecidable. In Proceedings of the Ninth Annual Symposium on Logic in Computer Science
(LICS ’94), pp. 176–185.

Wright, A. K. (1995) Simple imperative polymorphism. Lisp Symb. Comput. 8(4), 343–355.
Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Inf. Comput. 115(1),

38–94.
Xi, H. (2007) Dependent ML an approach to practical programming with dependent types. J. Funct.

Program. 17(2), 215–286.

https://doi.org/10.1017/S0956796824000054 Published online by Cambridge University Press

http://www.inf.ed.ac.uk/~stark/operfl.html
http://www.inf.ed.ac.uk/~stark/operfl.html
https://links-lang.org/
https://doi.org/10.1017/S0956796824000054

	Signature restriction for polymorphic algebraic effects
	Introduction
	Background: Polymorphic type assignment with computational effects
	Our work
	Relation to the prior publication
	Organization

	Overview
	Review: Algebraic effects and handlers
	Polymorphic effects
	Naive polymorphic typechecking is unsound
	Our work: Signature restriction

	A -Calculus with algebraic effects and handlers
	Syntax
	Semantics

	A polymorphic type system for signature restriction
	Type language
	Polymorphic type system
	Desired properties for type soundness
	Signature restriction
	Definition
	Proofs of the desired properties

	Type soundness
	Is it possible to relax the signature restriction further?
	The condition of strictly positive occurrences is necessary
	Further relaxation for closed arity types is possible
	Further relaxation for closed parameter types is harder

	An extension of eff
	Extended language
	Examples

	Cooperation of safe and unsafe effects
	Effect system
	Example
	Alternative designs
	Local assignment of type signatures
	Type containment with subeffecting

	Restriction on signatures versus restriction on handlers
	Related work
	Restriction for the use of effects in polymorphic type assignment
	User-defined effects

	Conclusion

