REMARKS ON AN ARITHMETIC DERIVATIVE

E. J. Barbeau

(received March 21, 1961)

1. Introduction. Let $D(n)$ denote a function of an integral variable $n \geq 0$ such that¹

1. $D(1) = D(0) = 0$

2. $D(p) = 1$ for every prime p

3. $D(n_1 n_2) = n_1 D(n_2) + n_2 D(n_1)$ for every pair of non-negative integers n_1, n_2.

The property (3) is analogous to the product rule for derivatives, and its extension to k terms

4. $D(n) = \sum_{i=1}^{k} n_i^{-1} D(n_i)$ for $n = n_1 n_2 \cdots n_k$

is immediate. The above properties are consistent and determine $D(n)$ uniquely for all non-negative integers n. In fact, if $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$, we have, on using (4),

5. $D(n) = \sum_{i=1}^{r} \alpha_i p_i^{-1}$

so that, once the prime factor decomposition of n is known, the first derivative $D(n)$ is given explicitly. However, the "higher" derivatives, defined successively by

$D^0(n) = n, \ D^1(n) = D(n), \ D^2(n) = D[D(n)], \ldots, \ D^k(n) = D[D^{k-1}(n)]$

¹I have not been able to trace explicit references to previous work on $D(n)$. However, it appeared in a question on the Putnam Prize competition (1950); see American Mathematical Monthly 57 (1950), p. 469. I am indebted to Dr. J. H. H. Chalk for suggesting a note on this topic and for assistance during its preparation.

117

https://doi.org/10.4153/CMB-1961-013-0 Published online by Cambridge University Press
present an unsolved problem. For fixed \(n \), the function \(D_k(n) \) of \(k \) exhibits irregular behaviour as \(k \) increases. For example, using (3) with \(n = p^Pn_1 \), where \(p \) is a prime, we obtain

\[
D(n) = p^P[n_1 + D(n_1)] \geq n
\]
equality holding if and only if \(n_1 = 1 \). Hence, for integers \(n \) possessing a proper divisor of the form \(p^P \), \(\lim D_k(n) = \infty \), and if \(n = p^P \), \(D_k(n) = n \) for all \(k \). On the other hand, \(D_k(p) = 0 \) for all \(k > 1 \) and all primes \(p \). Numerical considerations suggest the following.

CONJECTURE. For each \(n > 1 \), there exists a constant \(k_0 = k_0(n) > 1 \) such that, for all \(k > k_0 \),
either

1) \(D_k(n) = 0 \)

or

2) \(D_k(n) \neq 0 \),

and there exists a prime \(p \) such that \(D_k(n) \equiv 0 \pmod{p} \).

2. Some remarks about \(D(n) \). Although the function \(D(n) \) behaves erratically, it is easy to obtain exact upper and lower bounds, depending on \(n \), for its values. We suppose that \(n = q_1 q_2 \ldots q_v \) has prime factors \(q_i \) which are not necessarily distinct.

(a) \(D(n) < \frac{n \log n}{2 \log 2} \) for all \(n \), equality occurring if and only if \(n \) is a power of 2. In fact, \(n \) satisfies \(2^k \leq n < 2^{k+1} \) for some \(k \). Clearly, \(v \leq k \) and

\[
D(n) = n \sum_{i=1}^{v} q_i^\frac{1}{q_i^n} \leq n \sum_{i=1}^{v} \frac{1}{q_i} \leq \frac{n k}{2} \leq \frac{n \log n}{2 \log 2}.
\]

If \(n = 2^k \), \(D(n) = k2^{k-1} = \frac{2^k \log 2}{2 \log 2} \). If \(n \neq 2^k \), then some \(q_i \neq 2 \) and strict inequality holds in the above.

(b) \(D(n) \geq \nu n - \frac{1}{\nu} \), equality holding if, and only if, all the factors \(q_i \) are equal. For, by (5) and the inequality of the arithmetic and geometric means,
\[D(n) = n \sum_{i=1}^{\nu} \frac{1}{q_i} \geq n^{\nu} \frac{1}{(q_1 q_2 \ldots q_{\nu})^{1/\nu}} = \nu n^{1 - 1/\nu}. \]

Hence, if \(n \) is not a prime or unity, \(D(n) \geq 2\sqrt{n} \), with equality if and only if \(n = p^2 \) where \(p \) is a prime.

In addition, we can relate the value of \(D(n) \) to \(n \) in the following ways.

(c) Let \(n = p_1^{\alpha_1} \ldots p_r^{\alpha_r} \), where \(p_1, \ldots, p_r \) are distinct primes. Then \(D(n) \equiv 0 \) (mod \(n \)) if, and only if,
\[\alpha_1 \equiv 0 \pmod{p_1}, \ldots, \alpha_r \equiv 0 \pmod{p_r}. \]
In particular, \(D(n) = n \) if and only if, \(n = p^p \). The sufficiency of the conditions is obvious.

Their necessity is seen by noting that, if \(n = p^{\alpha} n' \), where \((p, n') = 1 \), then \(D(n) = n'^{\alpha p^{\alpha-1}} + p^{\alpha} D(n') \equiv 0 \pmod{n} \) implies
\(n'^{\alpha p^{\alpha-1}} = 0 \pmod{p^{\alpha}} \) and, hence, \(\alpha \equiv 0 \pmod{p} \), since \((n', p) = 1 \).

(d) If \(D(n) > n \), then \(D(kn) = kD(n) + nD(k) > kn \) for all \(k > 1 \).

3. The average order of \(D(n) \). Let
\[S(n) = \sum_{r=1}^{n} D(r), \quad T(n) = \sum_{r=1}^{n} K(r) \]
where \(K(n) = n^{-1} D(n) \). Since \(K(n) \) is totally additive, i.e.
\(K(n_1 n_2) = K(n_1) + K(n_2) \) for all integer pairs \(n_1, n_2 \), it is easier to estimate \(T(n) \) first, and then use partial summation to deduce the average order of \(D(n) \). Let
\[j(n, p) = \sum_{t=1}^{\infty} \left[\frac{n}{p^t} \right] \], \(a(n) = \left[\frac{\log n}{\log 2} \right] \);
then \(j(n, p) \) denotes \([1; p. 342]\) the exponent of the highest power of \(p \) dividing \(n! \) and \(a(n) \) denotes the exponent of the highest power of \(2 \) \(\leq n \). Observe that
\[T(n) = K(n!) = \sum_{p \leq n} \frac{1}{p} j(n, p) \]
\[= \sum_{p \leq n} \frac{1}{p} (\sum_{t=1}^{\infty} \left[\frac{n}{p^t} \right]) \]

119
\[
\sum_{p \leq n} \frac{1}{p} \left(\sum_{t=1}^{\alpha(n)} \left[\frac{n}{p^t} \right] \right)
\]

\[
= \sum_{p \leq n} \frac{1}{p} \left\{ \sum_{t=1}^{\alpha(n)} \frac{n}{p^t} + O(\log n) \right\}
\]

\[
= \sum_{p \leq n} \left\{ \sum_{t=2}^{\infty} \frac{n}{p^t} - \sum_{t=1}^{\alpha(n)+1} \frac{n}{p^t} \right\} + O((\log n) \sum_{p \leq n} \frac{1}{p})
\]

\[
= n \sum_{p \leq n} \frac{1}{p(p-1)} - \sum_{p \leq n} \frac{n}{p^2} + O((\log n) \sum_{p \leq n} \frac{1}{p})
\]

\[
= n \sum_{p=2}^{\infty} \frac{1}{p(p-1)} - \sum_{p > n} \frac{n}{p(p-1)} - \sum_{p \leq n} \frac{n}{p^2}
\]

\[
+ O((\log n) \sum_{p \leq n} \frac{1}{p})
\]

\[
= T_o n + O((\log n)(\log \log n))
\]

where \(T_o = \sum_{p=2}^{\infty} \frac{1}{p(p-1)} = 0.749 \ldots \)

since

\[
\sum_{p > n} \frac{n}{p(p-1)} < n \sum_{k > n} \frac{1}{k(k-1)} \leq 1,
\]

\[
\log n < \frac{\log n}{p} < \frac{\log n}{\log 2} > \frac{1}{p} > \log 2 > n,
\]

\[
\sum_{p \leq n} \left\{ \frac{1}{p-1} - \frac{1}{p} \right\} \leq 1,
\]

\[
\sum_{p \leq n} \frac{1}{p} = O(\log \log n).
\]

[1; p. 351]

For \(S(n) \), we have

\[
S(n) = \sum_{r=1}^{n} rK(r) = T(n) + \sum_{r=1}^{n-1} \{ T(n) - T(r) \}
\]

\[
= nT(n) - \sum_{r=1}^{n-1} T(r)
\]

\[
= n\{ T_o n + O(n^\delta) \} - T_o \sum_{r=1}^{n-1} r + O(n^{1+\delta})
\]

\[
= T_o n^2 - T_o \frac{n(n-1)}{2} + O(n^{1+\delta})
\]

120
\[\frac{1}{2} T_0 n^2 + O(n^{1+\delta}) \]

where \(\frac{1}{2} T_0 = 0.374 \ldots \), for each fixed \(\delta > 0 \).

4. The congruence \(D(n) \equiv 0 \pmod{4} \). A key problem is to find a characterization of those numbers for which

\[\lim_{k \to \infty} D^k(n) = \infty. \]

This limit is known for numbers \(n \) of the form \(p, p^k, kp^k \) where \(p \) is any prime. Further investigation is hampered by the absence of explicit formulae for the higher derivatives. If there were some way of dealing with \(D(m + n) \) for any integers \(m \) and \(n \), then \(D^2(n) \) could be determined from \(D(n) = \sum_{i=1}^{k} F_i \), where \(n = \prod_{i=1}^{k} f_i \), \(F_i = n/f_i \), \(f \) prime.

However, it is known only that, if \(D(m + n) = D(m) + D(n) \), then \(D(km + kn) = D(km) + D(kn) \) for every integer \(k \); in particular, \(D(h) + D(2h) = D(3h) \).

Another approach to the problem is to find a characterization of those numbers, excluding \(p, p^k, kp^k \) for which \(p^k \mid D^k(n) \) for some positive integer \(k \) and some prime \(p \). According to our conjecture, this would be sufficient to characterize those numbers for which \(D^k(n) \to \infty \) as \(k \to \infty \), provided \(D^k(n) \neq 0 \) for all \(k \). We deal with the special case \(p = 2, k = 1 \).

Let \(n = 2^a p_1 p_2 \ldots p_r q_1 q_2 \ldots q_s \) where \(p_i \equiv 1 \pmod{4}, q_j \equiv -1 \pmod{4} \) are primes, not necessarily distinct. We have the following results:

(i) if \(a = 0 \), then \(D(n) \equiv (-1)^{s(r - s)} \pmod{2^2} \)
(ii) if \(a = 1 \), then \(D(n) \equiv (-1)^{s[1 + 2(r - s)]} \equiv (-1)^{r-1} \pmod{2^2} \)
(iii) if \(a > 1 \), then \(D(n) \equiv 0 \pmod{2^2} \).

In order to prove (i), let \(P = p_1 p_2 \ldots p_r \equiv (+1) \pmod{4} \)
\[Q = q_1 q_2 \ldots q_s \equiv (-1)^s \pmod{4} \]
\[P_i = \frac{P}{p_i} \equiv 1 \pmod{4} \]
\[Q_i = \frac{Q}{q_i} \equiv (-1)^{s-1} \pmod{4}. \]

The approximation \(0.374 \ldots n^2 \) for \(S(n) \) is good, even for small values of \(n \). For example, \(S(10) = 38 \equiv (0.374 \ldots)(100) \).
Then
\[D(n) = D(PQ) = \sum_{i=1}^{r} P_i Q + \sum_{i=1}^{s} P_i Q_i \equiv r(-1)^s + s(-1)^{s-1} \]
\[\equiv (-1)^s (r - s) \pmod{4}. \]

In case (ii),
\[D(2PQ) = PQD(2) + 2D(PQ) \]
\[\equiv (-1)^s + 2(-1)^s (r - s) \]
\[\equiv (-1)^s [1 + 2(r - s)] \pmod{4}. \]

Result (iii) follows from the fact that \(4 \mid n \). We conclude that
\[D(n) \equiv 0 \pmod{4} \text{ if and only if} \]
(a) \(a = 0, \ r \equiv s \pmod{4} \)
(b) \(a > 1 \).

The numbers in (a) have a density of \(\frac{1}{8} \) in the integers; those in
(b) have a density of \(\frac{1}{4} \). Hence, those integers \(n \) satisfying
\[\lim_{k \to \infty} D^k(n) = \infty \] (which include the numbers of (a) and (b))
have a density exceeding \(\frac{3}{8} \). What this density is remains an
open question.

REFERENCE

University of Toronto