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1. Introduction. Applying Hopkins’s Theorem asserting that each unitary right Artinian
ring is right Noetherian, G. Kothe and K. Shoda proved the following theorem (cf. Kéthe [7],
p. 360, Theorem 1 and p. 363, Theorem 5): If R is a unitary right Artinian ring, then the
following statements hold:

(i) Each nilpotent subring of R is contained in a maximal nilpotent subring of R.

(ii) The intersection of all maximal nilpotent subrings of R is the maximal nilpotent two-
sided ideal of R.

(iii) All maximal nilpotent subrings of R are conjugate.

Our problem is to decide which of these statements remain valid in right Noetherian
rings. It is an immediate consequence of the Theorem of Levitzki (cf. Jacobson [6, p. 199,
Theorem 1]), and Theorem 1 of Herstein and Small [5, p. 775], that each nilpotent subring
of a right Noetherian ring R is contained in a maximal nilpotent subring of R (Proposition 1).

In [1] D. W. Barnes proved statement (ii) for all rings with minimum condition for right
ideals. Now, if R is any right Artinian ring, then the sum B(R) of all nilpotent ideals of R is
nilpotent, and R/B(R) is a unitary right Artinian and right Noetherian ring. Hence Barnes’s
Theorem is a consequence of the following theorem:

If R is a ring such that the sum B(R) of all nilpotent ideals of R is nilpotent, and that
R/B(R) is right Noetherian, then statement (ii) holds in R.

This theorem is an easy consequence of our Theorem 1. It is perhaps remarkable that
we do not make full use of the maximum condition for right ideals of R/B(R). In particular,
it follows that the intersection of all maximal nilpotent subrings of a right Noetherian ring
R is the maximal nilpotent ideal B(R) of R (Corollary 4).

In rings without an identity element the customary concept of conjugacy is not applicable.
Consequently we term the subrings X and Y of R quasi-conjugate if there exists a pair of
elements u, v in R satisfying u+v=uwuv=vu such that Y is the totality of elements
x—ux—xv+uxv with x in X. Then our Theorem 2 asserts: If R is a right Artinian ring
without additive subgroups of type p®, then its maximal nilpotent subrings are quasi-
conjugate,
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2. Notations and definitions. Throughout this paper, every ring R is associative. The
existence of an identity in R is not assumed.
R* = additive group of the ring R.
A @ B = ring-theoretical direct sum of the ideals A4, B of R.
A 4+ B = direct sum of the right ideals 4, B of R.

Y R, = discrete direct sum of the rings R,.
nel

2° R, = complete direct sum [or Cartesian sum] of the rings R,.
nel

If M is a subset of R, then we denote by (M), the right ideal of R generated by M.
Let X be a subset of the ring R. Then
X(R) = {xeR|xX =0}, X/(R)={xeR|Xx=0}.

Z'(R) = {xeR ] x,(R) is an essential right ideal of R} = right singular ideal of R.

The subrings X and Y of the ring R are quasi-conjugate if there is a quasi-regular
element u € R such that
Y ={x—ux—xv+uxv | xe X, where v is the quasi-inverse of u in R.}

Right Goldie ring = ring with ascending chain condition on right annihilators and on

direct sums of right ideals.

The right ideal U % 0 of the ring R is called uniform if X Y & 0 for all right ideals
X+0+Yof Rwith X, Y=< U.

If R is a semi-prime right Goldie ring, then, by Goldie [4, p. 202, Theorem, 1.1], there isa
positive integer n such that

(i) every direct sum of uniform right ideals of M contains at most » terms,

(ii) arightideal X of R is essential if and only if X contains a sum of n uniform right ideals.
The integer n is called the dimension of R and is denoted by dim R.

The right ideals U, V of R are subisomorphic if there is a right R-module monomorphism
0 of Uinto V, and a right R-module monomorphism u of ¥ into U.

3. Maximal nilpotent subrings of rings with certain chain conditions. Let n be a non-
empty set of subrings S of the ring R such that the union of every tower t of n belongs to n.
Then by Zorn’s Lemma we obtain that each n-subring of the ring R is contained in a maximal
n-subring of R. If n is the set of all locally nilpotent (resp. nil) subrings of R, n satisfies our
transfinite induction hypothesis. Thus we have

Lemma 1. (a) Each locally nilpotent subring of an arbitrary ring R is contained in a maximal
locally nilpotent subring of R.
(b) Each nil subring of an arbitrary ring R is contained in a maximal nil subring.

By Herstein and Small [5, p. 775, Theorem 1], every nil subring of a ring R satisfying
the ascending chain conditions on right and left annihilators is nilpotent. This implies
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CoRrOLLARY 1. If R is a ring with maximum conditions on right and left annihilators, then
each nilpotent subring is contained in a maximal nilpotent subring.

Now let R be a right Noetherian ring. Then the sum B(R) of all nilpotent ideals of R
is nilpotent by Levitzki’s Theorem (cf. Jacobson [6, p. 199, Theorem 1]). Since R/B(R) is a
semi-prime right Noetherian ring, it satisfies the maximum conditions on right and left
annihilators by Procesi and Small [12, p. 81, Lemma 2]. Hence from Corollary I and Lemma 1
we deduce

ProrosiTioN 1. Each nilpotent subring of a right Noetherian ring R is contained in a
maximal nilpotent subring of R.

In the following it will be proved that the intersection of all maximal nilpotent subrings
of a right Noetherian ring R is just the sum B(R) of all nilpotent ideals of R.

LeMMA 2. Let M+ 0 bea nilpotent subring of the prime right Goldie ring R. Let r be the
exponent of M and n = dim R. Then

(@) rn,
(b) dim (M), £ n—1,

(c) there exists a set of r idempotents eq =0, ¢, +0 (k=1,2,...,r—1) of the ring Q
of right quotients of R satisfying e,Q = M"~*Q such that

M<R n;;(ek—ek_og(l ~e).

Proof. (M) is arightideal of R; so dim (M); < dim R = n. Assume that dim (M)g = n;
then MQ = Q by Goldie [4, p. 212, Lemma 4.3]. Hence 0 = M"Q = Q # 0. This con-
tradiction proves (b).

Since M is a nilpotent subring of the unitary Artinian ring Q, which is a ring of nxn
matrices over a division ring, the exponent r of M satisfies »r £ n by Levitzki [8, p. 625,
Zusatz], and (a) has been proved.

For each integer 1 Sm <r—1 we have M™Q> M™*1Q; for equality implies that
M = 0, because Q has an identity element. If d(r—i) = dim(M" "), for i=1,2,...,r—1,
then there are primitive orthogonal idempotents e; ; #0 (i=1,2,...,r—1,j;=12,...,
d(r—i)) of Q such that

M7Q=1e; Q.. .tepaq-1)Q+ ... F& 1Q4...F e ap-5Q

If ex=e; 1+...+€1,a0-y+€2, 14+ 14+..-Feap-ry for k=1,2,...,r—1, then we
obtain e.e, .| = e, = €., because the ¢; ; are orthogonal idempotents. Furthermore
we have M"*Q =¢,Q0. From e,,,Q=M"*10> M *Q=¢Q for all k=1,2,...,r—1
we deduce for each ae M that

a(ey41Q) = aMr_k_lQ < Mr_kQ = 0.
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Hence ae,, , = e,q e, Q for some ge Q. Since
(erv1— a8y = (gr1—e)eqd = e e—eq = eq—eq =0,
it follows that (e, ; —eae(e;y 1),(Q) = O(1 —e,4,). Therefore
(exr1—eda € (gey—e)Q(l—eyy)

is a consequence of e, 6, =¢, =e€,.;. Now M S MQ =e,_,Q implies that a = e,_;a.
Hence

r—1 r-1
a= kZ1 (ex—e-y)a € kZ1 (ex—ex-1)Q(1—¢),
where ey = 0. This completes the proof.

The nilpotent ring M has exponent h, if h is the least positive integer r with M" = 0,

LemMMA 3. Let R be a prime right Goldie ring, and Q its ring of right quotients. Then the
Jollowing statements hold:

(a) There are n=dim R primitive orthogonal idempotents g;+ 0 of Q such that
giQNnR+0+RNQg forallk=1,2,..., n

) If the f;+=0 (i=1,2,...,n) are n primitive orthogonal idempotents of Q such that
SiQNR %04 Rn Qf; for all i, then

n—1 n n—1 n
@ T=Rn[ijQ< Y f,,)] and U=Rn Z( > f,,)ij]
j=1 h=j+1 j=1\h=j+1
are maximal nilpotent subrings of R with exponent n satisfying UNT =0, and

(ii) if N is a nilpotent subring of R containing an element t of the form
n-1
t= Zlfiqz'fw 1

where 0 % f.q.fis,€Randq.eQ foralli=1,2,...,n—1, then NX T, and N has exponent n.

(¢) For each nilpotent subring M of R there exists a regular element ce R such that
¢ 'McnR is contained in a maximal nilpotent subring S of R with exponent n = dim R.
[c~! denotes the inverse of ¢ in Q.]

Proof. By Goldie’s Theorem for prime rings, Q is a ring of n x n matrices over a division
ring D. Hence there are n orthogonal primitive idempotents e;e Q. Since R is a classical
right order of Q, each e; has the form e; = a,c;”', where a;, c;eR, and ¢, is regular. By
Jacobson [6, p. 263, Lemma 1], there exist regular elements by, b,, ..., b,, ce R such that
cil=bc fori=1,2,..,n If g;=c 'ec for all i, then the g, form a maximal set of
orthogonal primitive idempotents of Q. Clearly Rng;Q % 0 for all i. This together with
0 + a,b; = cg, proves (a).
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Now let f;+£0 (i=1,2,...,n) be n orthogonal primitive idempotents of Q such that
fiONR#%E 0%+ Rn Qf; for all i. Since R is a prime ring we have

0+ (fQnR)(QfinR) £fQfinR for i,h=1,2,...,n. 3.1
Let x; (i=1,2,...,n—1) be n—1 elements of Q such that 0 % fix,f;,,€R. Let N be
a nilpotent subring of R containing the element

n—1
X = i;lfixifi+1'

Clearly x % 0, because the f; are orthogonal primitive idempotents of Q. Now x satisfies
x"=0. But x"~! % 0, because

0= x""' = (fx1 J)(f2%2f3) - o 2%n=2fe ) fom %= 1)
would imply that
0=x""1Q = (fix1f) (f2X2f3) -+ (fam2%n-2fn—1) (fu=1%0- 1 [)Q
= (f1x )(2x2f3) . (fam2Xn-2fn-1)Q = ...
=(/ix£)8= /12 *0,

since Q is an associative ring and the right ideals f,Q (k=1,2, ..., n) are minimal right
ideals of Q. From x"~! 4 0 we obtain by Lemma 2 that n = dim R is the exponent of N.
Therefore

0<N" 'Q<N"2Q0<..<NQ<NQ<Q

is a (right) composition series of the unitary simple Artinian ring Q. Hence from
s
0% x""*= Z [(fjxjfj+1)(f}+1xj+1fj+2)-~(fj+n—s—1xj+n-s-1fj+n—s)] e N"™*°
i=1

fors=1,2,..., n—1 we obtain N"°Q = (f, +f,+...+/,)Q for all 5. Therefore by applica-
tion of Lemma 2 we have

vano| o= £)|=xe[E e £ 1)) -7

This completes the proof of Lemma 3(b) (ii).

Now we have to show that T is a maximal nilpotent subring of R. Since the f; are
orthogonal idempotents, T is a nilpotent subring of R. By Lemma 2 of Procesi and Small
[12, p. 81] and Corollary 1 we know that T is contained in a maximal nilpotent subring S of R.
From (3.1) we deduce the existence of n—1 elements g;e Q such that 0 % fig,f;, ;€ R for
i=1,2,...,n—1. Clearly fig,f;; 1€ T for all i. Thus

n—1
t= .ZlfiqifiﬂeT =S

Hence, by Lemma 3(b) (ii), S £ T, and T is a maximal nilpotent subring of R.
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if U=Rn ["f( » fh> Qf,-],

j=1\h=j+1

then U is a nilpotent subring of R, and, by the right-left symmetry of the given proof for T
being a maximal nilpotent subring of R, it can be shown that U is a maximal nilpotent subring
of R. Since the elements f, (k =1, 2, ..., n) are orthogonal idempotents, it is easy to see that
UnT = 0. Thus Lemma 3(b) (i) holds.

Now let M be a nilpotent subring of R with exponent r. By Lemma 2 there exists a set
of r—1 idempotents e, += 0 (k =1, 2, ..., r—1) of the ring Q such that

M<Rn (2 (ep—er QA1 —eo),

where e, = 0. By the proof of Lemma 2, each ¢, has the form

eg=¢e; 1+...+ey qo-ytez, 1+...+e a1y

where d(r—i) = dim(M" %), and where the ¢, ;, +0[i=1,2,...,r=1; ji=1,2,...,d(r—i)]
are orthogonal primitive idempotents of Q. Clearly this set of orthogonal primitive idem-
potents of Q can be extended to a maximal set of n orthogonal primitive idempotents
[i*+0(=12,..,n) of Q such that

e,-,ji =f_“+ 5;1 d(r_s—l)

Man[n_lij< > f>]
j=1 h=j+1

Each f; = xjcj‘l, where x;, ¢;€ R, and c; is regular. By Jacobson [6, p. 263, Lemma 1] there
are regular elements b,, b,, ..., b,, ce R with cj_l =b;c™". Let g;= c"‘fjc forj=1,2,...,n
By the proof of Lemma 3(a) the primitive orthogonal idempotents g; satisfy ;0N R+ 0
# Qg;n R for all j. Hence

n—1 n
c"lMcnR§Rn|: ng< Y g,,>jl=T.
i=1 h=j+1

fori=1,2,...,r~1. Hence

By Lemma 3(b)(i), T is a maximal nilpotent subring of R with exponent n.
This completes the proof of Lemma 3.

Remark 1. Let R be a prime right Goldie ring, and M be a maximal nilpotent subring
of R. If ce R is a regular element of R, then in general the nilpotent subring ¢ *Mc A R of R
is not a maximal nilpotent subring of R, as can be seen by the following
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Example. Let K be a unitary principal right ideal domain which is not a left Ore domain
(e.g. Goldie [4, p. 219]). Hence there are x, ye K such that Kx n Ky = 0. Let R be the ring
of all 2x2 matrices (a;;) (i,j = 1, 2) with a,;€ Kx and a;,€ Ky. If K is the division ring of
right quotients of K, then Q = K, is the classical ring of right quotients of R, by Faith and
Utumi [2, p. 59]. Hence R is a prime right Goldie ring (cf. Jacobson [6, p. 268], Goldie’s
Theorem for prime rings). Let M be the ring of all matrices (a;;) of Rwitha,; =a,, =a,;, =0
and a,, € Kx. We shall prove that M is a maximal nilpotent subring of R. If this were not
true, then there would be a ve R, v¢ M such that {M, v} is a nilpotent subring of R. By
Lemma 2 we have {M, v}?> = 0. Let

a b 0 0
()
c d c 0

where a, ce Kx and b, de Ky. Then v—ge{M, v}. Thus (v~g)*=0. Hencea=0=d.
From v?> =0 we deduce that ¢ =0 or 5=0. If we had b+ 0, then we would obtain

v+z€{M, v} for
0 0
z= .
(x 0)

Therefore (v+2z)? = 0 which implies that bx = 0. Hence b =0, and we get v=geM, a
contradiction. Therefore M is a maximal nilpotent subring of R. If N is the ring of all matrices
(a,)eR with a;, =a,, =a,, =0 and a,,€Ky, then by a similar argument N also is a
maximal nilpotent subring of R. Clearly

]

is a regular element of R, and ¢c"'McnR=SN. If ¢"*McnR were a maximal nilpotent
subring of R, then we would have ¢c"!Mcn R=N. Hence there would be an element
we Kx with y"!wy =y, and thus we would have 0+ y=w=kxeKxnKy=0. This

contradiction shows that ¢ !Mcn R<N.
It is well known (cf. Goldie [4], p. 206, Theorem 3.2) that each semi-prime right Goldie
ring has the following properties:

(@) Z(R) = 0.

(b) Each set of independent uniform right ideals of R which are subisomorphic in pairs
has a finite number of elements.

(¢) Each right ideal X # O of R contains a uniform right ideal U # 0 of R.
We therefore call a ring R with the properties (a), (b) and (¢) a generalized right Goldie ring.
LeMMA 4. Let n be a set of nil subrings of the semi-prime generalized right Goldie ring R

such that the union of each tower of n-rings is an n-ring. If each locally nilpotent subring X of R
belongs to n, then there exist two maximal w-subrings H and G of R with HnG = 0.
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Proof. Since R is a semi-prime ring with the properties (a), (b) and (c), by Lemma 4.2
and Lemma 4.5 of [10] R is an irredundant subdirect sum of the prime right Goldie rings
R, =R/P,(uel, I a well ordered index set), where the ideals P, are the maximal two-sided
annihilator ideals of R. If 4, = (P,),(R), then A, is a minimal two-sided annihilator ideal of
Rby L. Levy [9, p. 65, Lemma 3.1]. Since R is semi-prime, A, " P, = 0 for all uel. Hence
A, is isomorphic to a two-sided ideal A, of R,. If we identify A, with A,, then A, is an
essential right ideal of the prime right Goldie ring R,. Hence A4, is a prime ring with Z"(4,) = 0,
and dimg(4,) = dim, (4,) = dimg (4,) = dimR,. Thus A4, has a ring of right quotients
Q(A,) which coincides with the ring of right quotients @, of R, because A, is a two-sided
ideal of R. Application of Lemma 3[(a) and (b) (i)] shows the existence of a maximal set of
primitive orthogonal idempotents g e Q,(i=1,2, ..., n,; pel)such that

n,—1 n,
T, =4, n[ T gS-“’Q,,< ) gﬁ“’)],
=

h=j+1

n,—1 ny
su=A,.n[ > ( > gam)Qﬂg,w]

J=1 \h=j+1

and

are maximal nilpotent subrings of A, with exponent n,. Furthermore T,n S, = 0.
Let T = Y T,. Then Tis a nil subring of Rcontainedin Y’ A4, S R. If ,eT(i=1,2,...,

pnel nel
m), where m is any positive integer, then there is a finite number z (depending on the ¢;€ T)

of minimal two-sided annihilators 4, (k =1, 2, ..., z) such that the subring {¢,, 1,, ..., £} of R
generated by the ¢, is contained in V=4, @ 4, ®... ® A,. Since V is a complete direct sum
of a finite number of prime right Goldie rings, V' is a semi-prime right Goldie ring. Hence the
nil subring {t,, t,, ..., t,,} of V is nilpotent by application of Procesi and Small [12, p. 81,
Lemma 2] and Herstein and Small [5, p. 775, Theorem 1]. Thus T is a locally nilpotent
subring of R. Hence T is an n-subring of R. Since the union of each tower of n-rings is an

n-ring, T is contained in a maximal n-subring G of R. If §= ) S,, by the same argument
nel

we get that S is contained in a maximal n-subring H of R. From G 2T and H = S we obtain
G,2T,and H, 2 §, for all uel. For each pel we define

ne=1 Ny
r=gol T oo 5 o))

h=j+1
and
n, =1 ny
E,= an[ Z < Z gf.‘")Q,,g&“’].
i=1 \n=j+1

Clearly F,nE, = 0 for all uel.

We now want to show that G, £ F, and H, < E, for all ue/, By Lemma 3(a) applied
to the prime right Goldie ring A, we have g’Q, N A, + 0+ Q9" n A4, for allk=1,2, ...,
n, and all gel. Since each A4, is a prime ring we get

0 4: g_(J”)ng;(,u)ﬁA“ é gS#)Q“g'("‘)nRu
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for all j,h=1,2,...,n, Therefore there are n,—1 elements gMe Q,(i=12..,n-1)
such that for all i we have

0¢g(“) (u) (u)l e g,“’Q g(u) ﬁA < T < G

Since G, = (G+P,)/P,, G, is a nil subring of the prime right Goldie ring R,, because each
n-ring is a nil ring. Hence G, is nilpotent. Clearly

t — Z g(u)q(u) l(u)1 e TuéGuéRu'

Hence, by application of Lemma 3(b) (ii) to the prime right Goldie ring R,, G, < F,. By the
right-left symmetry of this argument we get H, < E,.

Now

GZ3Y°G, <Z F, and HSY°H,<Y°E,
pnel pel nel

Therefore G N H = 0, because G, n F, = 0 forall pel. This completes the proof of Lemma 4.

Before stating our Theorem 1 we restate some definitions of [11]. Let 1l be the universal
class of all [associative] rings; then a single-valued function f assigning to every ring R a
(two-sided) ideal fR of R is called a preradical over 1 if it satisfies

(JRY" £ fR* for every epimorphism u of R.

It is well known (cf Jacobson [6]) that the lower and the upper nil radical, the Levitzki-
radical and the Jacobson-radical are preradicals.

Let f and g be preradicals over ll. Then we define f' < g if and only if f R < ¢gR for all
rings R. If fis a preradical over U, we term a ring S an f-ring if S = fS. The ideal X of the
ring R is an f-ideal of R if X is an f-ring. We denote by s,R the sum of all f~ideals of the ring
R. Using these definitions and notations we now establish the following theorem.

THEOREM 1. Let f be a preradical over 11 with the following properties:
A. If L is the Levitzki-radical and N the upper nil radical over U1, then L S f < N.

B. Extensions of f-rings by f-rings are f-rings.
C. The union of each tower of f-rings is an f-ring.

If R/s;R is a generalized right Goldie ring, then the sum s.R of all f-ideals of the ring R
is the intersection of all maximal f-subrings of R.

Proof. Let t be a tower of f-ideals X of R. If T = ) X, then T'is an f-ideal by C. Hence
xet
there exists a maximal f-ideal M of R by Zorn’s Lemma. If M % s/R, then there would be
an frideal Y of R with Y &£ M. Since M is an f-ring, we would have

fIMIMAY]=MMAY = (M+Y)/Y.
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Hence M+ Y would be an f-ideal of R, by B. Thus M would not be a maximal f~ideal of R.
This contradiction proves that M = s;R. Since s R is an f-ideal of R, the only f-ideal of
R/s;Ris 0, by C. From L £ f we obtain that R/s R is a semi-prime ring.

Using C, another application of Zorn’s Lemma establishes the existence of maximal
J-subrings of R. Now, if Fis such a subring of R, s;R < F. Hence from B it follows that the
subring S of R is a maximal f-subring of R if and only if S = s R and S/s R is a maximal
J-subring of R = R/s;R. Thus, if F, (x€ A) are the maximal f~subrings of R, then the F,/s R
are the maximal f-subrings of R. Since R is a semi-prime generalized right Goldie ring, the
intersection of all maximal f-subrings of R is zero by Lemma 4. Hence

(ﬂ_F> / s;R = N [F./s,R] =0,
acAd acAd
which implies that

n Fa = S,R.

acA
This completes the proof of Theorem 1.

By Lemma 1 and Jacobson [6, p. 197, Lemma and Proposition 1, and p. 193, Lemma 1],

the Levitzki-radical L and the upper nil radical N over U satisfy the conditions A, B and C
of Theorem 1. Hence we have ‘

CorOLLARY 2. (a) If R/IL(R) is a generalized right Goldie ring, then the sum L(R) of all
locally nilpotent ideals of R is the intersection of all maximal locally nilpotent subrings of R.

(b) If R/IN(R) is a generalized right Goldie ring, then the sum N(R) of all nil ideals of R
is the intersection of all maximal nil subrings of R.

COROLLARY 3. Let B(R) be the lower nil radical of the ring R. Let R/B(R) be a generalized
right Goldie ring with the following property:

(b") Each set of independent, uniform right ideals of R which are subisomorphic in pairs has
at most n elements, where n is a fixed positive integer.

Then the following properties of the ring R are equivalent:
(i) B(R) is nilpotent.

(ii) B(R) is the intersection of all maximal nilpotent subrings of R.

Proof. Clearly (i) is a consequence of (ii). Assume that R satisfies condition (i). Since
R/B(R) is a semi-prime generalized right Goldie ring the Levitzki-radical L(R) coincides with
B(R), by [10, Zusatz 5.4]. Hence B(R) is the intersection of all maximal locally nilpotent
subrings of R, by Corollary 2(a). Let M be a maximal locally nilpotent subring of R. Then
M/B(R) = M is a maximal locally nilpotent subring of R/B(R) = R. By [10, Theorem 4.8]
R is a subring of a complete direct sum Q of complete rings of n, x n, matrices over division
rings K,(uel). From (b') one easily deduces that n, < n for all pel. Hence M is nilpotent
by application of Lemma 2(a). This completes the proof of Corollary 3.
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COROLLARY 4. The lower nil radical B(R) of a right Noetherian ring is the intersection
of all maximal nilpotent subrings of R.
This follows at once from Corollary 3.

THEOREM 2. If R is a right Artinian ring without additive subgroups of type p®, then the
maximal nilpotent subrings of R are quasi-conjugate.

Proof. Since R* does not contain any subgroup of type p®, it follows from Fuchs
[3, p. 283, Theorem 73.1] that

R=Co@C1®C2®..-®Cr,

where C, is a torsion-free right Artinian ring, and the C; (i =1, 2, ..., r) are uniquely deter-
mined (p; # p;, if i & j) right Artinian prings whose elements are of bounded order.

Let Uy ={(c, 1) | ce Co, n€ Q, where Q is the field of rationals}, where the addition is
defined componentwise and the multiplication by

(€1, 1) (€2, 12) = (c1C2+ pyCa+ paCy, Hilt3). (3.2)

Then, by Fuchs [3, p. 284], U, is a unitary right Artinian ring such that C, is an ideal of U,,.
Fori=1,2, ..., rlet p¥ be the least upper bound of the orders of the elements of C,.
Let Z be the ring of rational integers, and let Z(p**) be the factor ring of Z mod p¥'. Let

Ui = {(C, #) l ce Ci’ ﬂGZ(p:“)},

where addition is defined componentwise and the multiplication by (3.2). Then, by Fuchs
[3, p. 285], each U; (i=1,2,...,r) is a unitary right Artinian ring such that C, is a two-
stded ideal of U;. Hence

U=U0®U1@U2®...®Ur

is a right Artinian ring. Since each right ideal of R is a right ideal of U, R is right Noetherian.
Thus R has maximal nilpotent subrings by Proposition 1. If ¥ is such a subring of R, then the
C;-component (j=0,1,2,...,r)

N;={xeR|x=n—yeC; for some ne N and yek;jU,‘}
of N is a maximal nilpotent subring of C;, and
N=No,®N,®...®N,

by Barnes [1, p. 234, Lemma 1], because R is right Artinian. Let M be another maximal
nilpotent subring of R, Then

M=M,®M,®...®M,.
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Since U,/C = Q, all nilpotent subrings of U, are contained in C,. Hence N, and M, are
maximal nilpotent subrings of the unitary right Artinian ring U,. Thus, by Kothe [7, p. 363,
Theorem 5], there is a unit v, € U, satisfying

=1
My =uqg Nou,.

Let uy = (cq, fo) and ug ' = (dy, ug?).
If go = (—¢g, 0) (0, u5*) and py = (—d,, 0) (0, po), then py is the quasi-inverse of g, in
Cy, and we have

Mo = (1—=po)No(1-4o).

For j=1,2,...,r we know that N; (resp. M) is a maximal nilpotent subring of C;.
Let J; be the radical of Z(p}’). Then

N =(N,0)+(0,J)

is a nilpotent subring of U,. If N} were not a maximal nilpotent subring of U;, then there
would be an element ve U, such that {N7, v} is nilpotent.
Hence v=/(c;,z;) [c;eC},z;€Z(p;**)] is nilpotent. This implies that z;€J;, and
¢j=(c;0)=v-(0,z;) € {N},v}nC;
Now {Nj,c;} £ {N},v} and the fact that N; is a maximal nilpotent subring of C; imply
that c;e N;, which implies that ve N}, a contradiction. Hence N} is a maximal nilpotent
subring of U;. By the same argument we obtain that M} = (M;,0)+(0,J,) is a maximal
nilpotent subring of U;. Thus, by Kéthe [7, p. 363, Theorem 5], there is a unit u;eU;
satisfying
— 1
M} =u;'Ntu; .

Now identify M; with (M;,0) and N; with (N;,0). Then it is obvious that u; 'Nu; < M.
Conversely, for each m; there is an n} = n;+z;, where n;e N;,z;eJ;, such that

Y | — .1 -1
my=u; (n;+z)u;=uj njuj+uj zu;.

Let uj = d1+rl, uj_l = ej+Sj, Where dJ,eJENJ, rJ,SJGZ(pS") and r_,SJ = 1 = Sjrj. Then it
follows that
my—uj 'nju;—ze,d;—s;2;d;—rzie; =5,2;r,€ C;nZ(ph) = 0.

Hence z; = 0. This means that M; = u; 'N,u;.

For each j=1,2,...,r, let g; = (—d;,0)(0,r; ') and p; = (—e;,0)(0,r;). Then p; is the

r r
quasi-inverse of g; in C;, and we have M;=(1—-p)N(1—q). If p= Y pyandg= Y g,
k=0 k=0

then p is the quasi-inverse of ¢ in R, and it follows that M = (1—p)N(1—q). This completes
the proof of Theorem 2.
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Added in proof. We now have an example of a prime right and left Goldie ring with identity having
two maximal milpotent subrings which are not isomorphic (cf Michler, Math. Z. 100 (1967), p. 180).
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