THE n-TH DERIVATIVE CHARACTERISATION OF MÖBIUS INVARIANT DIRICHLET SPACE

Rauno Aulaskari, Maria Nowak and Ruhan Zhao

Abstract

In this paper we give the n-th derivative criterion for functions belonging to recently defined function spaces Q_{p} and $Q_{p, 0}$. For a special parameter value $p=1$ this criterion is applied to BMOA and VMOA, and for $p>1$ it is applied to the Bloch space \mathcal{B} and the little Bloch space \mathcal{B}_{0}. Further, a Carleson measure characterisation is given to Q_{p}, and in the last section the multiplier space from H^{q} into Q_{p} is considered.

1. Introduction and some auxiliary results

Let $\mathcal{D}=\{z:|z|<1\}$ be the unit disk in the complex plane. Let $\varphi_{a}(z)=$ $(a-z) /(1-\bar{a} z)$ be a Möbius transformation of \mathcal{D}. An analytic function f is said to be a Bloch function, denoted by $f \in \mathcal{B}$ (see [1]), if

$$
\sup _{z \in \mathcal{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty
$$

For $0<p<\infty$, we say that $f \in Q_{p}$ if f is analytic and

$$
\begin{equation*}
\sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{\prime}(z)\right|^{2} g^{p}(z, a) d \sigma_{z}<\infty \tag{1}
\end{equation*}
$$

where $g(z, a)$ is the Green's function $\log |(1-\bar{a} z) /(z-a)|$ with logarithmic singularity at $a \in \mathcal{D}$ and $d \sigma_{z}$ is the usual area measure $d x d y$ on \mathcal{D}. These spaces were introduced by the first author and his collaborators and have been studied in [4], [6] and elsewhere. For $1<p<\infty$ the spaces Q_{p} are all the same and equal to the Bloch space \mathcal{B} (see [4, Theorem 1] and also [15, Corollary 2.4]). If $p=1$, we know by definition that $Q_{1}=$ BMOA (the space of analytic functions of bounded mean oscillation) [8]. For $0<p_{1}<p_{2} \leqslant 1$ we have $Q_{p_{1}} \subsetneq Q_{p_{2}} \subset$ BMOA (see [6, Theorem 2]). An important property that is common to these spaces Q_{p} is that they are all invariant under Möbius transformations, that is, if $f \in Q_{p}$, then $f \circ \varphi_{a} \in Q_{p}$. This is well known in case of \mathcal{B} and BMOA (see [2]). We note that in [10] a characterisation of boundary values

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.
for functions in $Q_{p}(0<p<1)$ is given. In this paper we shall derive a criterion for functions in Q_{p} and $Q_{p, 0}$ in terms of their n-th derivatives. Further, we give a criterion for functions f to belong to Q_{p} and $Q_{p, 0}$ by p-Carleson measures. Also a sufficient condition for a function f to belong to the multiplier space $\left(H^{q}, Q_{p}\right)$ is obtained. This last result should be compared with [11, Proposition 1 and Theorem 1]. First we need the following lemma:

Lemma 1. Let f be an analytic function in \mathcal{D}. Then there exist positive constants c_{1}, c_{2} such that

$$
\begin{align*}
& c_{1}\left(\left|f^{(n)}(0)\right|^{2}+\iint_{\mathcal{D}}\left|f^{(n+1)}(z)\right|^{2}(1-|z|)^{\alpha+2} d \sigma_{z}\right) \tag{2}\\
& \quad \leqslant \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}(1-|z|)^{\alpha} d \sigma_{z} \\
& \quad \leqslant c_{2}\left(\left|f^{(n)}(0)\right|^{2}+\iint\left|f_{\mathcal{D}}^{(n+1)}(z)\right|^{2}(1-|z|)^{\alpha+2} d \sigma_{z}\right)
\end{align*}
$$

for $0<\alpha<\infty$
PROOF: Setting $f^{(n)}(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ we have $f^{(n+1)}(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}$. Using Parseval's formula we get

$$
\begin{align*}
& \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}(1-|z|)^{\alpha} d \sigma_{z} \tag{3}\\
& \quad=2 \pi\left|f^{(n)}(0)\right|^{2} B(2, \alpha+1)+2 \pi \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} B(2 n+2, \alpha+1)
\end{align*}
$$

where we have the beta function $B(2 n+2, \alpha+1)=\int_{0}^{1} t^{2 n+1}(1-t)^{\alpha} d t$. On the other hand,

$$
\begin{equation*}
\iint_{\mathcal{D}}\left|f^{(n+1)}(z)\right|^{2}(1-|z|)^{\alpha+2} d \sigma_{z}=2 \pi \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} B(2 n, \alpha+3) . \tag{4}
\end{equation*}
$$

By Stirling's formula $B(2 n+2, \alpha+1)=(\Gamma(2 n+2) \Gamma(\alpha+1)) /(\Gamma(2 n+\alpha+3)) \approx$ $1 /\left(n^{1+\alpha}\right)$ and $B(2 n, \alpha+3) \approx 1 /\left(n^{\alpha+3}\right)$. In the above, we use the notation $a \approx b$ to denote comparability of the quantities, that is, there are absolute positive constants c_{1}, c_{2} satisfying $c_{1} b \leqslant a \leqslant c_{2} b$. Thus the assertion follows from (3) and (4).

We note that in the definition (1) of the space Q_{p} the Green's function $g(z, a)$ can be replaced by $1-\left|\varphi_{a}(z)\right|^{2}$. Further, by [14, Lemma 3] we know that $f \in \mathcal{B}$ if and
only if

$$
\begin{equation*}
M_{f}^{n}=\sup _{z \in \mathcal{D}}\left(1-|z|^{2}\right)^{n}\left|f^{(n)}(z)\right|<\infty \tag{5}
\end{equation*}
$$

Using (2) and (5) and replacing $f(z)$ in (2) by $f_{a}(z)=f\left(\varphi_{a}(z)\right)-f(a)$ we get a criterion for functions in Q_{p} :

Proposition. If f is a Bloch function, then $f \in Q_{p}$ if and only if

$$
\begin{equation*}
\sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f_{a}^{(n)}(z)\right|^{2}(1-|z|)^{p+2(n-1)} d \sigma_{z}<\infty \tag{6}
\end{equation*}
$$

for $0<p<\infty$.

2. The n-Th derivative criteria for Q_{p} and $Q_{p, 0}$

In this section we shall obtain the n-th derivative criteria for Q_{p} and $Q_{p, 0}$. In case of the Bloch space \mathcal{B} and the little Bloch space \mathcal{B}_{0} corresponding criteria have been obtained by Axler [7] and Stroethoff [14]. Our results will generalise these to some other function spaces and, for example, for $p=1$ we have got the n-th derivative criterion for BMOA $\left(=Q_{1}\right)$ and VMOA $\left(=Q_{1,0}\right)$. The main result of this section is the following

Theorem 1. Let $n \geqslant 1$ and let $0<p<\infty$. Then, for an analytic function f in \mathcal{D}, the following conditions are equivalent:
(i) $f \in Q_{p}$,
(ii) $\sup _{a \in \mathcal{D}} \int_{\mathcal{D}} \int\left|f^{(n)}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z}<\infty$,
(iii) $\sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n)}\left(\varphi_{a}(z)\right)\right|^{2}\left|\varphi_{a}^{\prime}(z)\right|^{2 n}\left(1-|z|^{2}\right)^{p+2 n-2} d \sigma_{z}<\infty$,
(iv) $\sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2} g^{p}(z, a)\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z}<\infty$.

Proof: By change of variables we have

$$
\begin{align*}
& \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z} \tag{7}\\
& \quad=\iint_{\mathcal{D}}\left|f^{(n)}\left(\varphi_{a}(z)\right)\right|^{2}\left|\varphi_{a}^{\prime}(z)\right|^{2 n}\left(1-|z|^{2}\right)^{p+2 n-2} d \sigma_{z}
\end{align*}
$$

and thus (ii) is equivalent to (iii). Next we shall prove (i) is equivalent to (ii).
(i) \Longrightarrow (ii). We first consider the case $1<p \leqslant 2$. Constants appearing in the proofs denoted by M are not always the same in each occurrence. Let $f \in Q_{p}=\mathcal{B}$. Then, by (5),

$$
\left|f^{(n)}\left(\varphi_{a}(z)\right)\right|\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n}=\left|f^{(n)}\left(\varphi_{a}(z)\right)\right|\left|\varphi_{a}^{\prime}(z)\right|^{n}\left(1-|z|^{2}\right)^{n} \leqslant M_{f}^{n}
$$

and thus

$$
\begin{gathered}
\iint_{\mathcal{D}}\left|f^{(n)}\left(\varphi_{a}(z)\right)\right|^{2}\left|\varphi_{a}^{\prime}(z)\right|^{2 n}\left(1-|z|^{2}\right)^{p+2 n-2} d \sigma_{z} \\
\leqslant\left(M_{f}^{n}\right)^{2} \iint_{\mathcal{D}}\left(1-|z|^{2}\right)^{p-2} d \sigma_{z}=M<\infty
\end{gathered}
$$

for $1<p<\infty$. By (7) the assertion is true.
(ii) \Longrightarrow (i). By $[\mathbf{1 4}$, Theorem $1(\mathrm{D})]$ we know that

$$
\begin{equation*}
f \in \mathcal{B} \Longleftrightarrow \sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{2}\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z}<\infty \tag{8}
\end{equation*}
$$

Thus, by (8), we have settled the case $1<p \leqslant 2$.
Next we suppose $2<p<\infty$. By using (5) and [18, Lemma 4.2.2] the implication (i) \Longrightarrow (ii) is trivial for these values of p. In the opposite direction the assertion is true since we have $\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}>\left(1-r^{2}\right)^{p}$ for $z \in \mathcal{D}(a, r)$, and thus

$$
\begin{aligned}
\infty & >\sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z} \\
& \geqslant\left(1-r^{2}\right)^{p} \sup _{a \in \mathcal{D}} \iint_{\mathcal{D}(a, r)}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z} .
\end{aligned}
$$

Hence, by [14, Theorem 1], $f \in \mathcal{B}=Q_{p}$ if (ii) is satisfied.
Finally we consider the case $0<p \leqslant 1$. For $n=1$ (i) \Longrightarrow (ii) is true by [6 , Proposition 1].

Suppose now that (i) \Longrightarrow (ii) holds for some fixed n. We know that if g is an analytic function in \mathcal{D} then, by (2) in Lemma 1 ,

$$
\begin{equation*}
\iint_{\mathcal{D}}\left|g^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{\alpha+2} d \sigma_{z} \leqslant M \iint_{\mathcal{D}}|g(z)|^{2}\left(1-|z|^{2}\right)^{\alpha} d \sigma_{z} \tag{9}
\end{equation*}
$$

for $0<\alpha<\infty$. If we apply (9) to the function $g(z)=f^{(n)}(z) /(1-\bar{a} z)^{p}$ and $\alpha=$ $2 n-2+p$ and multiply both sides of the inequality (9) by $\left(1-|a|^{2}\right)^{p}$ we obtain

$$
\begin{align*}
& \iint_{\mathcal{D}}\left(\frac{\left|f^{(n+1)}(z)\right|^{2}}{|1-\bar{a} z|^{2 p}}+\frac{p^{2}|a|^{2}\left|f^{(n)}(z)\right|^{2}}{|1-\bar{a} z|^{2 p+2}}\right. \tag{10}\\
& \left.\quad+2 \operatorname{Re} \frac{p a f^{(n+1)}(z) \overline{f^{(n)}(z)}}{(1-\bar{a} z)^{p}(1-a \bar{z})^{p+1}}\right)\left(1-|z|^{2}\right)^{2 n+p}\left(1-|a|^{2}\right)^{p} d \sigma_{z} \\
& \quad \leqslant M \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2} \frac{\left(1-|a|^{2}\right)^{p}\left(1-|z|^{2}\right)^{p+2 n-2}}{|1-\bar{a} z|^{2 p}} d \sigma_{z} \\
& \quad=M \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z}
\end{align*}
$$

By the assumption we know that in (10) the supremum of the upper bound is finite. Since $f \in \mathcal{B}$, we get by using (5) and [18, Lemma 4.2.2]

$$
\begin{aligned}
& \iint_{\mathcal{D}} \frac{\left|f^{(n)}(z) f^{(n+1)}(z)\right|}{|1-\bar{a} z|^{2 p+1}}\left(1-|z|^{2}\right)^{2 n+p}\left(1-|a|^{2}\right)^{p} d \sigma_{z} \\
& \quad \leqslant M_{f}^{n} M_{f}^{n+1} \iint_{\mathcal{D}} \frac{\left(1-|z|^{2}\right)^{p-1}\left(1-|a|^{2}\right)^{p}}{|1-\bar{a} z|^{2 p+1}} d \sigma_{z} \leqslant M<\infty
\end{aligned}
$$

for all $a \in \mathcal{D}$. Moreover,

$$
\begin{aligned}
& \iint_{\mathcal{D}} \frac{\left|f^{(n)}(z)\right|^{2}}{|1-\bar{a} z|^{2 p+2}}\left(1-|z|^{2}\right)^{2 n+p}\left(1-|a|^{2}\right)^{p} d \sigma_{z} \\
& \quad \leqslant 4 \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2} \frac{\left(1-|z|^{2}\right)^{p+2 n-2}\left(1-|a|^{2}\right)^{p}}{|1-\bar{a} z|^{2 p}} d \sigma_{z} \\
& \quad=4 \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z}
\end{aligned}
$$

and again the upper bound is finite. Hence, in view of (10), if $f \in Q_{p}$ (even, in fact, if $f \in \mathcal{B}$) then

$$
\sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z}<\infty
$$

implies

$$
\sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n+1)}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}\left(1-|z|^{2}\right)^{2 n} d \sigma_{z}<\infty .
$$

Thus, by induction on n, (i) implies (ii) for all $n \geqslant 1$.
(ii) \Longrightarrow (i). In this case we shall also proceed by induction. If (ii) holds for $0<p \leqslant 1$, then by [14, Theorem 1] $f \in \mathcal{B}$. For $n=1$ the implication is true by [$\mathbf{6}$, Proposition 1]. Suppose now that (ii) \Longrightarrow (i) is true for some fixed n. By Lemma 1 we have for an analytic function g in \mathcal{D},

$$
\begin{equation*}
\iint_{\mathcal{D}}|g(z)|^{2}\left(1-|z|^{2}\right)^{\alpha} d \sigma_{z} \leqslant M\left(|g(0)|^{2}+\iint_{\mathcal{D}}\left|g^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{\alpha+2} d \sigma_{z}\right) \tag{11}
\end{equation*}
$$

where $0<\alpha<\infty$. Assume that

$$
\sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n+1)}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}\left(1-|z|^{2}\right)^{2 n} d \sigma_{z}<\infty .
$$

In (11) we substitute $g(z)=\left(f^{(n)}(z)\right) /(1-\bar{a} z)^{p}, \alpha=2 n-2+p$ and multiply both sides of (11) by $\left(1-|a|^{2}\right)^{p}$. Then we get

$$
\begin{aligned}
& \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z} \\
& =\iint_{\mathcal{D}}\left|\frac{f^{(n)}(z)}{(1-\bar{a} z)^{p}}\right|^{2}\left(1-|z|^{2}\right)^{2 n-2+p}\left(1-|a|^{2}\right)^{p} d \sigma_{z} \\
& \leqslant \\
& \leqslant M\left(\left|f^{(n)}(0)\right|^{2}\left(1-|a|^{2}\right)^{p}+\iiint_{\mathcal{D}}\left|\frac{d}{d z} \frac{f^{(n)}(z)}{(1-\bar{a} z)^{p}}\right|^{2}\left(1-|z|^{2}\right)^{2 n+p}\left(1-|a|^{2}\right)^{p} d \sigma_{z}\right) \\
& =M\left(\left|f^{(n)}(0)\right|^{2}\left(1-|a|^{2}\right)^{p}\right. \\
& \left.\quad+\iint_{\mathcal{D}}\left|\frac{f^{(n+1)}(z)}{(1-\bar{a} z)^{p}}+p \bar{a} \frac{f^{(n)}(z)}{(1-\bar{a} z)^{p+1}}\right|^{2}\left(1-|z|^{2}\right)^{2 n+p}\left(1-|a|^{2}\right)^{p} d \sigma_{z}\right) \\
& \leqslant M\left(\left|f^{(n)}(0)\right|^{2}\left(1-|a|^{2}\right)^{p}+\iint_{\mathcal{D}} \frac{\left|f^{(n+1)}(z)\right|^{2}}{|1-\bar{a} z|^{2 p}}\left(1-|z|^{2}\right)^{2 n+p}\left(1-|a|^{2}\right)^{p} d \sigma_{z}\right. \\
& \quad+p^{2}|a|^{2} \iint_{\mathcal{D}} \frac{\left|f^{(n)}(z)\right|^{2}}{|1-\bar{a} z|^{2 p+2}}\left(1-|z|^{2}\right)^{2 n+p}\left(1-|a|^{2}\right)^{p} d \sigma_{z} \\
& \left.\quad+2 p|a| \iint_{\mathcal{D}} \frac{\left|f^{(n+1)}(z) f^{(n)}(z)\right|}{|1-\bar{a} z|^{2 p+1}}\left(1-|z|^{2}\right)^{2 n+p}\left(1-|a|^{2}\right)^{p} d \sigma_{z}\right) .
\end{aligned}
$$

Since $f \in \mathcal{B}$, we have $\left|f^{(n)}(0)\right|^{2}\left(1-|a|^{2}\right)^{p} \leqslant\left(M_{f}^{n}\right)^{2}$. By assumption,

$$
\begin{aligned}
& \iint_{\mathcal{D}} \frac{\left|f^{(n+1)}(z)\right|^{2}}{|1-\bar{a} z|^{2 p}}\left(1-|z|^{2}\right)^{2 n+p}\left(1-|a|^{2}\right)^{p} d \sigma_{z} \\
& \quad=\iint_{\mathcal{D}}\left|f^{(n+1)}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}\left(1-|z|^{2}\right)^{2 n} d \sigma_{z} \leqslant M<\infty .
\end{aligned}
$$

The other terms involving integrals can be estimated as follows (see [18, Lemma 4.2.2]):

$$
\begin{aligned}
& \iint_{\mathcal{D}} \frac{\left|f^{(n)}(z)\right|^{2}}{|1-\bar{a} z|^{2 p+2}}\left(1-|z|^{2}\right)^{2 n+p}\left(1-|a|^{2}\right)^{p} d \sigma_{z} \\
& \quad \leqslant\left(M_{f}^{n}\right)^{2}\left(1-|a|^{2}\right)^{p} \iint_{\mathcal{D}} \frac{\left(1-|z|^{2}\right)^{p}}{|1-\bar{a} z|^{2 p+2}} d \sigma_{z} \\
& \quad \leqslant M\left(M_{f}^{n}\right)^{2}\left(1-|a|^{2}\right)^{p} \frac{1}{\left(1-|a|^{2}\right)^{p}} \leqslant M
\end{aligned}
$$

and

$$
\begin{aligned}
& \iint_{\mathcal{D}} \frac{\left|f^{(n+1)}(z) f^{(n)}(z)\right|}{|1-\bar{a} z|^{2 p+1}}\left(1-|z|^{2}\right)^{2 n+p}\left(1-|a|^{2}\right)^{p} d \sigma_{z} \\
& \leqslant M_{f}^{n} M_{f}^{n+1}\left(1-|a|^{2}\right)^{p} \iint_{\mathcal{D}} \frac{\left(1-|z|^{2}\right)^{p-1}}{|1-\bar{a} z|^{2 p+1}} d \sigma_{z} \\
& \quad \leqslant M M_{f}^{n} M_{f}^{n+1}\left(1-|a|^{2}\right)^{p} \frac{1}{\left(1-|a|^{2}\right)^{p}} \leqslant M
\end{aligned}
$$

By assumption we have $f \in Q_{p}$ and thus, by induction, we have proved (ii) \Longrightarrow (i).
(iv) \Longrightarrow (ii). This is obvious from the inequality $1-\left|\varphi_{a}(z)\right|^{2} \leqslant 2 g(z, a)$ for all $z, a \in \mathcal{D}$.
(ii) \Longrightarrow (iv). Let

$$
\begin{aligned}
I(a)= & \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2} g^{p}(z, a)\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z} \\
= & \iint_{\mathcal{D}(a, 1 / 4)}\left|f^{(n)}(z)\right|^{2} g^{p}(z, a)\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z} \\
& \quad+\iint_{\mathcal{D} \backslash \mathcal{D}(a, 1 / 4)}\left|f^{(n)}(z)\right|^{2} g^{p}(z, a)\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z}=I_{1}(a)+I_{2}(a),
\end{aligned}
$$

where $\mathcal{D}(a, 1 / 4)=\left\{z \in \mathcal{D}| | \varphi_{a}(z) \mid<1 / 4\right\}$. Since

$$
g(z, a)=\log \frac{1}{\left|\varphi_{a}(z)\right|} \begin{cases}\geqslant \log 4>1, & z \in \mathcal{D}(a, 1 / 4) \\ \leqslant 4\left(1-\left|\varphi_{a}(z)\right|^{2}\right), & z \in \mathcal{D} \backslash \mathcal{D}(a, 1 / 4)\end{cases}
$$

we obtain, for $p_{0}=\max (p, 2)$, that

$$
I_{1}(a) \leqslant \iint_{\mathcal{D}(a, 1 / 4)}\left|f^{(n)}(z)\right|^{2} g^{p_{0}}(z, a)\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z}
$$

and

$$
I_{2}(a) \leqslant 4^{p} \iint_{\mathcal{D} \backslash \mathcal{D}(a, 1 / 4)}\left|f^{(n)}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z}
$$

Since we have proved that (ii) implies $f \in Q_{p} \subset \mathcal{B}$, we get that (5) is satisfied, and so, from $p_{0} \geqslant 2$, we get

$$
\begin{aligned}
\sup _{a \in \mathcal{D}} I_{1}(a) & \leqslant\left(M_{f}^{n}\right)^{2} \sup _{a \in \mathcal{D}} \iint_{\mathcal{D}(a, 1 / 4)} g^{p_{0}}(z, a)\left(1-|z|^{2}\right)^{-2} d \sigma_{z} \\
& =\left(M_{f}^{n}\right)^{2} \iint_{\mathcal{D}(0,1 / 4)}\left(\log \frac{1}{|w|}\right)^{p_{0}}\left(1-|w|^{2}\right)^{-2} d \sigma_{w}<\infty .
\end{aligned}
$$

By (ii), $\sup _{a \in \mathcal{D}} I_{2}(a)<\infty$. Thus

$$
\sup _{a \in \mathcal{D}} I(a)=\sup _{a \in \mathcal{D}}\left(I_{1}(a)+I_{2}(a)\right)<\infty
$$

or (iv) is satisfied. The proof is completed.
Contained in the Bloch space is the little Bloch space \mathcal{B}_{0}, which is by definition the set of all analytic functions f in \mathcal{D} for which $\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \rightarrow 0$ as $|z| \rightarrow 1$. For $0<p<\infty$, we say that $f \in Q_{p, 0}$ if f is analytic and

$$
\lim _{|a| \rightarrow 1} \iint_{\mathcal{D}}\left|f^{\prime}(z)\right|^{2} g^{p}(z, a) d \sigma_{z}=0
$$

By [4, Corollary 2] we know that $Q_{p, 0}=\mathcal{B}_{0}$ for $1<p<\infty$ (see also [16]). On the other hand, if $p=1$ we have that $Q_{p, 0}=$ VMOA (the space of analytic functions of vanishing mean oscillation) [12]. If $0<p_{1}<p_{2} \leqslant 1$, then $Q_{p_{1}, 0} \subsetneq Q_{p_{2}, 0}$ (see [6]). By the above proof, Theorem 2 and [14, Lemma 4] we get the corresponding theorem in the limit case:

Theorem 2. Let $n \geqslant 1$ and let $0<p<\infty$. Then, for an analytic function f in \mathcal{D}, the following conditions are equivalent:
(i) $f \in Q_{p, 0}$,
(ii) $\lim _{|a| \rightarrow 1} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p}\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z}=0$,
(iii) $\lim _{|a| \rightarrow 1} \iint_{\mathcal{D}}\left|f^{(n)}\left(\varphi_{a}(z)\right)\right|^{2}\left|\varphi_{a}^{\prime}(z)\right|^{2 n}\left(1-|z|^{2}\right)^{p+2 n-2} d \sigma_{z}=0$,
(iv) $\lim _{|a| \rightarrow 1} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2} g^{p}(z, a)\left(1-|z|^{2}\right)^{2 n-2} d \sigma_{z}=0$.

3. Q_{p} AND ENTIRE FUNCTIONS

In this section we shall generalise Theorem 1 by replacing the weight factor by an infinite series of weight factors. For $1<p<\infty$ and $n=1$ this case was considered in [3] when criteria for the Bloch space were established.

Theorem 3. Let $0<p<\infty$, let $n \geqslant 1$ be an integer, and let $E(\rho)=\sum_{k=0}^{\infty} b_{k} \rho^{k}$ be an entire function with $b_{k} \geqslant 0$ and $b_{0}>0$. If

$$
\begin{equation*}
\varlimsup_{k \rightarrow \infty} k \sqrt[k]{b_{k}}<2 e \tag{12}
\end{equation*}
$$

then, for an analytic function f in \mathcal{D}, the following conditions are equivalent:
(i) $f \in Q_{p}$,
(ii) $\sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} g^{p}(z, a) E(g(z, a)) d \sigma_{z}<\infty$,
(iii) $\sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p} E(g(z, a)) d \sigma_{z}<\infty$.

Proof: (i) \Longrightarrow (ii). Let $E_{1}(\rho)=E(\rho)-b_{0}=\sum_{k=1}^{\infty} b_{k} \rho^{k}$. Since $f \in Q_{p}$, we get by Theorem 1,

$$
\begin{equation*}
b_{0} \sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} g^{p}(z, a) d \sigma_{z}<\infty . \tag{13}
\end{equation*}
$$

Since $f \in Q_{p} \subset \mathcal{B}$, we have by (5),

$$
M_{f}^{n}=\sup _{z \in \mathcal{D}}\left|f^{(n)}(z)\right|\left(1-|z|^{2}\right)^{n}<\infty
$$

Thus

$$
\begin{aligned}
& \sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} g^{p}(z, a) E_{1}(g(z, a)) d \sigma_{z} \\
& \quad \leqslant \sum_{k=1}^{\infty} b_{k}\left(M_{f}^{n}\right)^{2} \sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left(1-|z|^{2}\right)^{-2} g^{k+p}(z, a) d \sigma_{z} \\
& \quad=\sum_{k=1}^{\infty} b_{k}\left(M_{f}^{n}\right)^{2} \iint_{\mathcal{D}}\left(1-|w|^{2}\right)^{-2}\left(\log \frac{1}{|w|}\right)^{k+p} d \sigma_{w} \\
& \quad=\left(M_{f}^{n}\right)^{2} \sum_{k=1}^{\infty} b_{k} J(k+p),
\end{aligned}
$$

where $J(k+p)=\iint_{\mathcal{D}}\left(1-|w|^{2}\right)^{-2}(\log 1 /|w|)^{k+p} d \sigma_{w}$. By [17, Lemma 3.3] we see that (12) implies $\sum_{k=1}^{\infty} b_{k} J(k+p)<\infty$. Thus

$$
\begin{equation*}
\sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} g^{p}(z, a) E_{1}(g(z, a)) d \sigma_{z}<\infty . \tag{14}
\end{equation*}
$$

Combining (13) and (14) we see that (ii) is true.
(ii) \Longrightarrow (iii). This is obvious by $1-\left|\varphi_{a}(z)\right|^{2} \leqslant 2 g(z, a)$ for $z, a \in \mathcal{D}$.
(iii) \Longrightarrow (i). Since $b_{0}>0$ we get from (iii) that

$$
b_{0} \sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p} d \sigma_{z}<\infty
$$

and so, by Theorem 1 , we see that $f \in Q_{p}$.
Theorem 3 is critical in the following sense:
Theorem 4. Let $0<p<\infty$, let $n \geqslant 1$ be an integer, and let $E(\rho)=\sum_{k=0}^{\infty} b_{k} \rho^{k}$ be an entire function with $b_{k} \geqslant 0$ and $b_{0}>0$. Suppose that

$$
\varlimsup_{k \rightarrow \infty} k \sqrt[k]{b_{k}}>2 e
$$

and for an analytic function f on \mathcal{D}, one of the following conditions is satisfied:
(i) $\sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} g^{p}(z, a) E(g(z, a)) d \sigma_{z}<\infty$,
(ii) $\sup _{a \in \mathcal{D}} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{p} E(g(z, a)) d \sigma_{z}<\infty$.

Then f is a polynomial, whose degree is less than n, or a constant.
We need the following lemma which can be proved in much the same way as in [17, Lemma 2.9].

Lemma 2. Let $0<p<\infty$, let $0<r<1$, and let $n \geqslant 1$ be an integer. Then, for an analytic function f on \mathcal{D} and $a \in \mathcal{D}$,

$$
\left|f^{(n)}(a)\right|\left(1-|a|^{2}\right)^{n} \leqslant \frac{16}{\pi c(n) r^{2}(\log 1 / r)^{p}} \iint_{\mathcal{D}}\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2} g^{p}(z, a) d \sigma_{z},
$$

where $c(n)$ is a constant depending only on n.
By means of Lemma 2, the proof of Theorem 4 is same as in [17, Theorem 3.10]. We omit it here.

4. Q_{p} and Carleson measure

Let I be a subarc on the unit circle and let

$$
S(I)=\{z: \quad z /|z| \in I, \quad 1-|I| \leqslant|z|<1\}
$$

where $|I|$ denotes the arc length of I. A positive measure μ on \mathcal{D} is a bounded p-Carleson measure, $0<p<\infty$, if

$$
\begin{equation*}
\mu(S(I))=O\left(|I|^{p}\right) \tag{15}
\end{equation*}
$$

If the right-hand side of (15) is $o\left(|I|^{p}\right)$ then we say that μ is a compact p-Carleson measure.

It has been proved by Stegenga [13] (see also [9] for the case of the unit ball in \mathbb{C}^{n}) that, for $1 \leqslant p<\infty, \mu$ is a bounded p-Carleson measure if and only if

$$
\begin{equation*}
\iint_{\mathcal{D}}|f(z)|^{2} d \mu(z) \leqslant C\left(\iint_{\mathcal{D}}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{p} d \sigma_{z}+|f(0)|^{2}\right) \tag{16}
\end{equation*}
$$

for all analytic functions f on \mathcal{D} for which the integral on the right-hand side of the inequality (16) is finite.

If $0<p<1$ and inequality (16) holds then μ is a bounded p-Carleson measure. However, in this case the implication in the opposite direction is not true [13].

In view of [5, Lemma 2.1] Theorems 1 and 2 give immediately
Theorem 5. Let $n \geqslant 1$ be a natural integer and let $0<p<\infty$. Then, for an analytic function f in \mathcal{D}, we have
$f \in Q_{p}$ if and only if $d \mu=\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2+p} d \sigma_{z}$ is a bounded p-Carleson measure,
(ii)
$f \in Q_{p, 0}$ if and only if $d \mu=\left|f^{(n)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 n-2+p} d \sigma_{z}$ is a compact p -Carleson measure.

5. A SUFFICIENT CONDITION FOR MULTIPLIERS FROM H^{q} INTO Q_{p}

For $0<q \leqslant \infty$, by H^{q} we denote the space of functions f, analytic in \mathcal{D}, for which

$$
M_{q}^{q}(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{q} d \theta
$$

or

$$
M_{\infty}(r, f)=\max _{0 \leqslant \theta<2 \pi}\left|f\left(r e^{i \theta}\right)\right|
$$

remains bounded as $r \rightarrow 1$.
Let A and B be two vector spaces of sequences. A sequence $\lambda=\left\{\lambda_{n}\right\}$ is said to be a multiplier from A to B if $\left\{\lambda_{n} \alpha_{n}\right\} \in B$ whenever $\left\{\alpha_{n}\right\} \in A$. The set of all multipliers from A to B will be denoted by (A, B). In this section we regard spaces of analytic functions in \mathcal{D} as sequence spaces by identifying a function with its sequence of Taylor coefficients.

From [11, Proposition 1] we get the following result:
Theorem MP. If $1<p \leqslant 2$ then a necessary and sufficient condition that $g \in$ (H^{p}, BMOA) is that

$$
M_{q}\left(r, g^{\prime}\right) \leqslant c /(1-r), 0<r<1
$$

where $1 / p+1 / q=1$ and $\left(H^{1}, \mathrm{BMOA}\right)=\mathcal{B}$.
We shall need the multiplier transformation $D^{s} g$ of $g, g(z)=\sum_{n=0}^{\infty} \widehat{g}(n) z^{n}$, which is defined by

$$
D^{s} g(z)=\sum_{n=0}^{\infty}(n+1)^{s} \widehat{g}(n) z^{n}, s \text { any real number }
$$

Now we are ready to prove
Theorem 6. If $1 \leqslant q \leqslant 2,0<p \leqslant 1$ then a sufficient condition that $g \in$ (H^{q}, Q_{p}) is that

$$
M_{q^{\prime}}\left(r, g^{\prime}\right)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g^{\prime}\left(r e^{i \theta}\right)\right|^{q^{\prime}} d \theta\right)^{1 / q^{\prime}} \leqslant \frac{c}{(1-r)^{(1+p) / 2}}
$$

where $1 / q+1 / q^{\prime}=1$. In particular, $g \in\left(H^{1}, Q_{p}\right)$ if

$$
M_{\infty}\left(g^{\prime}, r\right)=\max _{|z|=r}\left|g^{\prime}(z)\right| \leqslant \frac{c}{(1-r)^{(1+p) / 2}}
$$

Proof: Let $f \in H^{q}$ and let

$$
h(z)=f \star g(z)=\sum_{n=0}^{\infty} \widehat{f}(n) \widehat{g}(n) z^{n}
$$

Then

$$
\begin{aligned}
& \left|r^{2} D^{2} h\left(r^{2} e^{i t}\right)\right|^{2}=\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} D^{1} f\left(r e^{i \theta}\right) D^{1} g\left(r e^{i(t-\theta)}\right) d \theta\right|^{2} \\
& \leqslant M_{q^{\prime}}^{2}\left(r, g^{\prime}\right) M_{q}^{2}\left(r, f^{\prime}\right) \leqslant \frac{c}{(1-r)^{1+p}} M_{q}^{2}\left(r, f^{\prime}\right)
\end{aligned}
$$

Hence, by [11, Lemma 1],

$$
(1-r)^{2+p} M_{\infty}^{2}\left(r^{2}, h^{\prime \prime}\right) \leqslant c(1-r) M_{q}^{2}\left(r, f^{\prime}\right)
$$

and, by Lemma HL1 in [11],

$$
\int_{0}^{1}(1-r)^{2+p} M_{\infty}^{2}\left(r^{2}, h^{\prime \prime}\right) d r \leqslant c \int_{0}^{1}(1-r) M_{q}^{2}\left(r, f^{\prime}\right) d r<\infty .
$$

We shall show that if

$$
\int_{0}^{1}(1-r)^{2+p} M_{\infty}^{2}\left(r^{2}, h^{\prime \prime}\right) d r<\infty
$$

then $h \in Q_{p}$.
By [6, Lemma 4], we have

$$
\sup _{a \in \mathcal{D}} \int_{0}^{2 \pi} \frac{\left(1-|a|^{2}\right)^{p}}{\left|1-\bar{a} r e^{i t}\right|^{2 p}} d t<\infty
$$

and thus

$$
\begin{aligned}
& \sup _{a \in \mathcal{D}} \int_{\mathcal{D}}\left|h^{\prime \prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{p+2} \frac{\left(1-|a|^{2}\right)^{p}}{|1-\bar{a} z|^{2 p}} d \sigma_{z} \\
& \quad \leqslant \sup _{a \in \mathcal{D}} \int_{0}^{1}(1-r)^{2+p} M_{\infty}^{2}\left(r, h^{\prime \prime}\right) \int_{0}^{2 \pi} \frac{\left(1-|a|^{2}\right)^{p}}{\left|1-\bar{a} r e^{i t}\right|^{2 p}} d t d r \\
& \quad \leqslant c \int_{0}^{1}(1-r)^{2+p} M_{\infty}^{2}\left(r, h^{\prime \prime}\right) d r<\infty
\end{aligned}
$$

which, by our Theorem 1 , implies $h \in Q_{p}$ for $n=2$.

References

[1] J. M. Anderson, J. Clunie and Ch. Pommerenke, 'On Bloch functions and normal functions', J. Reine Angew. Math. 240 (1974), 12-37.
[2] J. Arazy, S.D. Fisher and J. Peetre, 'Möbius invariant function spaces', J. Reine Angew. Math. 363 (1985), 110-145.
[3] R. Aulaskari, Y. He and R. Zhao, 'On entire functions, Bloch and normal functions', Chinese Ann. Math. Ser. B 17 (1996), 139-148.
[4] R. Aulaskari and P. Lappan, 'Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal', in Complex analysis and its applications, Pitman Research Notes in Mathematics Series 305 (Longman Scientific and Technical, Harlow, 1994), pp. 136-146.
[5] R. Aulaskari, D. A. Stegenga and J. Xiao, 'Some subclasses of BMOA and their characterization in terms of Carleson measures', Rocky Mountain J. Math. 26 (1996), 485-506.
[6] R. Aulaskari, J. Xiao and R. Zhao, 'On subspaces and subsets of BMOA and UBC', Analysis 15 (1995), 101-121.
[7] S. Axler, 'The Bergman space, the Bloch space and commutators of multiplication operators', Duke Math. J. 53 (1986), 315-332.
[8] A. Baernstein II, 'Analytic functions of bounded mean oscillation', in Aspects of contemporary complex analysis (Academic Press, London, New York, 1980), pp. 2-26.
[9] J.A. Cima and W. Wogen, 'A Carleson measure theorem for the Bergman space on the ball', J. Operator Theory 7 (1982), 157-165.
[10] M. Essén and J. Xiao, 'Some results on Q_{p} spaces, $0<p<1$ ', J. Reine Angew. Math. 485 (1997), 173-195.
[11] M. Mateljevic and M. Pavlovic, 'Multipliers of H^{p} and BMOA', Pacific J. Math. 146 (1990), 71-84.
[12] D. Sarason, 'Functions of vanishing mean oscillation', Trans. Amer. Math. Soc. 205 (1975), 391-405.
[13] D.A. Stegenga, 'Multipliers of Dirichlet space', Illinois J. Math. 24 (1980), 113-139.
[14] K. Stroethoff, 'Besov-type characterizations for the Bloch space', Bull. Austral. Math. Soc. 39 (1989), 405-420.
[15] J. Xiao, 'Carleson measure, atomic decomposition and free interpolation from Bloch space', Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 35-46.
[16] J. Xiao and L. Zhong, 'On little Bloch space, atomic decomposition and free interpolation', Complex Variables Theory Appl. 27 (1995), 175-184.
[17] R. Zhao, 'On a general family of function spaces', Ann. Acad. Sci. Fenn. Math. Dissertationes 105 (1996), 1-56.
[18] K.H. Zhu, Operator Theory in Function Spaces (Marcel Dekker, Inc., New York and Basel, 1990).

University of Joensuu
PO Box 111
FIN-8010 Joensuu
Finland
e-mail: aulaskari@joyl.joensuu.fi
University of Joensuu
PO Box 111
FIN-8010 Joensuu
Finland

Institute of Mathematics
Maria Curie-Sklodowska University
pl. M. Curie-Skodowskiej 1
20-031 Lublin
Poland

[^0]: Received 24th November, 1997

