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C-TOTALLY REAL SUBMANIFOLDS IN
(K, M ) - C O N T A C T SPACE FORMS

MUKUT MANI TRIPATHI AND JEONG-SIK KIM

We obtain a basic B.-Y. Chen's inequality for a C-totally real submanifold in a («, fj,)-
contact space form involving intrinsic invariants, namely the scalar curvature and the
sectional curvatures of the submanifold on left hand side and the main extrinsic
invariant, namely the squared mean curvature on the right hand side. Inequalities
between the squared mean curvature and Ricci curvature and between the squared
mean curvature and &-Ricci curvature are also obtained. These results are applied to
get corresponding results for C-totally real submanifolds in a Sasakian space form.

1. INTRODUCTION

According to the well-known Nash immersion theorem, every n-dimensional Rieman-
nian manifold admits an isometric immersion into the Euclidean space E n ' n + 1 " 3 n + u ^ 2 .
Thus, Nash's theorem enables us to consider any Riemannian manifold as a submanifold
of Euclidean space; and this provides a natural motivation for the study of submanifolds
of Riemannian manifolds. To find simple relationships between the main extrinsic in-
variants and the main intrinsic invariants of a submanifold is one of the basic interests
in the submanifold theory. The Gauss—Bonnet Theorem, isoperimetric inequality, and
Chern—Lashof Theorem provide relations between extrinsic and intrinsic invariants for
a submanifold in a Euclidean space.

In [5], B.-Y. Chen established a sharp inequality for a submanifold in a real space
form involving intrinsic invariants, namely the sectional curvatures and the scalar cur-
vature of the submanifold; and the main extrinsic invariant, namely the squared mean
curvature. In [7], he gave a sharp relationship between the squared mean curvature and
the Ricci curvature for the submanifolds in a real space form. He also studied the basic
inequalities of submanifolds of complex space forms ([6]). A basic B.-Y. Chen's inequality
for C-totally real submanifolds in a Sasakian space form M(c) is given in [9].

On the other hand, the roots of contact geometry go back to 1872, when Sophus
Lie introduced the notion of contact transformation (Beriihrungstransformation) as a
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geometric tool to study systems of differential equations (for more details see [1, 3,
10]). This subject has manifold connections with other fields of pure mathematics, and
substantial applications in applied areas such as mechanics, optics, thermodynamics and
control theory. The two large classes of examples of contact manifolds are the principal
circle bundles of the Boothby—Wang fibration (including the Hopf-fibration of the odd
dimensional sphere over complex projective space) and the tangent sphere bundles (for
details see [3]). Contact manifolds include the class of Sasakian manifolds. In [4], the
authors studied (K, /x)-contact metric manifolds for which the characteristic vector field
belongs to the (K, /^)-nullity distribution. Characteristic examples of non-Sasakian, (K, //)-
contact metric manifolds are the tangent sphere bundles of Riemannian manifolds of
constant sectional curvature not equal to one. A (K, /i)-contact metric manifold with
constant (^-sectional curvature is called a (K, /x)-contact space form, which includes the
class of Sasakian space forms.

Thus it is worthwhile to study relationships between intrinsic and extrinsic invariants
of submanifolds in a («;, /x)-contact space form. In this paper, we establish several such
relationships for C-totally real submanifolds in a (K, /z)-contact space form. The paper
is organised as follows. Necessary details about (K, /j)-contact space forms are reviewed
in Section 2. In Section 3, we recall some Riemannian invariants. The definition of C-
totally real submanifolds in a («, /x)-contact space form appears in Section 4 along with
some required formulas. In Section 5, we establish a basic B.-Y. Chen's inequality for
C-totally real submanifold M in a (K, /z)-contact space form involving intrinsic invariants,
namely the scalar curvature and the sectional curvatures of M; and the main extrinsic
invariant, namely the squared mean curvature. For a C-totally real submanifold in a
(/c, /z)-contact space form an inequality between the squared mean curvature and Ricci
curvature is proved in Section 6, while Section 7 contains an inequality between the
squared mean curvature and A;-Ricci curvature. In the last section, we apply these results
to get corresponding results for C-totally real submanifolds in a Sasakian space form.

2. (K, /i)-CONTACT SPACE FORMS

A differentiable 1-form rj on a (2m + l)-dimensional differentiate manifold M is
called a contact form if 77 A (dij)"1 ^ 0 everywhere on M, and M equipped with a contact
form is a contact manifold. Since the rank of drj is 2m, there exists a unique global vector
field £, called the characteristic vector field, such that

(1) V(t) = 1, £{f7 = 0,

where £ ? denotes the Lie differentiation by £. Moreover, it is well-known that there exists

a Riemannian metric g and a (1, l)-tensor field (p such that

(2) v* = 0, V°V = 0,
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(3) y>2 = - /

(4) g(X, Y) = g(<pX, <pY)

for X, Y € TM. The structure (77, £, <p, g) is called a contact metric structure and the

manifold M endowed with such a structure is said to be a contact metric manifold.

The contact metric structure (77, £, <p, g) on M gives rise to a natural almost Herrni-

tian structure on the product manifold M x E . If this structure is integrable, then M is

said to be a Sasakian manifold. A Sasakian manifold is characterised by the condition

(5) {Vx<p)Y = g{X,Y)Z-r,(Y)X, X,Y € TM,

where V is Levi—Civita connection. Also, a contact metric manifold M is Sasakian if
and only if the curvature tensor R satisfies

(6) R(X, y)£ = r,{Y)X - r,(X)Y, X, Y e TM.

In a contact metric manifold M, the (l,l)-tensor field h defined by 2h = £{</> is

symmetric and satisfies

(7) h£ = 0, h(p + <fih = 0, Vxf = -ipX - iphX, trace h = trace(v?/i) = 0.

The («, n)-nullity distribution of a contact metric manifold M is a distribution

N{K, n):p^ NP(K, M) = [Z e TPM | R{X, Y)Z = K(g(Y, Z)X - g(X, Z)Y)

+ LL(g(Y,Z)hX-g(X,Z)hY)},

where / t , / i€K and K < 1. If the characteristic vector field £ belongs to the (K, /i)-nullity

distribution, the contact metric manifold is called a (K,/i)-contact metric manifold. For

a (ii,fj,)-contact metric manifold one also has h? = (K — l)<p2. Thus, the class of (K, /X)-

contact metric manifolds contains the class of Sasakian manifolds, which we obtain for

K — 1. Characteristic examples of non-Sasakian, (/c, /j)-contact metric manifolds are

the tangent sphere bundles of Riemannian manifolds of constant sectional curvature not

equal to one. For K < 1, the curvature is completely determined for («, /z)-contact metric

manifolds; in particular, they have constant scalar curvature. Three dimensional (K, (i)-

contact metric manifolds are either Sasakian or locally isometric to one of the following

Lie groups: 5O(3), SL(2, R), E(2), E{\, 1) with a left invariant metric. For more details

see [4] and [11].

The sectional curvature K(X, ipX) of a plane section spanned by a unit vector X

orthogonal to 4 is called a <p-sectional curvature. If the (K, /i)-contact metric manifold M

has constant yvsectional curvature c then it is called a (K, fi) -contact space form and is

denoted by M(c). The curvature tensor of M(c) is given by ([11])

R(X, Y)Z = £±2 {g{Y, Z)X - g(X, Z)Y)
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^ g(X, <pZ)<pY - g(Y, <pZ)tpX}

{v(XMZ)Y - V(YHZ)X + g(X, Z)r,(Y)S - g{Y, Z)r,(X)S}

, Z)hX - g(hX, Z)hY + g(<phX, Z)<phY - g(<phY, Z)<phX}

+g(<pY, ipZ)hX - g(ipX, ipZ)hY + g(hX, Z)tp2Y - g(hY, Z)<p2X

(8) +n{t}{Y)T){Z)hX - v(X)V(Z)hY + g(hY, Z)r)(X){ - g(hX, Z)V(Y)t}.

Moreover, if n < 1, then (i = K + 1 and c = - 2 « - 1.

3 . RlEMANNIAN INVARIANTS

The Riemannian invariants are the intrinsic characteristics of a Riemannian man-
ifold. In this section we recall a number of Riemannian invariants in a Riemannian
manifold ([8]).

Let M be a Riemannian manifold. We denote by K(n) the sectional curvature of M
for a plane section ir in TPM', p € M. Then, the scalar curvature r at p is denned by

(9) T{p)

where {e i , . . . , en] is an orthonormal basis for TPM and Ktj is the sectional curvature of
the plane section spanned by ei and ej at p 6 M. By using

(inf K)(p) = mf{K(n)\n is a plane section c TPM},

we introduce the Chen invariant

SM(p) = r(p)- (inf

which is certainly an intrinsic character of M.

Let L be a fc-plane section of TPM and U a unit vector in L. We choose an orthonor-

mal basis { d , . . . , ek} of L such that e\ = U. The Ricci curvature Ric£, of L at U is given

by

(10) Ric(C/) = K12 + K13 + • • • + Klk.

K\cL{U) is called a k-Ricci curvature.

The scalar curvature r of the A;-plane section L is given by

(11) . r{L)=

The scalar curvature T(J>) of M at p is nothing but the scalar curvature of the tangent

space of M at p. And if L is a 2-plane section, T(L) is nothing but the sectional curvature

K of L.

https://doi.org/10.1017/S0004972700033517 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033517


[5] C-totally real submanifolds 55

For each integer k, 2 ^ k ^ n, the Riemannian invariant 6k on an n-dimensional
Riemannian manifold M is defined by

(12) 0k(p) = (j^r[) [n| RicpO, p€M,

where L runs over all A;-plane sections in TPM and X runs over all unit vectors in L.

4. C-TOTALLY REAL SUBMANIFOLDS

Let M be an n-dimensional submanifold in a manifold M equipped with a Rie-
mannian metric g. The Gauss and Weingarten formulae are given respectively by
VXY = VXY + a{X,Y) and VXN = ~ANX + VXN for all X,Y € TM and
N € TLM, where V, V and V x are respectively the Riemannian, induced Rieman-
nian and induced normal connections in M, M and the normal bundle TLM of M
respectively, and a is the second fundamental form related to the shape operator A by
g(a(X, Y),N) = g(A^X, Y). The equation of Gauss is given by

(13) R{X, Y, Z, W) = R(X, Y, Z, W) - g(a(X, W), a(Y, Z)) + g(a(X, Z), a(Y, W))

for all X, Y,Z,We TM, where R and R are the curvature tensors of M and M respec-
tively. The relative null space of M at a point p e M is denned by

Af,= { l e TPM\a{X,Y) = 0 for all Y € TPM).

For any orthonormal basis {e j , . . . ,en} of the tangent space TPM, the mean curvature
vector H(p) is given by

(14) l f

The submanifold M is totally geodesic in M if a = 0, and minimal if H = 0. If a(X, Y)
= g(X, Y)H for all X, Y & TM, then M is totally umbilical.

A submanifold M in a contact manifold is called a C-totally real submanifold ([13])
if every tangent vector of M belongs to the contact distribution. Thus, a submanifold
M in a contact metric manifold is a C-totally real submanifold if £ is normal to M. A
submanifold M in an almost contact metric manifold is called anti-invariant ([14]) if
tp(TM) c TLM. If a submanifold M in a contact metric manifold is normal to the
structure vector field £, then it is anti-invariant. The simplest possible proof of this
fact is given in [12]. Thus C-totally real submanifolds in a contact metric manifold are
anti-invariant, as they are normal to £.

For a C-totally real submanifold in a contact metric manifold we have

g(AzX, Y) = g(-Vxt, Y) = g{<pX + <phX, Y),
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which implies that

(15) A ; = (<ph)T,

where (<ph)TX is the tangential part of (phX for all X £ TM.

Let M be an re-dimensional C-totally real submanifold in a (K, /z)-contact space form
M(c), such that f € TLM. Then, in view of (8) and the Gauss equation (13), we get

R(X, Y, Z, W) = Z±^{g(Y, Z)g(X, W) - g(X, Z)g(Y, W)}

+\{g(hTY, Z)g(hTX, W) - g(hTX, Z)g(hTY, W)

+g((cph)TX,Z)g((<Ph)TY,W) - g((<ph)TY,Z)g((<ph)TX,W)}

-g(X, Z)g(hTY, W) + g(Y, Z)g(hTX, W)

-g(hTX, Z)g(Y, W) + g(hTY, Z)g(X, W)

(16) +g(a(X, W),a(Y, Z)) - g(a(X, Z),a(Y, W)).

From the above equation, it follows that the scalar curvature and the mean curvature of
M satisfy

(17) 2r = n2 \\H\\2 - \\a\\2 + ̂ n(n - l)(c + 3) + 2(n - 1) trace(/ir)

where c = - 2 « - l i f « < l and hTX is the tangential part of hX for all X S TM.
This formula will play crucial role in establishing several inequalities for C-totally real
submanifolds in a («, /z)-contact space form.

We also recall the following algebraic Lemma, which will be used later.

LEMMA 4 . 1 . ([5]) If o i , . . . , an, an+1 are n + 1 (n > 1) reai numbers such that

then 2aio,2 ̂  an+i> with equality holding if and only if ai + a-i = a$ = • • • — an.

5. B.-Y. CHEN'S INEQUALITY

In [5], B.-Y. Chen established a sharp inequality for submanifolds M in a real space
form involving intrinsic invariants, namely the sectional curvature and the scalar cur-
vature of M; and the main extrinsic invariant, namely the squared mean curvature as
follows.
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THEOREM 5 . 1 . ([5]) Let M be an n-dimensional (n ^ 3) submanifold in a real

space form Rm{c). Then

(18) r - inf K(n) ̂  ffijff \
Equality holds if and only if, with respect to suitable orthonormal frame fields eu... ,en,

e n + i , . . . , em, the shape operators Ar — Atr, r — n + 1 , . . . , m ta&e the following forms:

(19)

(20) AT= \dr -cr 0 , r e { n + 2 m } .

He also established similar inequality in [6, Theorem 2] for a submanifold in a com-
plex space form. Now, we prove the following contact version of [6, Theorem 2] for
C-totally real submanifolds in a (a, ^-contact space form.

THEOREM 5 . 2 . Let M be an n-dimensional (n ^ 3) C-totally real submanifold
in a (2m + 1)-dimensional (K, /j)-contact space form M(c). Then, for each point p € M
and each plane section TT C TpM, we have

- - 1 2 t r a c e d ) +det(h\n) - det((iph)\n)\ + (n- l)trace(/iT)

(21) +i{( t race(^)) 2 - | |^| |2 - (trace((<ph)T))2 + \\(<ph)T\\2}.

The equality in (21) holds at p 6 M if and only if there exists an orthonormal basis
{ei , . . . ,e n} of TPM and an orthonormal basis {en+i,..., e2m, €} ofTp

xM such that IT
= Span{ei,e2} and the shape operators AT = Aer, r = n+ l , . . . , 2 m + 1 take the
following forms:

(23) AT = I dT -Cr 0 I , r e { n + 2 , . . . , 2 m -

0 0 0n_2

An+i =

Ar =

a

°

U

0
b
0 (a

dr

-Cr

0
0

+ b)In-2

°\
o ,
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P R O O F : Let

( n ~ 2 ) \\2 \(24) p = IT - U ( n 2 ) \\H\\2 - \n{n - l)(c + 3) - 2(n - 1) trace(/iT)
n — 1 4

- i{(trace/ir)2 - \\hTf - (tra.ce(<ph)T)2 + \\(fh)T\\2}.

From (17) and (24), we get

(25) 2 2 (2

Let 7T c TPM be a plane section. We choose an orthonormal basis {ei , . . . , en} for TPM
and an orthonormal basis {e n + i , . . . , e2m, e2m+i = £} for the normal space Tp

xM at p such
that 7r = Span{ei,e2} and the mean curvature vector H{p) is parallel to en+i, then the
equation (25) can be written as

f n \ 2 / n 2m+l n

E
r=n+2i,j = l

Applying Lemma 4.1, from (26) we obtain

2m+l n

(27) 2CTU O-22 ^ Z_/(CTy J ^ 2 ^ Z ^ (

t^j r=n+2tj = l

From equation (16), we also have

(28) K(TT) = i i - 5 + i{2trace(/iU) +det{h\w) -

which in view of (27) gives

f -|2trace(/i|T)-
2m+l

2m+l

r=n+2

r=n+l

2m+l 1 2m+l. 2m+l 1 2m+l

(29) + E E K)2+o E Ki+2 2
r=n+2tj>2 r=n+2

or

(30) A-(TT) ^ ^ + i{2 t race(%) + det(/iU) - det((¥3/i)U)} + I p.

In view of (24) and (30), we obtain (21).
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If the equality in (21) holds, then the inequalities given by (27) and (29) become

equalities. In this case, we have

a?+l = 0, o£l = 0, op1 = 0 , i±j>2;
aij = a2j - aij = °> r = n + 2 , . . . , 2m + 1; i, j = 3 , . . . , n;

M i \ ,̂ .7i-f-2 I ,^7i4-2 _ 2 T T I + 1 I _2m-f-l j n
\OL) (TJJ -+• <722

 = ' ' ' — O\\ + <722 — U-

Furthermore, we may choose e\ and e2 so that CT"2
+1 = 0. Moreover, by applying

Lemma 4.1, we also have

roy\ r r n + 1 -I- IT""*"1 (T"**"1 IT""1"1

Thus, after choosing a suitable orthonormal basis, the shape operator of M becomes of
the form given by (22) and (23). The converse is straightforward. D

REMARK 5.3. The above theorem is different from [2, Theorem 4.2], which seems not
to be true. In fact, the assumption of statement of [2, Theorem 4.2(i)] is at least not true,
because the submanifold M in a contact metric manifold normal to the structure vector
field £ is always anti-invariant (that is, P - 0), as X, Y e TM implies that [X, Y) € TM
and therefore g(X,tpY) = dr](X,Y) = 0 ([12]). Thus, in this case we can not find an
invariant plane section in the submanifold.

6. SQUARED MEAN CURVATURE AND RICCI CURVATURE

In [7], B.-Y. Chen established a sharp relationship between the squared mean cur-
vature and the Ricci curvature for the submanifolds in a real space form. In this section,
we prove similar result for C-totally real submanifolds in a (n, /x)-contact space form as
follows.

THEOREM 6 . 1 . Let M be an n-dimensional C-totally real submanifold in a

(2m + 1)-dimensional (K, fj,F)-contact space form M(c). Then

(i) For each unit vector U € TPM, we have

Ric(U) ^ ^{n2\\H\\2 + (n- l)(c + 3)} + trace(/ir) + (n - 2)g(hTU, U)

+^{trace(hT)g(hTU,U)-\\hTU\\2

(33) - t r a c e ^ H f f ((<ph)TU, U) + \\{^h)TU\\2}

(ii) ForH(p) — 0, a unit tangent vector U e TPM satisfies theequalitycaseof (33)

if and only ifU belongs to the relative null space Afp.

(iii) The equality in (33) holds identically for all unit tangent vectors at pif

and only if either p is a totally geodesic point or n = 2 and p is a totally

umbilical point.
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P R O O F : Let U € TPM be a unit tangent vector. We choose an orthonormal basis
e i , . . . , en, e n + i , . . . , e2m+i such that ei,...,en are tangential to M at p with et = U.
Then, the squared second fundamental form and the squared mean curvature satisfy the
following relation

2m+l

(34) ||a||2 - -n2\\H\\2 + - £ K i " 2̂2 <n)2

r=n+l
2m+l n 2m+l

, 2 X~* \~V r \2 — 9 \~^ \~* ^ r r _ ^ r '\2^
r=n+l j=2 r=n+l 2^t<j^n

From (17) and (34) we get

-n2\\H\\2 = T - - n ( n - l)(c + 3) - (n - 1) trace(/iT)
4 8

\\(<ph)T\\a]
2m+l 2m+l n

1
r=n+l r=n+lj=2

(35) -15 E K^-(^)2)-
r=n+l 2^i<j^n

From (16), we also have

2m+l „

^ii = E K"J> - K ) 2 ) + -^+9{hTeu e^ + g(hT
ej, e,-)

r=n+l

ej, e,-) - 5(/iTei, e; )
2

which implies that

E ^ = E E K^-K)2) + g(n-l)(n-
r=n+l 2^i<>^n

+i{ ( t r ace ( / i r ) ) 2 - 2trace(AT)<7(/iTe1,e1) - | | /iT| |2 + 2 |

(36) -2| | (y)/i)Te1 | | 2 | + (n - 2)(trace(/iT) - ff(/iTei,ei))

From (35) and (36), we get

Ric(tf) = i { n 2 | | i / | | 2 + (n - l)(c + 3)} + trace(/iT) + (n - 2)5(/irC/, £/)
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+Utiace(hT)g{hTU,U) - ||/ir[/||2

-t™ce((vh)T)g{(<ph)TU,U)
2m+l 2m+l n

(37) --Y. ^ - ̂  o2 - £ E

which implies (33).

Assuming U — ei, from (37), the equality case of (33) is valid if and only if

(38) a J 2 = . . . = CTJB = o, r e { n + l 2 m + l } .

If H(p) = 0, (38) implies that U = ex lies in the relative null space Afp. Conversely, if
U — e\ lies in the relative null space Nv, then (38) holds, since H(p) = 0 is assumed.
Thus (ii) is proved.

Now we prove (iii). The equality case of (33) for all unit tangent vectors to M at p
happens if and only if

2ar
i{ = a r

n + ar
22 + • • • + a r

n n , i 6 { 1 , . . . , n } , r e { n + l 2m+ 1},

(39) a £ = 0, i?j,re

Thus, we have two cases, namely either n = 2 or n ^ 2. In the first case p is a totally
umbilical point, while in the second case p is a totally geodesic point. The proof of
converse part is straightforward. D

REMARK 6.2. Theorem 6.1 is different from [2, Theorem 3.1]. Moreover, the assump-
tion of the statement in [2, Corollary 3.2] is also not true, because the submanifold Mm
a contact metric manifold normal to the structure vector £ can not be invariant.

7. SQUARED MEAN CURVATURE AND /C-RICCI CURVATURE

In this section, we prove a relationship between the fe-Ricci curvature and the squared
mean curvature for C-totally real submanifolds in (/c,/i)-contact space form M(c). First,
we prove the following theorem.

THEOREM 7 . 1 . Let M be an n-dimensional C-totally real submanifold in a
(2m -I-1)-dimensional (K, /i)-contact space form M(c). Then we have

— m —
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PROOF: Let X e TPM be a unit tangent vector X at p. We choose an orthonormal
basis {e i , . . . , e n , e n + i , ••• !e2m +i} such that e i , . . . , e n are tangential to M at p with
ei = X. We recall the equation (17) as

(41) n2 = 2r - 2(n - 1) trace(/iT)

- ±{(trace(/»r))2 - \\(fh)T\\2},

where c = —2K — 1 if K < 1. Let the orthonormal basis {ei , . . . , en, e n + 1 > . . . , e2m+i} be
such that en+i is parallel to the mean curvature vector H(p) and e\,..., en diagonalise
the shape operator An+i- Then the shape operators take the forms

'ax 0 • • • o \

0 a 2 ••• 0
( 4 2 ) A n + 1 = . . . .

^ 0 0 ••• anj
n

(43) Ar = {p^), i, j - 1, . . . , n; r = n + 2, . . . , 2m + 1, trace /lr = "SJJ^ = 0.

From (41), we get

(44) n2

Since

2m+l . 1

- 2(n - 1) trace(ftr)
r=n+2i,j=l

0 - aj)
2 = (n -aj)

2 = (n - 1) ̂  a2 - 2 ̂  «<%

therefore, we get

(45) n2\\H\\2 =

which implies

In view of (44), we obtain

(46) n2 \\H\\2 >2T + TI \\H\\2 - ^n(n -

t = l

- 2(n - 1) trace(/iT)

which gives (40).

Now, we are able to prove the following
D
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THEOREM 7 . 2 . Let M be an n-dimensional C-totally real submanifold in a
(2m+l)-dimensional (/c, ̂ -contact space form M(c). Then, for each integer k, 2 ̂  k ̂  n,
and every point p e M, we have

(47) \\H\\2 > 6k(p) -C-^~l traced)
T Til

PROOF: Let {ei , . . . ,en} be an orthonormal basis of TVM. We denote by Ltl...it the
fc-plane section spanned by e^,..., eik. From (10) and (11), it follows that

(48) r(Lu..,k)=
l- Yl KM*),

2i€{i, ik)
Lii -**

and

(49) r(P) = jiz £ r(Lh...ik).
*-2 l^»i<-<it<n

Combining (12), (48) and (49), we obtain

(50) r(p) ^ ^ ^ ^ ( p ) ,

which in view of (40) implies (47). D

8. SOME APPLICATIONS

In this section, we apply the results of previous sections to get corresponding results
for C-totally real submanifolds in Sasakian space forms. If K = 1, the (K, /x)-contact space
form reduces to Sasakian space form M(c); thus h = 0 and (8) becomes

R(X, Y)Z = C-^{9(¥, Z)X - g(X, Z)Y)

+ l = i {2g(X, ipY)<pZ + g(X, tpZ)ipY - g(Y,

(51) + v(X)v(Z)Y - v(Y)v(Z)X + g(X, Z)r,{Y)S - g(Y, Z)r,(X)t}.

Moreover, for a C-totally real submanifolds in Sasakian space forms, from (15), we also

get

(52) At = 0.

Thus, in view of Theorem 5.2, we can state the following.
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THEOREM 8 . 1 . [9, Theorem 1]) Let M be an n-dimensional (n > 2) C-totally
real submanifold in a (2m + l)-dimensional Sasakian space form M(c). Then

(53) 6M ̂  ^ Z l ] H-̂ ll2 + \^n + W " - 2)(c + 3)-

Moreover, the equality holds at a point p € M if and only if there exist a tangent basis
{ d , . . . , en} C TPM and a normal basis {en+i,..., e2m, £} C TpM such that the shape
operators take the following forms:

'a 0 0
(54) A,+i = | 0 b 0

0 (a + 6)/n_2,

(55) AT = \ dr -cT 0 , r € {n + 2, . . . , 2 m } ,

and A{ = 0.

Now, we state the following Sasakian version for C-totally real submanifolds, which
follows from the Theorem 6.1.

THEOREM 8 . 2 . Let M be an n-dimensional C-totally real submanifold in a
(2m + 1)-dimensional Sasakian space form M(c). Then

1. For each unit vector U 6 TPM, we have

(56) 4 Ric(£/) sS n2\\Hf + {n- l)(c + 3).

2. If H(p) — 0, then a unit tangent vector U 6 TPM satisfies

(57) 4Ric(£/) = ( n - l ) ( c + 3)

if and only ifU belongs to the relative null space Afp.

3. For each p € M

(58)

where S is the Ricci tensor of the submanifold. The equality in (58) holds

if and only if either p is a totally geodesic point or n — 2 and p is a totally

umbilical point.
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In the last, in view of Theorems 7.1 and 7.2, we have the following relationship in
case of an n-dimensional C -totally real submanifold in a Sasakian space form M(c) as
follows.

THEOREM 8 . 3 . Let M be an n-dimensional C-totally real submanifold in a
Sasakian space form M(c). Then we have

(59) ^ - ^ ~ \\Htf < 9k(p) - \\Htf < C-±l.
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