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1. Introduction. Applying Hopkins's Theorem asserting that each unitary right Artinian
ring is right Noetherian, G. Kothe and K. Shoda proved the following theorem (cf. Kothe [7],
p. 360, Theorem 1 and p. 363, Theorem 5): If R is a unitary right Artinian ring, then the
following statements hold:

(i) Each nilpotent subring of R is contained in a maximal nilpotent subring of R.

(ii) The intersection of all maximal nilpotent subrings of R is the maximal nilpotent two-
sided ideal of R.

(iii) All maximal nilpotent subrings of R are conjugate.

Our problem is to decide which of these statements remain valid in right Noetherian
rings. It is an immediate consequence of the Theorem of Levitzki (cf. Jacobson [6, p. 199,
Theorem 1]), and Theorem 1 of Herstein and Small [5, p. 775], that each nilpotent subring
of a right Noetherian ring R is contained in a maximal nilpotent subring of R (Proposition 1).

In [1] D. W. Barnes proved statement (ii) for all rings with minimum condition for right
ideals. Now, if R is any right Artinian ring, then the sum B(R) of all nilpotent ideals of R is
nilpotent, and R/B(R) is a unitary right Artinian and right Noetherian ring. Hence Barnes's
Theorem is a consequence of the following theorem:

If R is a ring such that the sum B(R) of all nilpotent ideals of R is nilpotent, and that
R/B(R) is right Noetherian, then statement (ii) holds in R.

This theorem is an easy consequence of our Theorem 1. It is perhaps remarkable that
we do not make full use of the maximum condition for right ideals of R/B(R). In particular,
it follows that the intersection of all maximal nilpotent subrings of a right Noetherian ring
R is the maximal nilpotent ideal B(R) of R (Corollary 4).

In rings without an identity element the customary concept of conjugacy is not applicable.
Consequently we term the subrings X and Y of R quasi-conjugate if there exists a pair of
elements u, v in R satisfying u+v = uv = vu such that Y is the totality of elements
x-ux-xv+uxv with x in X. Then our Theorem 2 asserts: If it is a right Artinian ring
without additive subgroups of type p™, then its maximal nilpotent subrings are quasi-
conjugate.
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2. Notations and definitions. Throughout this paper, every ring R is associative. The
existence of an identity in R is not assumed.

R+ = additive group of the ring R.

A® B = ring-theoretical direct sum of the ideals A, B of R.

A + B = direct sum of the right ideals A, B of R.

Yf -R/j = discrete direct sum of the rings /?„.
Itel

Y? R,, = complete direct sum [or Cartesian sum] of the rings i? r
fiel

If M is a subset of R, then we denote by (M)R the right ideal of R generated by M.

Let X be a subset of the ring R. Then

X,(R) = {xeR | xX = 0}, Xr(£) = {xei? | Xx = 0}.

Zr(.R) = {x eR | xr(.R) is an essential right ideal of R] = right singular ideal of R.
The subrings X and Y of the ring J? are quasi-conjugate if there is a quasi-regular

element «e/? such that

Y = {x—ux—xv+uxv \ xeX, where v is the quasi-inverse of u in J?.}

Right Goldie ring = ring with ascending chain condition on right annihilators and on
direct sums of right ideals.

The right ideal U 4= 0 of the ring R is called uniform if X n Y =j= 0 for all right ideals
A - * 0 * YotRwithX, y g £/.

If R is a semi-prime right Goldie ring, then, by Goldie [4, p. 202, Theorem, 1.1], there is a
positive integer n such that

(i) every direct sum of uniform right ideals of M contains at most n terms,
(ii) a right ideal XofR is essential if and only if ̂ contains a sum of n uniform right ideals.

The integer n is called the dimension of R and is denoted by dim R.
The right ideals U, V of R are subisomorphic if there is a right i?-module monomorphism

8 of U into V, and a right .R-module monomorphism \i of F into C/.

3. Maximal nilpotent subrings of rings with certain chain conditions. Let n be a non-
empty set of subrings 5 of the ring R such that the union of every tower i of n belongs to n.
Then by Zorn's Lemma we obtain that each n-subring of the ring R is contained in a maximal
n-subring of R. If n is the set of all locally nilpotent (resp. nil) subrings of R, n satisfies our
transfinite induction hypothesis. Thus we have

LEMMA 1. (a) Each locally nilpotent subring of an arbitrary ring R is contained in a maximal
locally nilpotent subring of R.

(b) Each nil subring of an arbitrary ring R is contained in a maximal nil subring.

By Herstein and Small [5, p. 775, Theorem 1], every nil subring of a ring R satisfying
the ascending chain conditions on right and left annihilators is nilpotent. This implies
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COROLLARY 1. If R is a ring with maximum conditions on right and left annihilators, then
each nilpotent subring is contained in a maximal m'lpotent subring.

Now let R be a right Noetherian ring. Then the sum B(R) of all nilpotent ideals of R
is nilpotent by Levitzki's Theorem (cf. Jacobson [6, p. 199, Theorem 1]). Since R/B(R) is a
semi-prime right Noetherian ring, it satisfies the maximum conditions on right and left
annihilators by Procesi and Small [12, p. 81, Lemma 2]. Hence from Corollary 1 and Lemma 1
we deduce

PROPOSITION 1. Each nilpotent subring of a right Noetherian ring R is contained in a
maximal nilpotent subring of R.

In the following it will be proved that the intersection of all maximal nilpotent subrings
of a right Noetherian ring R is just the sum B(R) of all nilpotent ideals of R.

LEMMA 2. Let M 4= 0 be a nilpotent subring of the prime right Goldie ring R. Let r be the
exponent of M and n = dim R. Then

(a) r £ n,

(b) di

(c) there exists a set of r idempotents e0 = 0, ek 4= 0 (k = 1, 2, ..., r— 1) of the ring Q
of right quotients of R satisfying ekQ = Mr~kQ such that

Proof. (M)R is a right ideal of R; so dim (M)R ^ dim R = n. Assume that dim(M)R = «;
then MQ = Q by Goldie [4, p. 212, Lemma 4.3]. Hence 0 = MrQ = 2 * 0 . This con-
tradiction proves (b).

Since M is a nilpotent subring of the unitary Artinian ring Q, which is a ring of n x n
matrices over a division ring, the exponent r of M satisfies r ^ « by Levitzki [8, p. 625,
Zusatz], and (a) has been proved.

For each integer I S m S r—l we have MmQ> Mm+1Q; for equality implies that
M = 0, because Q has an identity element. If d{r-i) = dim(Mr~')R for i = 1, 2, ..., r-1,
then there are primitive orthogonal idempotents eijt ^ 0 (i = \,2,...,r—\,jl = 1,2,...,
d(r-i)) of Q such that

If e* = «i.i + -.. + «i.d(r-i)+e2.i + - + «*,i + - + e*.d(r-t) f o r k = l , 2 , . . . , r - l , then we
obtain ekek+1 = ek = ek+iek, because the ei<Jl are orthogonal idempotents. Furthermore
we have Mr~kQ = ekQ. From ek+1Q = MrLk~lQ > Mr~kQ = ekQ for all k = l , 2 , . . . , r - l
we deduce for each aeM that

a(ek+1Q) = flM'-'-'Q ^ M'~kQ = ekQ.
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Hence aek+1 = ekqeekQ for some qeQ. Since

(ek+i-ek)aek+l = (ek+1-ek)ekq = ek+1ekq-ekq = ekq-ekq = 0,

it follows that (et+1-efc)«e(e*+i)i(0 = G(l-e*+i)- Therefore

is a consequence of ek+lek = ek = e*efc+1. Now M ^ MQ = e , . . ^ implies that a = er_!a.
Hence

r - l r - l

where e0 = 0. This completes the proof.

The nilpotent ring M has exponent h, if h is the least positive integer r with Mr = 0.

LEMMA 3. Let R be a prime right Goldie ring, and Q its ring of right quotients. Then the
following statements hold:

(a) There are n = dim R primitive orthogonal idempotents gt 4= 0 of Q such that
0 ±RnQgkfor allk = 1,2,...,«.

(b) If the f 4= 0 (i = 1, 2, ...,«) are « primitive orthogonal idempotents of Q such that
QfJor all i, then

/J
(i) T = Rn\:ZfJQ( £ fX\ and ^

are maximal nilpotent subrings of R with exponent n satisfying U nT = 0, and

(ii) if N is a nilpotent subring of R containing an element t of the form

n - l

where 0 4= fflji+1ei? andqteQ for all i = 1, 2, ..., n — 1, //zen N^T, and N has exponent n.

(c) For each nilpotent subring M of R there exists a regular element ceR such that
c~iMcnR is contained in a maximal nilpotent subring S of R with exponent n = dimR.
[c"1 denotes the inverse of c in Q.~\

Proof. By Goldie's Theorem for prime rings, Q is a ring of n x « matrices over a division
ring D. Hence there are n orthogonal primitive idempotents e ;eQ. Since R is a classical
right order of Q, each ex has the form ej = aicj"

1, where ah cteR, and c, is regular. By
Jacobson [6, p. 263, Lemma 1], there exist regular elements b1,b2, ..,bn,ceR such that
cj"1 = bfi'1 for / = 1, 2, . . . ,«. If g{ = c~ieic for all /, then the g{ form a maximal set of
orthogonal primitive idempotents of Q. Clearly Rng^ 4= 0 for all i. This together with
0 + afii = cgi proves (a).
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Now let / ; 4= 0 (/ = 1, 2, ...,«) be n orthogonal primitive idempotents of Q such that
iQ n R 4= 0 4= R n Qf-, for all i. Since /? is a prime ring we have

O*(fiQnR)(QfhnR)<fiQfhnR for i,h = 1,2, . . . ,B. (3.1)

Let x, (/= 1, 2, . . . , « - l ) be n-l elements of Q such that 0 +fiXji+i€R. Let N be
a nilpotent subring of R containing the element

Clearly x 4= 0, because the / , are orthogonal primitive idempotents of Q. Now x satisfies
x" -0 . But x""1 4= 0, because

0 = X""1 = (flxJ2)(f2x2f3)...(fn-2xn_2fn_1)(fn_1xn_Jn)

would imply that

0 = x"~lQ = (f1xlf2)(f2xJ3)...(fn_2xn-2fn-1)(fn-1xn_Jn)Q

= (flXj2)(f2X2f3)-(fn-2Xn-2fn-1)Q = ...

since Q is an associative ring and the right ideals fkQ (k = 1, 2, ..., n) are minimal right
ideals of g. From x"'1 4= 0 we obtain by Lemma 2 that n — dim i? is the exponent of N.
Therefore

0 < N*~lQ < N"~2Q < ... < N2Q <NQ<Q

is a (right) composition series of the unitary simple Artinian ring Q. Hence from

lxj+ifj+2)...(fj+n-s-1xj+n-s_jj+n_s)-] e N-°

for^= 1, 2,..., n-l we obtain N"~SQ = (fl+f2 + ...+fs)Q for all s. Therefore by applica-
tion of Lemma 2 we have

; = i V * = i

This completes the proof of Lemma 3(b) (ii).
Now we have to show that T is a maximal nilpotent subring of R. Since the / ( are

orthogonal idempotents, T is a nilpotent subring of R. By Lemma 2 of Procesi and Small
[12, p. 81] and Corollary 1 we know that J is contained in a maximal nilpotent subring S of R.
From (3.1) we deduce the existence of n— 1 elements q^Q such that 0 4= /i^i/i +1 eiJ for
i = 1, 2, ..., n - 1. Clearly/#,/„ t eTfor all /. Thus

Hence, by Lemma 3(6) (ii), S $T, and J is a maximal nilpotent subring of /?.
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If U = R

then U is a nilpotent subring of R, and, by the right-left symmetry of the given proof for T
being a maximal nilpotent subring of R, it can be shown that U is a maximal nilpotent subring
of R. Since the elements fk (k — 1, 2, ...,«) are orthogonal idempotents, it is easy to see that
UnT=0. Thus Lemma 3(b) (i) holds.

Now let M be a nilpotent subring of R with exponent r. By Lemma 2 there exists a set
of r—1 idempotents efc + 0 (k = 1, 2, ..., r— 1) of the ring Q such that

M ^K n f £

where e0 = 0. By the proof of Lemma 2, each ek has the form

where d(r—i) = dim(Mr~')R, and where the ef>;, 4= 0 [i = 1,2, . . . , r - l ; j t = 1,2, . . . , d ( r - j ) ]
are orthogonal primitive idempotents of Q. Clearly this set of orthogonal primitive idem-
potents of Q can be extended to a maximal set of n orthogonal primitive idempotents
/ ; + 0 (y= 1, 2, ..., «) of Q such that

*ut=fj,+ i
for i = 1,2, ...,r—1. Hence

Each/y = Xjcf1, where x̂ -, c^ei?, and c} is regular. By Jacobson [6, p. 263, Lemma 1] there
are regular elements bu b2, ..., bn, ceR with cji = bjC~l. Let gj = c~xfjC fory = 1, 2, ..., «.
By the proof of Lemma 3(a) the primitive orthogonal idempotents gj satisfy gjQ n R + 0
=f= 2ff j n R f° r all 7- Hence

By Lemma 3(6)(i), T is a maximal nilpotent subring of i? with exponent n.
This completes the proof of Lemma 3.

Remark 1. Let R be a prime right Goldie ring, and M be a maximal nilpotent subring
of R. If c e R is a regular element of R, then in general the nilpotent subring c~1Mc n R of i?
is not a maximal nilpotent subring of R, as can be seen by the following
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Example. Let K be a unitary principal right ideal domain which is not a left Ore domain
(e.g. Goldie [4, p. 219]). Hence there are x, ye K such that Kxc\Ky = 0. Let R be the ring
of all 2x2 matrices (ay) (i,j = 1, 2) with a^eKx and ai2eKy. If R. is the division ring of
right quotients of K, then Q = R2 is the classical ring of right quotients of R, by Faith and
Utumi [2, p. 59]. Hence R is a prime right Goldie ring (cf. Jacobson [6, p. 268], Goldie's
Theorem forprime rings). Let Mbe the ring of all matrices («y) of R with a n = a12 = a22 — 0
and a21 sKx. We shall prove that M is a maximal nilpotent subring of R. If this were not
true, then there would be a veR, v$M such that {M, u} is a nilpotent subring of J?. By
Lemma 2 we have {M, v}2 = 0. Let

fa b\ /0
i; = and g =

Vc d/ \c 0.

where a, ce^Tx and b, deKy. Then u-^e{M, v}. Thus (u-flO = 0- Hence a — 0 = d.
From t>2 = 0 we deduce that c = 0 or b = 0. If we had 6 + 0, then we would obtain
v+ze{M, v) for

\x 0,

Therefore (v+z)2 = 0 which implies that bx = 0. Hence b = 0, and we get v = geM, a
contradiction. Therefore M is a maximal nilpotent subring of R. If N is the ring of all matrices
(a,j)eR with a n = a21 = a22 = 0 and a12e.K>, then by a similar argument # also is a
maximal nilpotent subring of R. Clearly

0̂

is a regular element of R, and c~iMcnR ^N. If c~lMcr\R were a maximal nilpotent
subring of R, then we would have c~lMcnR=N. Hence there would be an element
weKx with y~1wy = y, and thus we would have 0 ̂ y = vv = kxeKxnKy = 0. This
contradiction shows that c~1Mcr\R<N.

It is well known (cf. Goldie [4], p. 206, Theorem 3.2) that each semi-prime right Goldie
ring has the following properties:

(a) Zr(R) = 0.

(b) Each set of independent uniform right ideals of R which are subisomorphic in pairs
has a finite number of elements.

(c) Each right ideal X + 0 of R contains a uniform right ideal U 4= 0 of R.

We therefore call a ring R with the properties (a), (b) and (c) a generalized right Goldie ring.

LEMMA 4. Let n be a set of nil subrings of the semi-prime generalized right Goldie ring R
such that the union of each tower ofn-rings is an n-ring. If each locally nilpotent subring X ofR
belongs to n, then there exist two maximal n-subrings H and G of R with H n G = 0.
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Proof. Since R is a semi-prime ring with the properties (a), (b) and (c), by Lemma 4.2
and Lemma 4.5 of [10] R is an irredundant subdirect sum of the prime right Goldie rings
R^ = R/p^ (pel, / a well ordered index set), where the ideals P^ are the maximal two-sided
annihilator ideals of R. If A^ = (P^XR), then A^ is a minimal two-sided annihilator ideal of
R by L. Levy [9, p. 65, Lemma 3.1]. Since R is semi-prime, A^nP^ = 0 for all fiel. Hence
A^ is isomorphic to a two-sided ideal A^ of R^. If we identify A^ with A^, then A^ is an
essential right ideal of the prime right Goldie ring Rr Hence A^ is a prime ring with Zr(A^) = 0,
and &\mR{A^ = dim^ (A^) = dimR (A,,) = dim/?,,. Thus A^ has a ring of right quotients
Q(A^ which coincides with the ring of right quotients Q^ of R^, because A^ is a two-sided
ideal of R. Application of Lemma 3[(a) and {b) (i)] shows the existence of a maximal set of
primitive orthogonal idempotents g^ ' e Q^ (i = 1, 2 , . . . , n^; / ie / ) such that

and
c

Tn M -l / nu

S^A^I E _E

are maximal nilpotent subrings of A^ with exponent «„. Furthermore 7^ n 5W = 0.
L e t r = X d ^ - Then T is a nil subring of R contained in Y?An = R- I f U^T(i = 1,2,...,

WJ), where w is any positive integer, then there is a finite number z (depending on the tt e T)
of minimal two-sided annihilators Ak (k = 1, 2, ..., 2) such that the subring {tlt t2, ..., ?m} of R
generated by the tt is contained in V=Ai ©A2 ®... ®AZ. Since Fis a complete direct sum
of a finite number of prime right Goldie rings, V is a semi-prime right Goldie ring. Hence the
nil subring {tu t2, •••, tm} of V is nilpotent by application of Procesi and Small [12, p. 81,
Lemma 2] and Herstein and Small [5, p. 775, Theorem 1]. Thus T is a locally nilpotent
subring of R. Hence T is an n-subring of R. Since the union of each tower of n-rings is an
n-ring, T is contained in a maximal n-subring G of R. If S = £ d S^, by the same argument

we get that S is contained in a maximal n-subring H of R. From G ̂  T and H ^ S we obtain
G^ ^ 7), and //„ ^ 5^ for all ^ e / . For each HE I we define

and

£ „ = *

kgj Q\=%9h )]'

=J+1

Clearly Fllr\Ell = O for all / i e / .
We now want to show that GM ^ F^ and //M ^ JE1^ for all /i e /, By Lemma 3(a) applied

to the prime right Goldie ring A^ we have gi^Q,, n y4M =t= 0 4= Q^gi^ n /4M for all A: = 1,2, ...,
77,, and all ^ e /. Since each A^ is a prime ring we get
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for all j , h = 1, 2, ..., «„. Therefore there are «„-1 elements g^e Q^ (i = 1, 2, ..., «„-1)
such that for all i we have

o * gWVtfi e ^'G^ift n ̂  g rM ̂  GM.

Since G ̂  = (G+P^/P^, G^ is a nil subring of the prime right Goldie ring /?„, because each
n-ring is a nil ring. Hence GM is nilpotent. Clearly

i = l

Hence, by application of Lemma 3(6) (ii) to the prime right Goldie ring R^, (?„ ^ FM. By the
right-left symmetry of this argument we get H^^E^.

Now

HGI / is / fiel pel

Therefore (7 n H = 0, because C ^ n F ^ O for all /t e /. This completes the proof of Lemma 4.
Before stating our Theorem 1 we restate some definitions of [11]. Let It be the universal

class of all [associative] rings; then a single-valued function /assigning to every ring R a
(two-sided) ideal fR of R is called apreradical over II if it satisfies

(//?)" ̂ /R" for every epimorphism \i of R.

It is well known (cf Jacobson [6]) that the lower and the upper nil radical, the Levitzki-
radical and the Jacobson-radical are preradicals.

Let/and g be preradicals over it. Then we define/^ g if and only if fR ^ gR for all
rings R. If/is a preradical over U, we term a ring 5 anf-ring if S =fS. The ideal X of the
ring R is an f-ideal of R if X is an/-ring. We denote by sfR the sum of all/-ideals of the ring
R. Using these definitions and notations we now establish the following theorem.

THEOREM 1. Let f be a preradical over it with the following properties:

A. If L is the Levitzki-radical and N the upper nil radical over it, then L SfSN.

B. Extensions off-rings by f-rings are f-rings.

C. The union of each tower off-rings is anf-ring.

If R/SfR is a generalized right Goldie ring, then the sum s^R of all f-ideals of the ring R
is the intersection of all maximal f-subrings of R.

Proof. Let i be a tower of/-ideals X of R. If T = £ X, then T is an/-ideal by C. Hence
Xet

there exists a maximal /-ideal M of R by Zorn's Lemma. If M #= sfR, then there would be
an/-ideal Y of R with Y S M. Since M is an/-ring, we would have

f[M/M nY~\= M/M n Y s (M+ 7)/K
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Hence M+ Y would be an /-ideal of R, by B. Thus M would not be a maximal/-ideal of R.
This contradiction proves that M = sfR. Since sfR is an /-ideal of R, the only /-ideal of
R/sfR is 0, by C. From L g / w e obtain that R/sfR is a semi-prime ring.

Using C, another application of Zorn's Lemma establishes the existence of maximal
/-subrings of R. Now, if F is such a subring of R, sfR S F. Hence from B it follows that the
subring S of R is a maximal /-subring of R if and only if S ^ sfR and S/sfR is a maximal
/-subring of R = R/sjR. Thus, if Fa (a e A) are the maximal /-subrings of R, then the FJsfR
are the maximal /subrings of R. Since £ is a semi-prime generalized right Goldie ring, the
intersection of all maximal/-subrings of R is zero by Lemma 4. Hence

(r\F)/sfR=ntFJsfR-] = O,
\xeA Jl aeA

which implies that
PI Fa = S/K.

This completes the proof of Theorem 1.
By Lemma 1 and Jacobson [6, p. 197, Lemma and Proposition 1, and p. 193, Lemma 1],

the Levitzki-radical L and the upper nil radical N over U satisfy the conditions A, B and C
of Theorem 1. Hence we have

COROLLARY 2. (a) If R/L(R) is a generalized right Goldie ring, then the sum L(R) of all
locally nilpotent ideals of R is the intersection of all maximal locally nilpotent subrings of R.

(b) If R/N(R) is a generalized right Goldie ring, then the sum N(R) of all nil ideals of R
is the intersection of all maximal nil subrings of R.

COROLLARY 3. Let B(R) be the lower nil radical of the ring R. Let R/B(R) be a generalized
right Goldie ring with the following property:

(b') Each set of independent, uniform right ideals of R which are subisomorphic in pairs has
at most n elements, where n is a fixed positive integer.

Then the following properties of the ring R are equivalent:

(i) B(R) is nilpotent.

(ii) B(R) is the intersection of all maximal nilpotent subrings of R.

Proof. Clearly (i) is a consequence of (ii). Assume that R satisfies condition (i). Since
RIB(R) is a semi-prime generalized right Goldie ring the Levitzki-radical L(R) coincides with
B(R), by [10, Zusatz 5.4]. Hence B(R) is the intersection of all maximal locally nilpotent
subrings of R, by Corollary 2(a). Let M be a maximal locally nilpotent subring of R. Then
M/B(R) = M is a maximal locally nilpotent subring of R/B(R) = R. By [10, Theorem 4.8]
R is a subring of a complete direct sum Q of complete rings of n^ x nM matrices over division
rings K^nel). From {b') one easily deduces that n^^n for all pel. Hence M is nilpotent
by application of Lemma 2(o). This completes the proof of Corollary 3.
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COROLLARY 4. The lower nil radical B(R) of a right Noetherian ring is the intersection
of all maximal nilpotent subrings of R.

This follows at once from Corollary 3.

THEOREM 2. If R is a right Artinian ring without additive subgroups of type p™, then the
maximal nilpotent subrings of R are quasi-conjugate.

Proof. Since R+ does not contain any subgroup of type /?°°, it follows from Fuchs
[3, p. 283, Theorem 73.1] that

R = C0®C1®C2@...@Cr,

where Co is a torsion-free right Artinian ring, and the C, (/' = 1, 2, ..., r) are uniquely deter-
mined (pi 4= pj, if 14=./) right Artinian prtings whose elements are of bounded order.

Let Uo ={(c, fi) | ceC0, \isQ, where Q is the field of rationals}, where the addition is
defined componentwise and the multiplication by

(ci,^i)(c2,/i2) = ( c iC j+z^+^C i , / ! ^ ) . (3.2)

Then, by Fuchs [3, p. 284], Uo is a unitary right Artinian ring such that Co is an ideal of Uo.
For i = 1,2, ..., r let pk

t' be the least upper bound of the orders of the elements of C(.
Let Z be the ring of rational integers, and let Z{p\) be the factor ring of Z mod/;?'. Let

where addition is defined componentwise and the multiplication by (3.2). Then, by Fuchs
[3, p. 285], each XJi (i = 1, 2, ..., r) is a unitary right Artinian ring such that C, is a two-
sided ideal of £/,. Hence

U=U0@U1®U2®...®U,

is a right Artinian ring. Since each right ideal of R is a right ideal of U, R is right Noetherian.
Thus R has maximal nilpotent subrings by Proposition 1. If Â  is such a subring of/?, then the
Cy-component (J = 0 ,1 , 2, . . . , r)

Nj = {x e R I x — n — y e C,- for some n e N and yzY. Uk}

of N is a maximal nilpotent subring of Cj, and

N = N0@Nl®...®Nr

by Barnes [1, p. 234, Lemma 1], because R is right Artinian. Let M be another maximal
nilpotent subring of R. Then

M = M0®M1®...®Mr.

https://doi.org/10.1017/S0017089500000148 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500000148


100 GERHARD MICHLER

Since Uo/C = Q, all nilpotent subrings of Uo are contained in Co. Hence No and Mo are
maximal nilpotent subrings of the unitary right Artinian ring Uo. Thus, by Kothe [7, p. 363,
Theorem 5], there is a unit uoe Uo satisfying

Let u0 = (c0, n0) and UQ1 = (d0, fi^1).
If q0 = (—c0, 0) (0, fio *) and p0 = (—d0, 0)(0, /i0), then p0 is the quasi-inverse of qQ in

Co, and we have

For j = 1, 2, ...,/• we know that Nj (resp. MJ) is a maximal nilpotent subring of Cj.
Let Jj be the radical ofZ{p)'). Then

is a nilpotent subring of Uj. If JVJP were not a maximal nilpotent subring of Uj, then there
would be an element veUj such that {N*,v} is nilpotent.

Hence v = {cjtzj) \cjeCj,zjeZ(p-'1)'] is nilpotent. This implies that z^-eT,-, and

Now {Nj, Cj} ^ {iV*, v} and the fact that JV,- is a maximal nilpotent subring of Cj imply
that CjeN,-, which implies that veN*, a contradiction. Hence N* is a maximal nilpotent
subring of [/,-. By the same argument we obtain that M* = (M;,0)+(0, Jj) is a maximal
nilpotent subring of Uj. Thus, by Kothe [7, p. 363, Theorem 5], there is a unit UjeUj
satisfying

Now identify Af; with (Af,-,0) and JV; with (iV;,0). Then it is obvious that uJ^jUj ^ M,-.
Conversely, for each m7- there is an n* = nj+Zj, where rij€Nj,ZjSJj, such that

Let Uj = dj+rj, uj1 = ej + Sj, where d,-, e;eJV,-, r7-, s^-eZ(p*J) and r^- = 1 = s / ; . Then it
follows that

s Cj n Z(p*0 = 0.

Hence Zj = 0. This means that Mj = uJlNjUj.
For each j = 1,2,..., r, let q} = {-d},0)(0, rj1) and p,- = (-e;,0)(0, r;). Then pj is the

r r

quasi-inverse of gy- in Cj, and we have Af,- = (1 -pj)Nj(l-qj). If p = £ pk and <j = ^ qk,
k=0 k=0

then p is the quasi-inverse of q in R, and it follows that M = (1 — p)N(l — q). This completes
the proof of Theorem 2.
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Added in proof. We now have an example of a prime right and left Goldie ring with identity having
two maximal milpotent subrings which are not isomorphic (cf Michler, Math. Z. 100 (1967), p. 180).
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