Hyperplanes of the Form
 $f_{1}(x, y) z_{1}+\cdots+f_{k}(x, y) z_{k}+g(x, y)$ Are Variables

Stéphane Vénéreau

Abstract. The Abhyankar-Sathaye Embedded Hyperplane Problem asks whether any hypersurface of \mathbb{C}^{n} isomorphic to \mathbb{C}^{n-1} is rectifiable, i.e., equivalent to a linear hyperplane up to an automorphism of \mathbb{C}^{n}. Generalizing the approach adopted by Kaliman, Vénéreau, and Zaidenberg, which consists in using almost nothing but the acyclicity of \mathbb{C}^{n-1}, we solve this problem for hypersurfaces given by polynomials of $\mathbb{C}\left[x, y, z_{1}, \ldots, z_{k}\right]$ as in the title.

The result announced in the title corresponds to the implication (iv) $\Rightarrow(\mathrm{v})$ in the Main Theorem below. Case $k=1$ is a well-known result appearing in [Rus76, Sat76, KZ99]; case $k=2$ can be found in [KVZ04, Th.3.24] or in [KVZ01, Th.2.5]. Before we state this theorem let us clarify the definitions:

- we choose to consider automorphisms as invertible endomorphisms of the (C-algebras of polynomials $\mathbb{C}\left[x, y, z_{1}, \ldots, z_{k}\right], \mathbb{C}[x, y]$, etc.;
- an x-automorphism is an automorphism α such that $\alpha(x)=x$;
- a variable, resp. an x-variable, is a polynomial v such that $v=\alpha(y)$ for a certain automorphism, resp. x-automorphism, α.
Main Theorem Let $p=p(x, y, \bar{z}) \in \mathbb{C}[x, y, \bar{z}]=\mathbb{C}\left[x, y, z_{1}, \ldots, z_{k}\right]$ be a polynomial of degree one in \bar{z}, i.e., p is of the form

$$
p(x, y, \bar{z})=f_{1}(x, y) z_{1}+\cdots+f_{k}(x, y) z_{k}+g(x, y)
$$

Let $X \subset \mathbb{C}_{x, y, \bar{z}}^{2+k}$ be the hypersurface given by the equation $p=0$. Then the five following assertions are equivalent:
(i) $\quad X$ is smooth, irreducible and acyclic, i.e., $\tilde{H}_{*}(X ; \mathbb{Z})=0$.
(ii) Up to an automorphism of $\mathbb{C}[x, y]$ (naturally extended to $\mathbb{C}[x, y, \bar{z}]$), p has the form:

$$
p=h(x)\left(\tilde{f}_{1}(x, y) z_{1}+\cdots+\tilde{f}_{k}(x, y) z_{k}\right)+g(x, y)
$$

where $\bigcap_{i=1}^{k} \tilde{f}_{i}^{-1}(0)$ is a finite subset of the parallel lines $h^{-1}(0)$ and

$$
\operatorname{deg}_{y}\left(g\left(x_{0}, y\right)\right)=1, \forall x_{0} \in h^{-1}(0)
$$

(where $h^{-1}(0)$ is first considered as a subset of $\mathbb{C}_{x, y}^{2}$ and, secondly, as a subset of $\left(C_{x}\right)$.

[^0](iii) Up to an automorphism of $\mathbb{C}[x, y], p$ is an x-variable.
(iv) The polynomial p is a hyperplane or, equivalently, X is isomorphic to \mathbb{C}^{k+1}.
(v) The polynomial p is a variable or, equivalently, X is rectifiable.

Remark 1 In the Main Theorem above, the notation $\mathbb{C}\left[x, y, z_{1}, \ldots, z_{k}\right]$ and the assumption that p has degree one in \bar{z} imply that $k \geq 1$ and the f_{i} are not all zero. However it is worth noticing that whenever $k=0$ or all the f_{i} are zero, the assertions (i), (iv) and (v) still make sense and are still equivalent, provided that $p\left(x, y, z_{1}, \ldots, z_{k}\right)=g(x, y)$ is irreducible (a usual precaution due to the fact that $g^{-1}(0)$ can be irreducible while $g=h^{n}$ is not, which turns out unnecessary in the theorem since $p=f_{1} z_{1}+\cdots+f_{k} z_{k}+g$ is clearly not a power of another polynomial). Indeed, in this special case the canonical projection $X \simeq \mathbb{C}^{k} \times g^{-1}(0) \rightarrow g^{-1}(0)$ is clearly a homotopy equivalence. Hence X is smooth irreducible and acyclic if and only if $g^{-1}(0)$ is; it is a well-known result that $g(x, y)$ is then a line and by the Abhyankar-Moh-Suzuki theorem [AM75, Sat76] $g(x, y)$ is a variable (of $\mathbb{C}[x, y])$, Hence $p\left(x, y, z_{1}, \ldots, z_{k}\right)=g(x, y)$ is a variable (of $\left.\mathbb{C}\left[x, y, z_{1}, \ldots, z_{k}\right]\right)$.

We now turn to the proof of the Main Theorem; the implications (iii) \Rightarrow (v) \Rightarrow (iv) \Rightarrow (i) being obvious, the rest of the article is dedicated to the proof of (i) \Rightarrow (ii) \Rightarrow (iii).

The injection:

$$
\begin{equation*}
\mathbb{C}[x, y] \hookrightarrow \mathbb{C}[X]=\mathbb{C}[x, y]\left[z_{1}, \ldots, z_{k}\right] /\left(f_{1} z_{1}+\cdots+f_{k} z_{k}+g\right) \tag{1}
\end{equation*}
$$

corresponds to a morphism $\sigma: X \rightarrow \mathbb{C}^{2}$ with general fibers

$$
\sigma^{-1}\left(x_{0}, y_{0}\right)=\left\{z_{1}, \ldots, z_{k} \mid f_{1}\left(x_{0}, y_{0}\right) z_{1}+\cdots+f_{k}\left(x_{0}, y_{0}\right) z_{k}+g\left(x_{0}, y_{0}\right)=0\right\}
$$

isomorphic to $\mathbb{C}^{k-1}(\operatorname{dim} X=k+1)$. Clearly, we have an isomorphism, for all $i=1, \ldots, k$ such that $f_{i} \neq 0$ (such an f_{i} exists, as was noticed in Remark 1 above):

$$
\mathbb{C}[x, y]_{f_{i}}\left[z_{1}, \ldots, z_{k}\right] /\left(f_{1} z_{1}+\cdots+f_{k} z_{k}+g\right) \simeq \mathbb{C}[x, y]_{f_{i}}^{[k-1]}
$$

Letting $D:=V\left(f_{1}, \ldots, f_{k}\right) \subset \mathbb{C}^{2}$ and $D^{\prime}:=\sigma^{-1}(D) \subset X$, implies that the restriction

$$
\sigma_{\mid X \backslash D^{\prime}}: X \backslash D^{\prime} \rightarrow \mathbb{C}^{2} \backslash D
$$

is locally trivial in the Zariski topology, i.e., a fiber bundle, with affine space fibers. Observe that $D^{\prime} \simeq C \times \mathbb{C}^{k}$ where $C:=V\left(f_{1}, \ldots, f_{k}, g\right)=D \cap g^{-1}(0) \subset D$. We remark that C must be a finite set as soon as X is irreducible. Let $h(x, y)$ be the greatest common divisor of f_{1}, \ldots, f_{k}. One has

$$
p=f_{1} z_{1}+\cdots+f_{k} z_{k}+g=h\left(\tilde{f}_{1} z_{1}+\cdots+\tilde{f}_{k} z_{k}\right)+g
$$

where $\tilde{f}_{1}, \ldots, \tilde{f}_{k}$ have no common divisor. Again we define:

$$
\begin{array}{llll}
\hat{D}:= & h^{-1}(0) \subset \quad & D \\
\cup & \cup
\end{array} \text { and } \hat{D}^{\prime}:=\sigma^{-1}(\hat{D}) \simeq \hat{C} \times \mathbb{C}^{k} .
$$

Let $\hat{D}=\bigcup_{i=1}^{n} D_{i}$ and $\hat{D}^{\prime}=\bigcup_{j=1}^{n^{\prime}} D_{j}^{\prime}$ be the decomposition into irreducible components regarded as Cartier divisors. Letting

$$
\begin{equation*}
\sigma^{*}\left(D_{i}\right)=\sum_{j=1}^{n^{\prime}} m_{i j} D_{j}^{\prime}, \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

we consider the $n \times n^{\prime}$ multiplicity matrix $M_{\sigma}=\left(m_{i j}\right)$ with non-negative integer entries. The first step in the proof of (i) \Rightarrow (ii) is the following generalization of [KVZ04, Prop. 1.5(a)]:

Lemma 2 If X is as in (i), i.e., X is smooth, irreducible and acyclic, then $n=n^{\prime}$ and M_{σ} is unimodular.

Proof By [Fuj82, 1.18-1.20] (see also [Kal94, 3.2]) the algebra $\mathbb{C}[X]$ is a UFD and its invertible elements are constants (and the same is true for $\mathbb{C}[x, y])$. Hence there are irreducible elements $h_{1}, \ldots, h_{n} \in \mathbb{C}[x, y]$ and $h_{1}^{\prime}, \ldots, h_{n}^{\prime} \in \mathbb{C}[X]$ such that $D_{i}=$ $h_{i}^{-1}(0), i=1, \ldots, n$ and $D_{j}^{\prime}=h_{j}^{\prime-1}(0), j=1, \ldots, n^{\prime}$. In view of the injection (1), one can identify elements of $\mathbb{C}[x, y]$ and their images in $\mathbb{C}[X]$ and they then have two different decompositions, as seen as in $\mathbb{C}[x, y]$ or as in $\mathbb{C}[X]$. To sum up one has:

$$
\begin{aligned}
\hat{D} & =\bigcup_{i=1}^{n} D_{i} \text { is given by } h=\prod_{i=1}^{n} h_{i}^{a_{i}} \text { in } \mathbb{C}[x, y] \\
\hat{D}^{\prime} & =\bigcup_{j=1}^{n^{\prime}} D_{j}^{\prime} \text { is given by } h=\prod_{j=1}^{n^{\prime}} h_{j}^{\prime a_{j}^{\prime}} \text { in } \mathbb{C}[X]
\end{aligned}
$$

and $\forall i=1, \ldots, n$,

$$
\sigma^{*}\left(D_{i}\right)=\sum_{j=1}^{n^{\prime}} m_{i j} D_{j}^{\prime} \text { is given by } h_{i}=\lambda_{i} \prod_{j=1}^{n^{\prime}} h_{j}^{\prime m_{i j}} \text { in } \mathbb{C}[X]
$$

(where $\lambda_{i} \in \mathbb{C}^{*}$).
There exists at least one \tilde{f}_{i} coprime with h. Without loss of generality one can assume that \tilde{f}_{1} is so. Now we note that we have another injection,

$$
\mathbb{C}\left[x, y, z_{2}, \ldots, z_{k}\right] \hookrightarrow \mathbb{C}[X]=\mathbb{C}\left[x, y, z_{2}, \ldots, z_{k}\right]\left[z_{1}\right] /\left(f_{1} z_{1}+\cdots+f_{k} z_{k}+g\right)
$$

actually $\mathbb{C}[X]$ can be regarded as a simple birational extension (see [KVZ01, KVZ04]) of the algebra $A:=\mathbb{C}\left[x, y, z_{2}, \ldots, z_{k}\right]$:

$$
\mathbb{C}[X]=\mathbb{C}\left[x, y, z_{2}, \ldots, z_{k}\right]\left[z_{1}\right] /\left(f_{1} z_{1}+\cdots+f_{k} z_{k}+g\right) \simeq A\left[\frac{r}{q}\right] \subset A_{q}
$$

where

$$
\left\{\begin{array}{l}
q=f_{1}=h \tilde{f}_{1} \\
r=h\left(\tilde{f}_{2} z_{2}+\cdots f_{k} z_{k}\right)+g .
\end{array}\right.
$$

Here again, in view of the injection $A \hookrightarrow \mathbb{C}[X]$, one can decompose q in A and then in $\mathbb{C}[X]$:

$$
\begin{aligned}
h \tilde{f}_{1}=q & =\prod_{i=1}^{m} q_{i}^{a_{i}}=\prod_{i=1}^{n} h_{i}^{a_{i}} \prod_{i=n+1}^{m} q_{i}^{a_{i}} \text { in }(\mathbb{C}[x, y] \subset) A \text { where } q_{i}=h_{i}, \forall i=1, \ldots, n \\
q & =\prod_{j=1}^{m^{\prime}} q_{j}^{\prime a_{j}^{\prime}}=\prod_{j=1}^{n^{\prime}} h_{j}^{\prime a_{j}^{\prime}} \prod_{j=n^{\prime}+1}^{m^{\prime}} q_{j}^{\prime a_{j}^{\prime}} \text { in } \mathbb{C}[X] \text { where } q_{j}^{\prime}=h_{j}^{\prime}, \forall j=1, \ldots, n^{\prime}
\end{aligned}
$$

and hence, for every $i=1, \ldots, m$, there exist non-negative integers $m_{i 1}, \ldots, m_{i m^{\prime}}$ such that

$$
\begin{equation*}
q_{i}=\lambda_{i} \prod_{j=1}^{m^{\prime}} q_{j}^{\prime m_{i j}} \quad\left(\lambda_{i} \in \mathbb{C}^{*}\right) \tag{3}
\end{equation*}
$$

The matrix M_{σ} is a submatrix of the $m \times m^{\prime}$ matrix $M_{1}:=\left(m_{i j}\right)$, i.e.,

$$
M_{1}=\left[\begin{array}{c|c}
M_{\sigma} & * \\
\hline * & *
\end{array}\right] .
$$

Now, identifying $\mathbb{C}[X]$ and $A\left[\frac{r}{q}\right] \subset A_{q}$ one has

$$
\forall j=1, \ldots, m^{\prime}, \quad q_{j}^{\prime}=\frac{s_{j}}{q^{N}} \text { with } s_{j} \in A, N \in \mathbb{N}
$$

and, by (3),

$$
q_{i}=\lambda_{i} \prod_{j=1}^{m^{\prime}}\left(\frac{s_{j}}{q^{N}}\right)^{m_{i j}}
$$

Multiplying the last equality by a sufficiently large power of q, one obtains an equality in $(\mathbb{C}[x, y] \subset) A$ which implies that for every $j=1, \ldots, m^{\prime}$, there exist integers $m_{j 1}^{\prime}, \ldots, m_{j n}^{\prime} \in \mathbb{Z}$ such that

$$
\begin{equation*}
q_{j}^{\prime}=\lambda_{j}^{\prime} \prod_{i=1}^{m} q_{i}^{m_{j i}^{\prime}} \quad\left(\lambda_{j}^{\prime} \in \mathbb{C}^{*}\right) \tag{4}
\end{equation*}
$$

Let M_{1}^{\prime} be the $m^{\prime} \times m$ matrix $M_{1}^{\prime}:=\left(m_{i j}^{\prime}\right)$. Plugging (3) into (4) and (4) into (3) we obtain that $M_{1}^{\prime} M_{1}=I_{m^{\prime}}$ and $M_{1} M_{1}^{\prime}=I_{m}$ where I_{ω} denotes the identity matrix of order ω. Hence $m=m^{\prime}$ and M_{1} is unimodular.

Now let us look at the injection $A \hookrightarrow \mathbb{C}[X]$ from the geometrical point of view; it corresponds to a birational morphism $\mu: X \rightarrow \mathbb{C}^{2+k-1}$ with exceptional divisor $F^{\prime}:=\mu^{-1}(F)$ with $F:=q^{-1}(0) \subset \mathbb{C}^{2+k-1}$, the restriction

$$
\mu_{\mid X \backslash F^{\prime}}: X \backslash F^{\prime} \rightarrow \mathbb{C}^{2+k-1} \backslash F
$$

being an isomorphism. Here again,

$$
\begin{aligned}
F & =\bigcup_{i=1}^{m} F_{i} \text { is given by } q=\prod_{i=1}^{m} q_{i}^{a_{i}} \text { in } A ; \\
F^{\prime} & =\bigcup_{j=1}^{m^{\prime}} F_{j}^{\prime} \text { is given by } q=\prod_{j=1}^{m^{\prime}} q_{j}^{\prime a_{j}^{\prime}} \text { in } \mathbb{C}[X]
\end{aligned}
$$

and $\forall i=1, \ldots, m$,

$$
\mu^{*}\left(F_{i}\right)=\sum_{j=1}^{m^{\prime}} m_{i j} F_{j}^{\prime} \text { is given by } q_{i}=\lambda_{i} \prod_{j=1}^{m^{\prime}} q_{j}^{\prime m_{i j}} \text { in } \mathbb{C}[X]
$$

We have also that $F^{\prime} \simeq E \times \mathbb{C}$ where $E:=V(q, r)=F \cap r^{-1}(0) \subset F$. Observe also that F is a cylinder above a curve, indeed, $F=\Gamma \times\left(\mathbb{C}^{k-1}\right.$ where Γ is the curve in \mathbb{C}^{2} defined by $q=0$ (with q seen as a polynomial in $\mathbb{C}[x, y]$). Therefore, one can define a morphism $\pi: E \rightarrow \Gamma$ as the restriction to $E \subset \Gamma \times \mathbb{C}^{k-1}$ of the canonical projection $\Gamma \times \mathbb{C}^{k-1} \rightarrow \Gamma$. Thus we have the following commutative diagram:

Remark that E, resp. Γ, must have the corresponding decomposition, i.e., $E=$ $\bigcup_{j=1}^{m^{\prime}=m} E_{j}$, resp. $\Gamma=\bigcup_{i=1}^{m} \Gamma_{i}$ with $F_{j}^{\prime} \simeq E_{j} \times \mathbb{C}$, resp. $F_{i}=\Gamma_{i} \times \mathbb{C}^{k-1}$.

Remark 3 Clearly, $m_{i j}>0 \Leftrightarrow \mu\left(F_{j}^{\prime}\right) \subset F_{i} \Leftrightarrow E_{j} \subset F_{i}=\Gamma_{i} \times \mathbb{C}^{k-1} \Leftrightarrow \pi\left(E_{j}\right) \subset$ $\Gamma_{i} \Leftrightarrow E_{j} \subset \pi^{-1}\left(\Gamma_{i}\right)$.

Notice that for each $j=1, \ldots, m$ there exists $i \in\{1, \ldots, m\}$ such that $\pi\left(E_{j}\right) \subseteq \Gamma_{i}$, and this index $i=i(j)$ is unique unless $\pi_{\mid E_{j}}=$ const.

We call an irreducible component E_{j} of E vertical 1 if $\left.\pi\right|_{E_{j}}=$ const (i.e., $\operatorname{deg}\left(\left.\pi\right|_{E_{j}}\right)=0$) and non-vertical otherwise (thus the vertical components of E are disjoint and each of them is isomorphic to $\left(\mathbb{C}^{k-1}\right)$.

[^1]Remark 4 The uniqueness of the index $i=i(j)$ for a non-vertical component E_{j} and the unimodularity of M_{1} imply that the j th column of the matrix M_{1} is the i th vector of the standard basis $\left(\bar{e}_{1}, \ldots \bar{e}_{n}\right)$ in \mathbb{R}^{n}, and two different non-vertical components E_{j} and $E_{\underline{j}}$ of E project into two different irreducible components Γ_{i} and $\Gamma_{\underline{i}}$ of Γ.

We remark that

$$
\begin{aligned}
\bigcup_{j=1}^{m} E_{j}=E=V(q, r) & =V\left(h \tilde{f}_{1}, f_{2} z_{2}+\cdots+f_{k} z_{k}+g\right) \\
& =V\left(h \tilde{f}_{1}, h\left(\tilde{f}_{2} z_{2}+\cdots+\tilde{f}_{k} z_{k}\right)+g\right) \\
& =V(h, g) \cup \bigcup_{j=n^{\prime}+1}^{m} E_{j} \\
& =\hat{C} \times \mathbb{C}^{k-1} \cup \bigcup_{j=n^{\prime}+1}^{m} E_{j}
\end{aligned}
$$

where $\hat{C}(\subset C)$ is a finite set of points $\left\{P_{1}, \ldots, P_{n^{\prime}}\right\}:=\hat{C}$. Actually one has $\forall j=$ $1, \ldots, n^{\prime},\left.\pi\right|_{E_{j}}=$ const $=P_{j}$ and thus those components $E_{j}=\left\{P_{j}\right\} \times \mathbb{C}^{k-1}$ are vertical. Remember also that

$$
\mathbb{C}^{2} \supset \Gamma=V(q)=V\left(h \tilde{f}_{1}\right)=V(h) \cup V\left(\tilde{f}_{1}\right)=\bigcup_{i=1}^{n} D_{i} \cup \bigcup_{i=n+1}^{m} \Gamma_{i}
$$

In view of Remark 3, one can understand how E is positioned in $\Gamma \times \mathbb{C}^{k-1}$ by looking at the matrix M_{1} :

	$\begin{gathered} P_{1} \times \mathbb{C}^{k-1} \\ \\| \\ E_{1} \end{gathered}$		$\begin{aligned} & \times \mathbb{C}^{\prime} \\ & \\| \\ & E_{n^{\prime}} \end{aligned}$	$E_{n^{\prime}+1}$		E_{m}
$\begin{gathered} D_{1}=\Gamma_{1} \\ \vdots \\ D_{n}=\Gamma_{n} \end{gathered}$		M_{σ}			*	
$\begin{gathered} \Gamma_{n+1} \\ \vdots \\ \Gamma_{m} \end{gathered}$		*			*	

For every $i \in\{1, \ldots, m\}$,

$$
\pi^{-1}\left(\Gamma_{i}\right)=\Gamma_{i} \times \mathbb{C}^{k-1} \cap V\left(f_{2} z_{2}+\cdots+f_{k} z_{k}+g\right)
$$

Hence

$$
\pi\left(\pi^{-1}\left(\Gamma_{i}\right)\right) \supset \Gamma_{i} \backslash V\left(f_{2}, \ldots, f_{k}\right)
$$

If $i \geq n+1$, i.e., $\Gamma_{i} \not \subset h^{-1}(0)$, then $\Gamma_{i} \backslash V\left(f_{2}, \ldots, f_{k}\right)$ is a dense subset of Γ_{i} and hence $\pi^{-1}\left(\Gamma_{i}\right)$ must contain at least one non-vertical component. By Remark 4, $\pi^{-1}\left(\Gamma_{i}\right)$ contains exactly one non-vertical component E_{j}; moreover j must be greater than n^{\prime}, since otherwise we would have:

$$
\left[\begin{array}{c}
m_{1 j} \\
\vdots \\
m_{n j} \\
\hline m_{n+1} j \\
\vdots \\
. \\
\vdots \\
m_{m j}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
\hline 0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right]
$$

with

$$
\left[\begin{array}{c}
m_{1 j} \\
\vdots \\
m_{n j}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

being a column vector of M_{σ} which is impossible, by definition of M_{σ}. Since this is true for every $i \geq n+1$ and since, by Remark 3, for two distinct components Γ_{i} and $\Gamma_{\underline{i}}, \mu^{-1}\left(\Gamma_{i}\right)$ and $\mu^{-1}\left(\Gamma_{\underline{i}}\right)$ can not contain the same non-vertical component E_{j}, we have that $m-n=m^{\prime}-n^{\prime}=m-n^{\prime}$ and, up to reordering E_{n+1}, \ldots, E_{m} :

$$
M_{1}=\left[\begin{array}{c|c}
M_{\sigma} & 0 \\
\hline * & I_{m-n}
\end{array}\right] .
$$

Hence $n=n^{\prime}$ and M_{σ} is unimodular (because M_{1} is so).
As we have seen previously, we have a fiber bundle with affine space fibers:

$$
\begin{equation*}
\left.\sigma\right|_{X \backslash D^{\prime}}: X \backslash D^{\prime} \rightarrow \mathbb{C}^{2} \backslash D . \tag{5}
\end{equation*}
$$

This will allow us to link homologies of $D, D^{\prime} \simeq C \times \mathbb{C}^{k}$ and C. Actually we will need to consider

- the one point compactification of $\mathbb{C}^{2}: \dot{\mathbb{C}}^{2}=\mathbb{C}^{2} \cup\{\infty\}$;
- the one point compactification of $X: \dot{X}=X \cup\{\infty\}$;
- and the corresponding new sets:

$$
\begin{aligned}
\dot{D} & :=D \cup\{\infty\} \subset \dot{\mathbb{C}}^{2}, \\
\dot{C} & :=C \cup\{\infty\} \subset \dot{D}, \\
\dot{D}^{\prime} & :=D^{\prime} \cup\{\infty\} \subset \dot{X} .
\end{aligned}
$$

We are going to prove the following
Lemma 5 If X is as in (i), then C and D have the same Euler characteristic and there are isomorphisms between the reduced cohomology groups:

$$
\tilde{H}^{*}(\dot{D} ; \mathbb{Z}) \simeq \tilde{H}^{*-2}(\dot{C} ; \mathbb{Z})
$$

Proof The fiber bundle with affine space fibers (5) is between quasi-affine complex varieties. Using the natural homeomorphism $\mathbb{C}^{d} \approx \mathbb{R}^{2 d}$, we obtain a fiber bundle between quasi-affine real varieties but quasi-affine real varieties are actually all affine varieties ${ }^{2}$. Then one can consider the coordinate ring R, resp. R^{\prime}, of the real affine variety homeomorphic to $\mathbb{C}^{2} \backslash D$, resp. $X \backslash D^{\prime}$. In algebraic terms we have that R^{\prime} is a locally polynomial R-algebra and by the main result of [BCW77] R^{\prime} is isomorphic to the symmetric algebra of a finitely generated projective R-module. Geometrically, it means that the fiber bundle $\left.\sigma\right|_{X \backslash D^{\prime}}$ is equivalent to a real vector bundle (by a morphism between real varieties). But any real vector bundle is homotopy-equivalent to its 0 section; hence $X \backslash D^{\prime}$ and $\mathbb{C}^{2} \backslash D$ are homotopy-equivalent and consequently

$$
\begin{equation*}
H_{*}\left(X \backslash D^{\prime} ; \mathbb{Z}\right) \simeq H_{*}\left(\mathbb{C}^{2} \backslash D ; \mathbb{Z}\right) \tag{6}
\end{equation*}
$$

In particular $e\left(X \backslash D^{\prime}\right)=e\left(\mathbb{C}^{2} \backslash D\right)$ where e stands for the Euler characteristic, and, by the additivity of the Euler characteristic (see [Dur87]), $e(X)-e\left(D^{\prime}\right)=e\left(\mathbb{C}^{2}\right)-$ $e(D)$. The hypersurface X and the affine plane \mathbb{C}^{2} being both acyclic, one has $e(X)=$ $e\left(\mathbb{C}^{2}\right)=1$, hence $e(D)=e\left(D^{\prime}\right)$. Moreover C is isomorphic to $C \times(0, \ldots, 0)$ which is a deformation retract of $C \times \mathbb{C}^{k} \simeq D^{\prime}$. Hence $e\left(D^{\prime}\right)=e(C)=e(D)$.

Remark 6 We have $\dot{X} \backslash \dot{D}^{\prime}=X \backslash D^{\prime}$ and $\dot{\mathbb{C}}^{2} \backslash \dot{D}=\mathbb{C}^{2} \backslash D$.
By [KVZ04, Proposition 1.12], \dot{X} is a homology $2(k+1)$-sphere and Alexander duality holds for \dot{X} :

$$
\tilde{H}_{*}\left(\dot{X} \backslash \dot{D}^{\prime} ; \mathbb{Z}\right) \simeq \tilde{H}^{2(k+1)-1-*}\left(\dot{D}^{\prime} ; \mathbb{Z}\right)
$$

Of course the same argument is valid for \mathbb{C}^{2} :

$$
\tilde{H}_{*}\left(\dot{\mathbb{C}}^{2} \backslash \dot{D} ; \mathbb{Z}\right) \simeq \tilde{H}^{2 \cdot 2-1-*}(\dot{D} ; \mathbb{Z})
$$

Using isomorphism (6) and Remark 6 one obtains:

$$
\begin{aligned}
& \tilde{H}_{*}\left(X \backslash D^{\prime} ; \mathbb{Z}\right) \simeq \tilde{H}_{*}\left(\dot{X} \backslash \dot{D}^{\prime} ; \mathbb{Z}\right) \simeq \tilde{H}^{2(k+1)-1-*}\left(\dot{D}^{\prime} ; \mathbb{Z}\right) \\
& \tilde{H}_{*}\left(\mathbb{C}^{2} \backslash D ; \mathbb{Z}\right) \simeq \tilde{H}_{*}\left(\dot{\mathbb{C}}^{2} \backslash \dot{D} ; \mathbb{Z}\right) \simeq \tilde{H}^{2 \cdot 2-1-*}(\dot{D} ; \mathbb{Z})
\end{aligned}
$$

Hence

$$
\tilde{H}^{*}(\dot{D} ; \mathbb{Z}) \simeq \tilde{H}^{*+2(k-1)}\left(\dot{D}^{\prime} ; \mathbb{Z}\right)
$$

[^2]From $D^{\prime} \simeq C \times \mathbb{C}^{k}$ one deduces that \dot{D}^{\prime} is homeomorphic to $\dot{C} \times \mathbb{R}^{2 k}=\dot{C} \times \mathbb{S}^{2 k}$ quotiented by $\dot{C} \vee \mathbb{S}^{2 k}:=\dot{C} \times\{\infty\} \cup\{\infty\} \times \mathbb{S}^{2 k}$, i.e.,

$$
\dot{D}^{\prime} \approx \dot{C} \times \mathbb{S}^{2 k} / \dot{C} \vee \mathbb{S}^{2 k}
$$

By [Dol72, V.4.4],

$$
\tilde{H}^{*}\left(\dot{D}^{\prime} ; \mathbb{Z}\right) \simeq H^{*}\left(\dot{C} \times \mathbb{S}^{2 k}, \dot{C} \vee \mathbb{S}^{2 k} ; \mathbb{Z}\right)
$$

and using the Künneth Theorem for the Cohomology of Product Spaces [Mas80, VIII 11.2] one obtains

$$
\tilde{H}^{*}\left(\dot{D}^{\prime} ; \mathbb{Z}\right) \simeq \tilde{H}^{*-2 k}(\dot{C} ; \mathbb{Z})
$$

which, together with (7), yields the conclusion of Lemma 5.
Now we assume that (i) holds and prove (ii). From Lemma 5 one can deduce that

$$
\begin{equation*}
\tilde{H}_{0}(\dot{D} ; \mathbb{Z})=0 \tag{8}
\end{equation*}
$$

(using for example the universal coefficient theorem for cohomology groups, see [Mas80, VII 4.3]). Recall that

$$
\begin{gathered}
\mathbb{C}^{2} \supset D=V\left(f_{1}, \ldots, f_{k}\right)=V\left(h \tilde{f}_{1}, \ldots, h \tilde{f}_{k}\right)=V(h) \cup V\left(\tilde{f}_{1}, \ldots, \tilde{f}_{k}\right), \\
D=\hat{D} \amalg D_{\mathrm{fin}} .
\end{gathered}
$$

where $D_{\text {fin }}$ is a finite set and \amalg stands for the disjoint union. We have

$$
\dot{D}=\dot{\hat{D}} \amalg D_{\mathrm{fin}}
$$

where $\dot{\hat{D}}:=\hat{D} \cup\{\infty\}$ is a connected subset of \dot{D}. Hence

$$
\operatorname{rank}\left(\tilde{H}_{0}(\dot{D} ; \mathbb{Z})\right)=1+\# D_{\mathrm{fin}}-1
$$

and, $\operatorname{by}(8), \# D_{\mathrm{fin}}=0$, i.e., $D_{\mathrm{fin}}=\varnothing$. We have proved that

$$
\begin{equation*}
V\left(\tilde{f}_{1}, \ldots, \tilde{f}_{k}\right) \subset h^{-1}(0)=\hat{D}=D \tag{9}
\end{equation*}
$$

We have also

$$
\hat{D}^{\prime}=\sigma^{-1}(\hat{D})=\sigma^{-1}(D)=D^{\prime}=\bigcup_{j=1}^{n^{\prime}} D_{j}^{\prime} \simeq \hat{C} \times \mathbb{C}^{k}
$$

and

$$
\hat{C}=C=V(h, g)=\left\{P_{1}, \ldots, P_{n^{\prime}}\right\}
$$

Recall that $D=\bigcup_{i=1}^{n} D_{i}$ and $\sigma^{*}\left(D_{i}\right)=\sum_{j=1}^{n^{\prime}} m_{i j} D_{j}^{\prime}, \quad i=1, \ldots, n$, where $M_{\sigma}=$ ($m_{i j}$).

Remark $7 \quad m_{i j}>0 \Leftrightarrow P_{j} \in D_{i}$.
By Lemma 2, $n=n^{\prime}$ and, by Lemma 5, $e(C)=e(D)$; hence

$$
n=e(D)
$$

Let $\operatorname{cc}(D)$ be the set of connected components in D. We have

$$
n=e(D)=\sum_{\Delta \in \operatorname{cc}(D)} 1-\operatorname{rank}\left(H_{1}(\Delta ; \mathbb{Z})\right) \leq \# \operatorname{cc}(D) \leq n
$$

Hence every irreducible component D_{i} is isolated and acyclic and by Remark 7

$$
P_{j} \in D_{i} \Leftrightarrow\left[\begin{array}{c}
m_{1 j} \\
\vdots \\
\cdot \\
\vdots \\
m_{n j}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
m_{i j}>0 \\
\vdots \\
0
\end{array}\right]
$$

By Lemma 2, up to reordering, $M_{\sigma}=I_{n}$. It means that if $h=\prod_{i=1}^{n} h_{i}$ is the decomposition of h into prime factors in $\mathbb{C}[x, y]$, then every h_{i} is also prime in $\mathbb{C}[X]$. In other words

$$
\mathbb{C}[X] /\left(h_{i}\right) \simeq\left({ }^{\mathbb{C}[x, y]} /\left(h_{i}, g\right)\right)[\bar{z}]
$$

is integral and hence $D_{i}=h_{i}^{-1}(0)$ and $g^{-1}(0)$ meet only once and transversally.
If $e(D)=n>1$ then, by [Zaǐ85] ${ }^{3}$, up to an automorphism of $\mathbb{C}[x, y], h(x, y)$ is a polynomial in x with n roots.

If $e(D)=n=1$ then D is an acyclic irreducible curve, i.e., D is homeomorphic to \mathbb{C} and, by $[\mathrm{ZL83}]^{3}$, up to an automorphism of $\mathbb{C}[x, y], h$ is a quasi-homogeneous polynomial: $h(x, y)=x^{k}-y^{l}$ with k and l coprime. The fact that $h^{-1}(0)$ and $g^{-1}(0)$ meet only once and transversally implies that the equation $g\left(t^{l}, t^{k}\right)=0$ has a unique solution t_{0}, this solution being different from $0\left((0,0)\right.$ is the singular point of $x^{k}-$ $\left.y^{l}=0\right)$. We have $g\left(t^{l}, t^{k}\right)=a\left(t-t_{0}\right)^{d}$, which is possible only if k or l is equal to 1 since otherwise the derivative of the left-hand side would vanish at $t=0$. Finally h is equivalent to x up to an automorphism of $\mathbb{C}[x, y]$. We have proved that, up to an automorphism, p has the form:

$$
p=h(x)\left(\tilde{f}_{1}(x, y) z_{1}+\cdots+\tilde{f}_{k}(x, y) z_{k}\right)+g(x, y)
$$

The inclusion $\bigcap_{i=1}^{k} \tilde{f}_{i}^{-1}(0) \subset h^{-1}(0)$ has already been proved in (9) and

$$
\operatorname{deg}_{y}\left(g\left(x_{0}, y\right)\right)=1, \forall x_{0} \in h^{-1}(0)
$$

[^3]is just another way to say that every component $x=x_{0}$ of $h^{-1}(0)$, meets $g^{-1}(0)$ only once and transversally. We have proved the implication (i) \Rightarrow (ii) in the Main Theorem.

Now let us prove the implication (ii) \Rightarrow (iii).
Let p be a polynomial as in (ii). We prove that p is an x-variable by induction on, say, "the total intersection number":

$$
\iota=\iota\left(\tilde{f}_{1}, \ldots, \tilde{f}_{k}\right):=\operatorname{dim}_{\mathbb{C}}{ }^{\mathbb{C}[x, y]} /\left(\tilde{f}_{1}, \ldots, \tilde{f}_{k}\right)
$$

First if $\iota=0$ then there exists k polynomials $r_{1}, \ldots, r_{k} \in \mathbb{C}[x, y]$ such that $\tilde{f}_{1} r_{1}+$ $\cdots+\tilde{f}_{k} r_{k}=1$ and, by the Quillen-Suslin theorem ${ }^{4}$ there is a linear automorphism α of $\mathbb{C}[x, y]\left[z_{1}, \ldots, z_{k}\right]$ such that $\alpha\left(z_{1}\right)=\tilde{f}_{1} z_{1}+\cdots+\tilde{f}_{k} z_{k}$. By assumption on g in (ii), one has

$$
g(x, y)=g_{0}(x)+g_{1}(x) y+h_{\mathrm{red}}(x) \sum_{i \geq 2} \tilde{g}_{i}(x) y^{i} \quad \text { with } g_{1} \text { prime to } h .
$$

The polynomial

$$
\alpha^{-1}(p)=h(x) z_{1}+g(x, y)=h(x) z_{1}+g_{0}(x)+g_{1}(x) y+h_{\mathrm{red}}(x) \sum_{i \geq 2} \tilde{g}_{i}(x) y^{i}
$$

is an x-variable by a result due to Russell [Rus76, 2.2] (see also [Vn01, 8.1] and [EV99] for generalizations). Hence p is an x-variable.

Now suppose that $\iota \geq 1$ and that the result is true for any total intersection number less than or equal to $\iota-1$. Let $\left(x_{0}, y_{0}\right)$ be in $V\left(\tilde{f}_{1}, \ldots, \tilde{f}_{k}\right)$. Up to a translation one can assume that $x_{0}=0$. One has

$$
\tilde{f}_{1}(0, y) z_{1}+\cdots+\tilde{f}_{k}(0, y) z_{k}=d(y)\left(\check{f}_{1}(y) z_{1}+\cdots+\check{f}_{k}(y) z_{k}\right)
$$

where $d(y)$ is the greatest common divisor of $\tilde{f}_{1}(0, y), \ldots, \tilde{f}_{k}(0, y)$. Again by the Quillen-Suslin theorem ${ }^{5}$ there is a linear automorphism α_{0} of $\mathbb{C}[y]\left[z_{1}, \ldots, z_{k}\right]$ such that $\alpha_{0}\left(z_{1}\right)=\check{f}_{1}(y) z_{1}+\cdots+\check{f}_{k}(y) z_{k}$. Extending α_{0} to $\mathbb{C}[x, y]\left[z_{1}, \ldots, z_{k}\right]$ one has

$$
\alpha_{0}^{-1}\left(\tilde{f}_{1}(x, y) z_{1}+\cdots+\tilde{f}_{k}(x, y) z_{k}\right) \equiv d(y) z_{1} \bmod (x)
$$

that is to say

$$
\alpha_{0}^{-1}\left(\tilde{f}_{1}(x, y) z_{1}+\cdots+\tilde{f}_{k}(x, y) z_{k}\right)=\breve{f}_{1}(x, y) z_{1}+x \breve{f}_{2}(x, y) z_{2}+\cdots+x \breve{f}_{k}(x, y) z_{k}
$$

and hence

$$
\begin{equation*}
\alpha_{0}^{-1}(p)=h(x)\left(\breve{f}_{1}(x, y) z_{1}+x \breve{f}_{2}(x, y) z_{2}+\cdots+x \breve{f}_{k}(x, y) z_{k}\right)+g(x, y) \tag{10}
\end{equation*}
$$

[^4]Given by α_{0}, or rather its Jacobi matrix, we have the equality of the ideals

$$
\left(\tilde{f}_{1}, \ldots, \tilde{f}_{k}\right)=\left(\breve{f}_{1}, x \breve{f}_{2}, \ldots, x \breve{f}_{k}\right)
$$

hence

$$
\iota\left(\tilde{f}_{1}, \ldots, \tilde{f}_{k}\right)=\iota\left(\breve{f}_{1}, x \breve{f}_{2}, \ldots, x \breve{f}_{k}\right)
$$

Recall that we started with $\left(x_{0}, y_{0}\right)=\left(0, y_{0}\right) \in V\left(\tilde{f}_{1}, \ldots, \tilde{f}_{k}\right)=V\left(\breve{f}_{1}, x \breve{f}_{2}, \ldots, x \breve{f}_{k}\right)$. Hence $\breve{f}_{1}\left(0, y_{0}\right)=0$ and $\iota\left(\breve{f}_{1}, x\right) \geq 1$, whence we have the inequality

$$
\iota\left(\breve{f}_{1}, \breve{f}_{2}, \ldots, \breve{f}_{k}\right)<\iota\left(\breve{f}_{1}, x \breve{f}_{2}, \ldots, x \breve{f}_{k}\right)
$$

We can apply the induction hypothesis to the polynomial

$$
\breve{p}:=h(x)\left(\breve{f}_{1}(x, y) z_{1}+\breve{f}_{2}(x, y) z_{2}+\cdots+\breve{f}_{k}(x, y) z_{k}\right)+g(x, y)
$$

which is then an x-variable. By assumption,

$$
\breve{p}=g_{0}(0)+g_{1}(0) y+x\left[\dot{g}_{2}(x, y)+\dot{h}(x)\left(\breve{f}_{1}(x, y) z_{1}+\breve{f}_{2}(x, y) z_{2}+\cdots+\breve{f}_{k}(x, y) z_{k}\right)\right]
$$

with $g_{1}(0) \neq 0$. Let γ be an x-automorphism such that $\gamma(y)=\breve{p}$, let γ_{0} be the automorphism of $\mathbb{C}[y][\bar{z}]$ obtained by fixing $x=0$ in γ and let ρ be the affine automorphism of $\mathbb{C}[y]$ defined by $\rho(y)=g_{0}(0)+g_{1}(0) y=\gamma_{0}(y)$. Extending γ_{0} and ρ to $\mathbb{C}[x, y][\bar{z}]$, one has

$$
\gamma \gamma_{0}^{-1} \rho(y)=\gamma(y)=\breve{p}
$$

and, $\forall i=(1) 2,, \ldots, k$

$$
\gamma \gamma_{0}^{-1} \rho\left(z_{i}\right)=\gamma \gamma_{0}^{-1}\left(z_{i}\right)=z_{i}+x r_{i}(x, y, \bar{z})
$$

Let σ be the automorphism of $\mathbb{C}(x)[y][\bar{z}]$ given by

$$
\sigma\left(z_{i}\right)=x z_{i}, \forall i=2, \ldots, k
$$

Of course σ is not an automorphism of $\mathbb{C}[x][y, \bar{z}]$, but the composition $\sigma \gamma \gamma_{0}^{-1} \rho \sigma^{-1}$ will be. Indeed, let us compute

$$
\begin{aligned}
\sigma \gamma \gamma_{0}^{-1} \rho \sigma^{-1}(y) & =\sigma \gamma \gamma_{0}^{-1} \rho(y)=\sigma(\breve{p}) \\
& =\sigma\left(h\left(\breve{f}_{1} z_{1}+\breve{f}_{2} z_{2}+\cdots+\breve{f}_{k} z_{k}\right)+g\right) \\
& =h\left(\breve{f}_{1} z_{1}+x \breve{f}_{2} z_{2}+\cdots+x \breve{f}_{k} z_{k}\right)+g \\
& =\alpha_{0}^{-1}(p)
\end{aligned}
$$

$$
\sigma \gamma \gamma_{0}^{-1} \rho \sigma^{-1}\left(z_{1}\right)=\sigma \gamma \gamma_{0}^{-1}\left(z_{1}\right)
$$

and $\forall i=2, \ldots, k$

$$
\begin{aligned}
\sigma \gamma \gamma_{0}^{-1} \rho \sigma^{-1}\left(z_{i}\right) & =\sigma \gamma \gamma_{0}^{-1} \rho\left(\frac{z_{i}}{x}\right)=\frac{\sigma \gamma \gamma_{0}^{-1} \rho\left(z_{i}\right)}{x} \\
& =\frac{\sigma\left(z_{i}+x r_{i}\left(x, y, z_{1}, z_{2}, \ldots, z_{k}\right)\right)}{x} \\
& =\frac{x z_{i}+x r_{i}\left(x, y, z_{1}, x z_{2}, \ldots, x z_{k}\right)}{x} \\
& =z_{i}+r_{i}\left(x, y, z_{1}, x z_{2}, \ldots, x z_{k}\right)
\end{aligned}
$$

The images by $\sigma \gamma \gamma_{0}^{-1} \rho \sigma^{-1}$ of all the coordinates y, z_{1}, \ldots, z_{k} are in $\mathbb{C}[x][y, \bar{z}]$ and a similar computation would show the same for its inverse $\sigma \rho^{-1} \gamma_{0} \gamma^{-1} \sigma^{-1}$. Hence $\sigma \gamma \gamma_{0}^{-1} \rho \sigma^{-1}$ is an x-automorphism of $\mathbb{C}[x][y, \bar{z}]$. Finally, the polynomial

$$
\sigma \gamma \gamma_{0}^{-1} \rho \sigma^{-1}(y)=\alpha_{0}^{-1}(p)
$$

is an x-variable and so is p.
Acknowledgments The author thanks S. Kaliman and M. Zaidenberg whose techniques and ideas are essential to this article. The author is also grateful to P. Russell for useful discussions during this work.

References

[AM75] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane. J. Reine Angew. Math. 276(1975), 148-166.
[BCW77] H. Bass, E. H. Connell, and D. L. Wright, Locally polynomial algebras are symmetric algebras. Invent. Math. 38(1976/77), 279-299.
[Dol72] A. Dold, Lectures on Algebraic Topology. Die Grundlehren der mathematischen Wissenschaften 200, Springer-Verlag, New York, 1972.
[Dur87] A. H. Durfee, Algebraic varieties which are a disjoint union of subvarieties. In: Geometry and Topology, Lecture Notes in Pure and Appl. Math. 105, Dekker, New York, 1987, pp. 99-102.
[EV99] E. Edo and S. Vénéreau, Length 2 variables of $A[x, y]$ and transfer. Ann. Polin. Math. 76(2001), 67-76.
[Fuj82] T. Fujita, On the topology of noncomplete algebraic surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29(1982), 503-566.
[Kal94] Sh. Kaliman, Exotic analytic structures and Eisenman intrinsic measures. Israel J. Math. 88(1994), 411-423.
[KVZ01] Sh. Kaliman, S. Vénéreau, and M. Zaidenberg, Extensions birationnelles simples de l'anneau de polynmes \mathbb{C}^{3}. C. R. Acad. Sci. Paris Sér. I Math. 333(2001), 319-322.
[KVZ04] , Simple birational extensions of the polynomial ring $\mathbb{C}^{[3]}$. Trans. Amer. Math. Soc. 356(2004), 509-555.
[KZ99] Sh. Kaliman and M. Zaidenberg, Affine modifications and affine hypersurfaces with a very transitive automorphism group. Transform. Groups 4(1999), 53-95.
[Mas80] W. S. Massey, Singular Homology Theory. Graduate Texts in Mathematics 70, Springer-Verlag, New York, 1980.
[Rus76] P. Russell, Simple birational extensions of two dimensional affine rational domains. Compositio Math. 33(1976), 197-208.
[Sat76] A. Sathaye, On linear planes. Proc. Amer. Math. Soc. 56(1976), 1-7.
[Ses58] C. S. Seshadri, Triviality of vector bundles over the affine space k^{2}. Proc. Natl. Acad. Sci. U.S.A. 44(1958), 456-458.
[Suz74] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace \mathbb{C}^{2}. J. Math. Soc. Japan 26(1974), 241-257.
[Vn01] S. Vénéreau, Automorphismes et variables de l'anneau de polynômes $A\left[y_{1}, \ldots, y_{n}\right]$. Ph.D. thesis, Université Grenoble I, Institut Fourier, 2001.
[Zaĭ85] M. G. Zaĭdenberg, Rational actions of the group \mathbb{C}^{*} on \mathbb{C}^{2}, their quasi-invariants and algebraic curves in \mathbb{C}^{2} with Euler characteristic 1. Dokl. Akad. Nauk SSSR 280(1985), 277-280, (Russian), Soviet Math. Dokl. 31(1985), 57-60.
[ZL83] M. G. Zaĭdenberg and V. Ya. Lin, An irreducible, simply connected algebraic curve in \mathbb{C}^{2} is equivalent to a quasihomogeneous curve. Dokl. Akad. Nauk SSSR 271(1983), 1048-1052, (Russian), Soviet Math. Dokl. 28(1983), 200-204.

Mathematisches Institut
Universität Basel
Rheinsprung 21
4051 Basel
switzerland
e-mail: stephane.venereau@unibas.ch

[^0]: Received by the editors October 29, 2003; revised January 20, 2004. Supported by the Centre de Recherches Mathématiques and NSERC Canada AMS subject classification: 14R10, 14R25.
 Keywords: variables, Abhyankar-Sathaye Embedding Problem.
 (C)Canadian Mathematical Society 2005.

[^1]: ${ }^{1}$ This term comes from the picture obtained with $\mathbb{C}_{x, y}^{2} \times \mathbb{C}^{k-1}$ visualized as a horizontal plane $\mathbb{R}_{x, y}^{2} \times$ vertical line \mathbb{R}_{z}.

[^2]: ${ }^{2}$ Indeed, $\mathbb{R}_{\bar{x}}^{d} \supset V\left(p_{1}(\bar{x}), \ldots, p_{m}(\bar{x})\right) \backslash V\left(q_{1}(\bar{x}), \ldots, q_{n}(\bar{x})\right) \simeq V\left(p_{1}(\bar{x}), \ldots, p_{m}(\bar{x}), 1-z \sum q_{i}(\bar{x})^{2}\right) \subset$ $\mathbb{R}_{\bar{x}, z}^{d+1}$.

[^3]: ${ }^{3}$ Note that this result includes the classical Abhyankar-Moh-Suzuki theorem [AM75, Suz74].

[^4]: ${ }^{4}$ Actually here we need a weaker version of this theorem which was proved by Seshadri [Ses58].
 ${ }^{5}$ Here we only need the "easy" version over a PID ($\left.\mathbb{C}[y]\right)$: Projective modules of finite type over a PID are free, which is another formulation of the result we use here.

