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Abstract

We improve the degree of pointwise approximation of continuous functions f (x) by Bernstein operators,
when x is close to the endpoints of [0, 1]. We apply the new estimate to establish upper and lower
pointwise estimates for the test function g(x) = x log(x) + (1 − x) log(1 − x). At the end we prove a
general statement for pointwise approximation by Bernstein operators.
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1. Introduction

In 1994 Ditzian showed in [4] that for the Bernstein polynomials

Bn( f ; x) =

n∑
k=0

f
( k
n

)
·

(
n
k

)
xk(1 − x)n−k, x ∈ [0, 1],

the pointwise approximation

|Bn( f , x) − f (x)| ≤Cωϕ
λ

2 ( f , n−1/2ϕ(x)1−λ), x ∈ [0, 1], (1.1)

holds true for λ ∈ [0, 1], ϕ(x) :=
√

x(1 − x) and f ∈C[0, 1], where the Ditzian–Totik
modulus of second order is given by

ω
ϕλ

2 ( f , t) := sup
0<h≤t

sup
x±hϕλ(x)∈[0,1]

| f (x − hϕλ(x)) − 2 f (x) + f (x + hϕλ(x))|. (1.2)

We recall that this modulus is equivalent to the K-functional

Kϕλ( f , t2) = inf(‖ f − h‖C[0,1] + t2‖ϕ2λh′′‖C[0,1]). (1.3)

The infimum is taken on functions satisfying h ∈ AC, h′ ∈ ACloc where AC is the set
of all absolutely continuous functions on [0, 1] and ACloc is the set of absolutely
continuous functions on compact subsets of (0, 1). (See [5].)
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In 1998 Felten proved in [6] the more general inequality

|Bn( f , x) − f (x)| ≤Cωφ2

(
f , n−1/2ϕ(x)

φ(x)

)
, x ∈ [0, 1],

where φ : [0, 1]→ R is an admissible step-weight function of the Ditzian–Totik
modulus and φ2 is a concave function. The aim of this note is to improve the
estimate (1.1) for λ = 1, when x is close to the endpoints of [0, 1].

Let us define

δ(n, x) := min
{
n−1/2,

( x(1 − x)
n

)1/4}
.

The following theorem is our main result.

T 1.1. The pointwise estimate

|Bn( f , x) − f (x)| ≤Cωϕ2( f , δ(n, x)), x ∈ [0, 1], (1.4)

holds true for all f ∈C[0, 1], n ∈ N.

In Section 2 we give the proof of Theorem 1.1. In Section 3 we establish upper and
lower bounds for approximation of the function g(x), defined in (2.1), by Bernstein
operators.

2. Proof of Theorem 1.1

Let us define g : [0, 1]→ R as

g(x) = x log(x) + (1 − x) log(1 − x), x ∈ (0, 1), (2.1)

and g(0) = g(1) := 0. The problem of evaluating the remainder term

Rn(g, x) = Bn(g, x) − g(x), x ∈ [0, 1],

was formulated by the author in [14] during the fifth Romanian–German Seminar on
Approximation Theory, held in Sibiu, Romania, in 2002. More precisely, we proposed
to find (best) bounds of the type

k1 ·
xα1 (1 − x)α2

nβ
≤ Rn(g, x) ≤ K2 ·

xa1 (1 − x)a2

nb
, x ∈ [0, 1],

where k1, K2 are positive numbers, independent of x and n. Some days after the
conference, Lupaş showed that the above holds with α1 = α2 = β = 1, k1 = 1

2 and
a1 = a2 = b = 1

2 , K2 =
√

2 (see [8, 9]), that is,

x(1 − x)
2n

≤ Rn(g, x) ≤
√

2 ·

√
x(1 − x)

n
. (2.2)

The function g was applied in the following direct estimate, proved by Parvanov and
Popov in [12].
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If L : C[0, 1]→C[0, 1] is a linear positive operator, preserving linear functions,
then

|L( f , x) − f (x)| ≤ 2‖ f − h‖C[0,1] + |L(g, x) − g(x)| · ‖ϕ2h′′‖C[0,1]

holds for arbitrary h ∈ AC, h′ ∈ ACloc, ‖ϕ
2h′′‖C[0,1] <∞. Instead of L we write Bn and

apply the right-hand side of (2.2). Hence

|Bn( f , x) − f (x)| ≤ 2‖ f − h‖C[0,1] +
√

2
( x(1 − x)

n

)1/2

· ‖ϕ2h′′‖C[0,1].

Therefore

|Bn( f , x) − f (x)| ≤ 2Kϕ

(
f ,

( x(1 − x)
n

)1/2)
.

From the equivalence between Kϕ( f , t2) and ωϕ2( f , t), it follows that

|Bn( f , x) − f (x)| ≤Cωϕ2

(
f ,

( x(1 − x)
n

)1/4)
. (2.3)

The estimates (2.3) and (1.1) with λ = 1 complete the proof. �

3. Upper and lower pointwise bounds

The following is a straightforward corollary of Theorem 1.1.

C 3.1. The pointwise estimate

|Bn(g, x) − g(x)| ≤Cωϕ2

(
g, 4

√
x(1 − x)

n

)
, x ∈ [0, 1], (3.1)

holds true for all n ∈ N.

R 3.2. If x is close to the endpoints of [0, 1], then the estimate (3.1) is better
than that in (2.1) for λ = 1, established by Ditzian in [4].

R 3.3. Other direct pointwise estimates in terms of Kϕ are proved in [6]. We
point out that neither from [6] nor from [4] is it possible to deliver (3.1) as a
straightforward corollary.

We continue with lower pointwise bounds. In [1, Theorem 11], using the function
g(x) as a ‘universal’ tool, the authors proved that

c(g)ω2

(
g,

√
x(1 − x)

n

)
≤ |Bn(g, x) − g(x)|

does not hold. So the question arises: what kind of modulus is appropriate to serve as a
lower pointwise bound for |Bn(g, x) − g(x)|? The answer is given in the next theorem.

T 3.4. The following inequality holds true:

c · ωϕ2

(
g,

√
x(1 − x)

n

)
≤ |Bn(g, x) − g(x)|. (3.2)
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P. Using the equivalence between Kϕ(g, t2) and ωϕ2(g, t), we compute

cωϕ2

(
g,

√
x(1 − x)

n

)
≤ Kϕ

(
g,

x(1 − x)
n

)
:= inf

h

{
‖g − h‖C[0,1] +

x(1 − x)
n

· ‖ϕ2h′′‖C[0,1]

}
≤ ‖g − g‖C[0,1] +

x(1 − x)
n

· ‖ϕ2g′′‖C[0,1]

=
x(1 − x)

n
≤ 2|Bn(g, x) − g(x)|,

where the last inequality follows from (2.2). The proof is complete. �

R 3.5. It was pointed out in [1] that for f (x) = x3, x ∈ [0, 1], an estimate similar
to (3.2) is not possible.

R 3.6. Theorems 3.4 and 3.7 imply for the function g(x) in (2.1) the two-sided
pointwise inequality

cωϕ2

(
g,

√
x(1 − x)

n

)
≤ |Bn(g, x) − g(x)| ≤Cωϕ2

(
g, 4

√
x(1 − x)

n

)
. (3.3)

Very recently, motivated by the result of Lupaş and considerations set out in [1,
2, 12] we proved in [15] that the values of α1 = α2 = 1 and a1 = a2 = 1

2 in (1.4) are
optimal, that is, we proved the following result.

T A. It is not possible to find a1 >
1
2 , or a2 >

1
2 , or α1 < 1, or α2 < 1, such that

k1 ·
xα1 (1 − x)α2

n
≤ Rn(g, x) ≤ K2 ·

xa1 (1 − x)a2

√
n

holds true for all x ∈ [0, 1] with some positive numbers k1, K2, independent of x and n.

Our next statement is the following theorem.

T 3.7. In both sides of (3.3) it is not possible to put one and the same modulus:
neither ωϕ2(g,

√
x(1 − x)/n) nor ωϕ2(g, 4

√
x(1 − x)/n).

P. First we suppose that ωϕ2(g, 4
√

x(1 − x)/n) could be placed in the left-hand side
of (3.3). Setting x = 1

2 in (1.2), we obtain

∆2
hϕg

(1
2

)
= h2 · ϕ2

(1
2

)
· g′′(ξ) ≥ h2 ·

(1
2

)2

·
1

1
2 (1 − 1

2 )
= h2.

Hence by

t := 4

√
x(1 − x)

n
, x ∈ [0, 1] fixed,

we have

ω2
ϕ(g, t) ≥ t2 =

√
x(1 − x)

n
.
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From our supposition and the last inequality we get

c

√
x(1 − x)

n
≤ |Bn(g, x) − g(x)|,

which contradicts the statement of Theorem A (left-hand side of the inequality, as
x→ 0). Also if we suppose that ωϕ2(g,

√
x(1 − x)/n) could be placed in the right-hand

side of (3.3) due to the fact that (see [3, Theorem 6.1])

ω
ϕ
2(g, t) ≤Ct2‖ϕ2g′′‖ = Ct2 · 1,

the last inequality would imply that

|Bn(g, x) − g(x)| ≤C
x(1 − x)

n
,

which again contradicts Theorem A (right-hand side of the inequality, as x→ 0). The
proof of Theorem 3.7 is complete. �

R 3.8. The upper pointwise bound in (3.1) in terms of the classical modulus of
continuity ω2(g,

√
x(1 − x)/n) was first established in [13]. As already mentioned, this

modulus is not appropriate as a lower bound.
It is known that for the ‘test’ function f1(x) = x2, x ∈ [0, 1],

Bn( f1, x) − f1(x) =
x(1 − x)

n
≈ ω2

(
f1,

√
x(1 − x)

n

)
.

What is the situation for all other continuous functions f (x)? In response to this
question, we formulate the following result.

T 3.9. There are no constants c( f ) and C( f ) such that

c( f )Ω2( f , σ(n, x)) ≤ |Bn( f , x) − f (x)| ≤C( f )Ω2( f , σ(n, x)) (3.4)

holds true for all f ∈C[0, 1], all x ∈ [0, 1] and all n ∈ N with appropriate constructive
characteristic Ω2( f , ·), where Ω2( f , ·) satisfies the properties of second-order modulus
of smoothness (or related K-functional) and argument σ(n, x).

P. The proof follows immediately from Theorem A and (2.2) for g(x). We
fix n ∈ N and take x→ 0. If we suppose that (3.4) holds true, this would imply
simultaneously that

Ω2(g, σ(n, x)) ≤ k1
x(1 − x)

n
as x→ 0,

Ω2(g, σ(n, x)) ≥ K2

√
x(1 − x)

n
as x→ 0,

with some positive constants k1, K2 independent of n, x, which is not possible.
Hence (3.4) fails for g(x). �
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R 3.10. The case of ‘norm’ estimates is quite different. We mention here the
well-known equivalence result of Knoop and Zhou for Bernstein operators, namely

cωϕ2

(
f ,

1
√

n

)
≤ ‖Bn f − f ‖C[0,1] ≤Cωϕ2

(
f ,

1
√

n

)
,

established in 1994 in [7]. Similar strong converse inequalities are valid for many
other linear positive operators.
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(Burg, Sibiu, 2002), pp. 155–168.

[10] V. Maier, ‘The L1-saturation class of the Kantorovich operator’, J. Approx. Theory 22 (1978),
227–232.

[11] V. Maier, ‘A new proof for the approximation of the Log-function by Kantorovich polynomials in
the Lp-norm’, Rev. Anal. Numér. Théor. Approx. 28(2) (1999), 173–177.
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