H. Fujimoto Nagoya Math. J. Vol. 71 (1978), 25-41

REMARKS TO THE UNIQUENESS PROBLEM OF MEROMORPHIC MAPS INTO $P^{N}(C)$, II

HIROTAKA FUJIMOTO

§1. Introduction

In [7], R. Nevanlinna gave the following uniqueness theorem of meromorphic functions as an improvement of a result of G. Pólya ([8]).

THEOREM A. Let f, g be non-constant meromorphic functions on C. If there are five mutually distinct values a_1, \dots, a_5 such that $f^{-1}(a_i) = g^{-1}(a_i)$ $(1 \le i \le 5)$, then $f \equiv g$.

The author attempted to generalize this to the case of meromorphic maps of C^n into $P^N(C)$ and obtained some results in the previous papers [4], [5] and [6]. One of them is the following;

THEOREM B. Let f and g be meromorphic maps of \mathbb{C}^n into $\mathbb{P}^N(\mathbb{C})$ one of which is algebraically non-degenerate. If there are 2N + 3hyperplanes H_i $(1 \leq i \leq 2N + 3)$ in general position such that $\nu(f, H_i) =$ $\nu(g, H_i)$ for pull-backs $\nu(f, H_i)$, $\nu(g, H_i)$ of the divisors (H_i) by f and g respectively, then $f \equiv g$.

Relating to this, the following theorem will be proved.

THEOREM I. Let f, g be algebraically non-degenerate meromorphic maps of \mathbb{C}^n into $\mathbb{P}^N(\mathbb{C})$. If there are hyperplanes H_i in general position such that

$$\nu(f,H_i) = \nu(g,H_i) = 0 ,$$

namely, $f(C^n) \cap H_i = g(C^n) \cap H_i = \phi$ for $i = 1, 2, \dots, N+1$ and

 $\min(\nu(f, H_j), N) = \min(\nu(g, H_j), N)$

for $j = N + 2, \dots, 2N + 3$, then $f \equiv g$.

Received May 19, 1977.

This will be given as a consequence of the following generalization of a classical result of R. Nevanlinna ([7], Satz 7, p. 388).

THEOREM II. Let f, g be algebraically non-degenerate meromorphic maps of C^n into $P^N(C)$. If there are N+2 hyperplanes in general position such that

$$\nu(f, H_i) = \nu(g, H_i) = 0$$

for $i = 1, 2, \dots, N + 1$ and

 $\mathbf{26}$

 $\min(\nu(f, H_{N+2}), N) = \min(\nu(g, H_{N+2}), N)$,

then f and g are related as $L \cdot g = f$ with a projective linear transformation L of $P^{N}(C)$ which permutes hyperplanes H_{1}, \dots, H_{N+1} and leaves H_{N+2} fixed.

In §2, we shall give a combinatorial lemma which plays an essential role in this paper. In §3, we shall recall some classical results in the value distribution theory for holomorphic maps of C into $P^{N}(C)$ and obtain a new result from them. Theorems I and II are completely proved in §4.

§2. Main Lemma

For later use, we shall give in this section a graph-theoretic combinatorial lemma. We consider a set $A = \{a_{ij}; 1 \leq i \leq n, 1 \leq j \leq n\}$ consisting of n^2 elements abstractly. Let non-empty subsets C of A and Γ of $C \times C$ be given in some manner. For any a_{ij}, a_{ki} in C, we write

 $(i, j) \leftrightarrow (k, \ell)$, or $(i, j) \nleftrightarrow (k, \ell)$

if $(a_{ij}, a_{k\ell}) \in \Gamma$, or $(a_{ij}, a_{k\ell}) \notin \Gamma$ respectively. We assume that

(A₀) for any $a_{ij}, a_{k\ell}$ in C $(i, j) \nleftrightarrow (i, j)$ and $(i, j) \leftrightarrow (k, \ell)$ whenever $(k, \ell) \leftrightarrow (i, j)$,

(A₁) if $a_{i_1j_1}$, $a_{i_1j_2}$ and $a_{i_2j_1}$ are in A - C $(1 \le i_1, j_1, i_2, j_2 \le n)$, then $a_{i_2j_2}$ are also in A - C,

(A₂) for any $a_{ij} \in C$ there exists some $a_{k\ell} \in C$ such that $(i, j) \leftrightarrow (k, \ell)$,

(A₃) if $a_{i_{\sigma}j_{\sigma}}, a_{k_{\sigma}\ell_{\sigma}} \in C$ (1 $\leq \sigma \leq s$) satisfy the conditions

 $(i_1, j_1) \leftrightarrow (k_1, \ell_1), (i_2, j_2) \leftrightarrow (k_2, \ell_2), \cdots, (i_s, j_s) \leftrightarrow (k_s, \ell_s)$

then $\{i_1, i_2, \dots, i_s\} = \{k_1, k_2, \dots, k_s\}$ occurs when and only when $\{j_1, j_2, \dots, j_s\}$

 $= \{\ell_1, \ell_2, \dots, \ell_s\}$, where some indices may appear repeatedly in $\{i_1, \dots, i_s\}$ etc. and the equalities mean in this case that they appear the same times in both sides.

In this situation, we give

MAIN LEMMA. By changing indices i and j of a_{ij} 's individually, it holds that

(i) there is a partition of indices

 $\{1, 2, \dots, n\} = \{1, 2, \dots, m_1\} \cup \{m_1 + 1, \dots, m_2\} \cup \dots \cup \{m_{t-1} + 1, \dots, n\}$

such that $a_{ij} \notin C$ if and only if *i* and *j* are in the same class $\{m_{\tau-1} + 1, \dots, m_{\tau}\}$ for some $\tau(1 \leq \tau \leq t)$, where $m_0 := 0$, $m_t := n$ and $t \geq 2$,

(ii) for any $a_{ij}, a_{k\ell}$ in C, $(i, j) \leftrightarrow (k, \ell)$ if and only if $i = \ell$ and j = k.

For the proof, we need some preparations.

LEMMA 2.1. For any i $(1 \leq i \leq n)$, there exist some j_1 and j_2 such that a_{ij_1} and a_{j_2i} are in A - C.

Proof. Assume that $a_{ij} \in C$ for any j $(1 \leq j \leq n)$. By the assumption (A_2) , we can take some k_j , ℓ_j such that $(i, j) \leftrightarrow (k_j, \ell_j)$ for each j. Here, $j \neq \ell_j$. In fact, if not, $i \neq k_j$, which contradicts the assumption (A_3) . And, $i \neq k_j$ by the same reason. Since $\{1, 2, \dots, i - 1, i + 1, \dots, n\}$ cannot contain n distinct elements, we have indices j', j'' such that $k_{j'} = k_{j''}$ and $j' \neq j''$. Then, for the relations

$$(i, j') \leftrightarrow (k_{j'}, \ell_{j'}), (k_{j''}, \ell_{j''}) \leftrightarrow (i, j'')$$

 $\{i, k_{j''}\} = \{k_{j'}, i\}$ but $\{j', \ell_{j''}\} \neq \{\ell_{j'}, j''\}$. This contradicts the assumption (A₃). Thus, there exists some j_1 such that $a_{ij_1} \notin C$. The existence of j_2 with $a_{j_2i} \notin C$ is shown similarly.

We introduce here a provisional notation. For integers k, ℓ with $k \leq \ell$, we denote by $[k, \ell]$ the set of all integers i with $k \leq i \leq \ell$.

By a suitable change of indices, we may assume $a_{i1} \notin C$ for any $i \in [1, m]$ and $a_{j1} \in C$ for any $j \in [m + 1, n]$, where $1 \leq m \leq n - 1$ by Lemma 2.1. Then, as is easily seen by the assumption (A₁), if $a_{i_0k_0} \notin C$ for some $k_0 \in [2, n]$ and $i_0 \in [1, m]$, then $a_{ik_0} \notin C$ for any $i \in [1, m]$ and $a_{jk_0} \in C$ for any $j \in [m + 1, n]$. By this reason, choosing indices suitably, we may assume that $a_{ij} \notin C$ if $i \in [1, m]$, $j \in [1, m']$ and $a_{ij} \in C$ if $i \in [1, m]$.

[m + 1, n], $j \in [1, m']$, or $i \in [1, m]$, $j \in [m' + 1, n]$, where $1 \leq m' \leq n - 1$. Moreover, it may be assumed that

(2.2) there are indices
$$m_1, \dots, m_{t-1}, m'_1, \dots, m'_{t-1}$$
 with
 $m = : m_1 < m_2 < \dots < m_{t-1} < m_t := n$

 $m' = : m'_1 < m'_2 < \cdots < m'_{t-1} < m'_t := n$

such that $a_{ij} \notin C$ if and only if $i \in [m_{r-1} + 1, m_r]$ and $j \in [m'_{r-1} + 1, m'_r]$ for some $\tau \in [1, t]$, where we put $m_0 = m'_0 = 0$.

Later, $m_{\tau} = m'_{\tau}$ $(1 \leq \tau \leq t)$ will be shown. We assume $m' \leq m$ for a while by exchanging the situations of indices *i* and *j* of a_{ij} if necessary.

For each j in [m' + 1, n], we define an index I_j as follows.

(2.3) If $(1, j) \nleftrightarrow (i, \ell)$ for any $i \in [1, m]$ and $\ell \in [m' + 1, n]$, we put $I_j = 1$. Otherwise, choose indices i_1, i_2, \dots, i_a in [1, m] and $\ell_1, \ell_2, \dots, \ell_a$ in [m' + 1, n] such that

$$(1, j) \leftrightarrow (i_1, \ell_1), (i_1, j) \leftrightarrow (i_2, \ell_2), \cdots, (i_{a-1}, j) \leftrightarrow (i_a, \ell_a)$$

and $(i_a, j) \nleftrightarrow (i, \ell)$ for any $i \in [1, m]$, $\ell \in [m' + 1, n]$. And, put $I_j := i_a$.

These choices are certainly possible. Indeed, if we cannot choose the above i_a , then there are infinitely many $i_{\beta} \in [1, m]$, $\ell_{\beta} \in [m' + 1, n]$ $(\beta = 1, 2, \cdots)$ such that $(i_{\beta}, j) \leftrightarrow (i_{\beta+1}, \ell_{\beta+1})$. We have necessarily $i_{\beta} = i_{\beta'}$, for some β, β' with $\beta + 2 \leq \beta'$ and relations

$$(i_{\beta}, j) \leftrightarrow (i_{\beta+1}, \ell_{\beta+1}), (i_{\beta+1}, j) \leftrightarrow (i_{\beta+2}, \ell_{\beta+2}), \cdots, (i_{\beta'-1}, j) \leftrightarrow (i_{\beta'}, \ell_{\beta'})$$

This contradicts the assumption (A_3) , because

$$\{i_{\scriptscriptstyleeta},\,\cdots,\,i_{\scriptscriptstyleeta'-1}\}=\{i_{\scriptscriptstyleeta+1},\,\cdots,\,i_{\scriptscriptstyleeta'}\}$$

but

$$\{j, \ldots, j\} \neq \{\ell_{\beta+1}, \ldots, \ell_{\beta'}\}.$$

LEMMA 2.4. If there are indices $k_0 \in [m + 1, n]$, ℓ_0 , ℓ'_0 in [1, n] such that

$$(*)_1 \qquad (I_j, j) \leftrightarrow (k_0, \ell_0), (k_0, \ell'_0) \leftrightarrow (I_{j'}, j'),$$

then j = j'.

Proof. As in (2.3), we can take indices $i_1, \dots, i_{a-1}, i'_1, \dots, i'_{a'-1}$ in [1, m] and $\ell_1, \dots, \ell_a, \ell'_1, \dots, \ell'_{a'}$ in [m' + 1, n] such that

28

$$(*)_{2} \qquad (1, j) \leftrightarrow (i_{1}, \ell_{1}), (i_{1}, j) \leftrightarrow (i_{2}, \ell_{2}), \cdots, (i_{a-1}, j) \leftrightarrow (I_{j}, \ell_{a}) \\ (i'_{1}, \ell'_{1}) \leftrightarrow (1, j'), (i'_{2}, \ell'_{2}) \leftrightarrow (i'_{1}, j'), \cdots, (I_{j'}, \ell'_{a'}) \leftrightarrow (i'_{a'-1}, j') .$$

For the relations $(*)_1$ and $(*)_2$, we see

$$\{I_j, k_0, 1, i_1, \cdots, i_{a-1}, i'_1, \cdots, i'_{a'-1}, I_{j'}\}$$

= $\{k_0, I_{j'}, i_1, \cdots, i_{a-1}, I_j, 1, i'_1, \cdots, i'_{a'-1}\}$

So, by the assumption (A_3)

$$\{j, \ell'_0, j, \cdots, j, \ell'_1, \cdots, \ell'_{a'}\} = \{\ell_0, j', \ell_1, \cdots, \ell_a, j', \cdots, j'\}.$$

This implies j = j' because $j \neq \ell_0, \ell_1, \dots, \ell_a, j'$.

LEMMA 2.5. For any $k \in [m + 1, n]$ there is one and only one $j \in [m' + 1, n]$ such that $(I_j, j) \leftrightarrow (k, \ell)$ for some $\ell \in [1, n]$.

Proof. The uniqueness of the desired index is a result of Lemma 2.4. On the other hand, by the assumption (A_2) , there are indices $k_{m'+1}, \dots, k_n, \ell_{m'+1}, \dots, \ell_n$ such that

$$(I_{m'+1}, m'+1) \leftrightarrow (k_{m'+1}, \ell_{m'+1}), \cdots, (I_n, n) \leftrightarrow (k_n, \ell_n)$$

where $m + 1 \leq k_{m'+1}, \dots, k_n \leq n$ by the property (2.3) of I_j 's. Then, k_{m+1}, \dots, k_n are distinct with each other because of Lemma 2.4. Therefore,

$$n-m' \leq n-m$$

and so $m \leq m'$. Since $m' \leq m$ is assumed, we have m = m' and $\{k_{m+1}, \dots, k_n\} = \{m + 1, \dots, n\}$. The index j with $k_j = k$ is the desired one.

LEMMA 2.6. $m_{\tau} = m'_{\tau}$ $(1 \leq \tau \leq t)$ for the numbers defined as in (2.2).

Proof. As in the proof of Lemma 2.5, we have $m (= m_1) = m' (= m'_1)$. The same arguments are available for the other τ . So, we obtain Lemma 2.6.

LEMMA 2.7. For any $i \in [m + 1, n]$ and $j \in [1, m]$ there exist some $k \in [1, m]$ and $\ell \in [m + 1, n]$ such that $(i, j) \leftrightarrow (k, \ell)$.

Proof. Assume the contrary. According to the assumtion (A_2) , we choose indices $k_0, \ell_0 \in [1, n]$ such that

$$(\ddagger)_1$$
 $(i,j) \leftrightarrow (k_0,\ell_0)$.

By the assumption, $m + 1 \leq k_0 \leq n$. On the other hand, there are indices j_0, j'_0 in [m + 1, n] and ℓ'_0, ℓ''_0 in [1, n] such that

$$(\ddagger)_2 \qquad (I_{j_0}, j_0) \leftrightarrow (i, \ell'_0), (k_0, \ell''_0) \leftrightarrow (I_{j_0}, j'_0)$$

because of Lemma 2.5. Moreover, by the property (2.3) of I_j 's, we have

$$(\ \ \ \ \ \)_{3} \qquad (1, j_{0}) \leftrightarrow (i_{1}, \ell_{1}), (i_{1}, j_{0}) \leftrightarrow (i_{2}, \ell_{2}), \cdots, (i_{a-1}, j_{0}) \leftrightarrow (I_{j_{0}}, \ell_{a}) \\ (i_{1}', \ell_{1}') \leftrightarrow (1, j_{0}'), (i_{2}', \ell_{2}') \leftrightarrow (i_{1}', j_{0}'), \cdots, (I_{j_{0}'}, \ell_{a'}') \leftrightarrow (i_{a'-1}, j_{0}')$$

for some $i_1, \dots, i_{a-1}, i'_1, \dots, i'_{a'-1} \in [1, m]$ and $\ell_1, \dots, \ell_a, \ell'_1, \dots, \ell'_{a'}$ in [m+1, n]. Observe the indices of the relations $(\sharp)_1, (\sharp)_2$ and $(\sharp)_3$. It is easily seen that they contradict the assumption (A_3) . Thus, we have Lemma 2.7.

LEMMA 2.8. By a suitable change of indices i's of a_{ij} among $1, 2, \dots, m$, there is some index ℓ_{ij} for each $i \in [m + 1, n]$ and $j \in [1, m]$ such that $(i, j) \leftrightarrow (j, \ell_{ij})$, where $m + 1 \leq \ell_{ij} \leq n$.

Proof. We take k_1, \dots, k_m in [1, m] and ℓ_1, \dots, ℓ_m in [m+1, n] such that

$$(m + 1, 1) \leftrightarrow (k_1, \ell_1), \cdots, (m + 1, m) \leftrightarrow (k_m, \ell_m)$$

by the use of Lemma 2.7. As is easily seen by the assumption (A_0) and (A_3) , we have $\{k_1, \dots, k_m\} = \{1, \dots, m\}$. By a change of indices, we may assume that $k_1 = 1, \dots, k_m = m$. For any $i \in [m + 1, n]$, we choose k'_1, \dots, k'_m in [1, m] and $\ell'_1, \dots \ell'_m$ in [m + 1, n] so that

$$(i, 1) \leftrightarrow (k'_1, \ell'_1), \cdots, (i, m) \leftrightarrow (k'_m, \ell'_m)$$
.

By the same reason as the above, $\{k'_1, \dots, k'_m\} = \{1, 2, \dots, m\}$. Assume that $k'_j \neq j$ for some j and take the index j' with $k'_{j'} = j$. We observe the relations

$$(i,j) \leftrightarrow (k'_i, \ell'_i), (k'_i, \ell_{k'}) \leftrightarrow (m+1, k'_i), (m+1, j) \leftrightarrow (j, \ell_j), (j, \ell'_{j'}) \leftrightarrow (i, j') .$$

As is easily seen by the facts $j \neq \ell'_j, k'_j, \ell_j, j'$, this contradicts the assumption (A₃). Therefore, $k'_j = j$ for any j and we have Lemma 2.8.

LEMMA 2.9. After a suitable change of indices j's of a_{ij} among $m + 1, \dots, n$, it holds that $(i, j) \leftrightarrow (j, i)$ for any $j \in [m + 1, n]$ and $j \in [1, m]$.

Proof. As a consequence of Lemma 2.8, we may assume that

$$(m + 1, 1) \leftrightarrow (1, \ell_{m+1}), \cdots, (n, 1) \leftrightarrow (1, \ell_n)$$

where $\{\ell_{m+1}, \dots, \ell_n\} = \{m+1, \dots, n\}$ by the assumption (A₃). Changing indices if necessary, we have $(\ell, 1) \leftrightarrow (1, \ell)$ for any $\ell \in [m+1, n]$. Assume that for some $i_0 \in [1, m]$ and $j_0 \in [m+1, n]$ $(i_0, j_0) \nleftrightarrow (j_0, i_0)$. Then, by Lemma 2.8, there is some $\ell_0 \in [m+1, n]$ $(j_0, i_0) \leftrightarrow (i_0, \ell_0)$ such that $\ell_0 \neq j_0$. If we choose k_{m+1}, \dots, k_n in [m+1, n] such that $(j, i_0) \leftrightarrow (i_0, k_j)$ for each $j \in [m+1, n]$, it is easily seen that $\{k_{m+1}, \dots, k_n\} = \{m+1, \dots, n\}$. Therefore, there are an index k_0 such that $(k_0, i_0) \leftrightarrow (i_0, j_0)$, where $k_0 \neq j_0$ by the assumption. We observe the relations

$$(i_0, \ell_0) \leftrightarrow (j_0, i_0), (k_0, i_0) \leftrightarrow (i_0, j_0), (1, k_0) \leftrightarrow (k_0, 1), (j_0, 1) \leftrightarrow (1, j_0)$$
.

Obviously, these indices do not satisfy the assumption (A_3) . Thus, we get Lemma 2.9.

Proof of Main Lemma. By Lemma 2.9, we may assume that $(i, j) \Leftrightarrow (j, i)$ for any $i \in [m + 1, n]$ and $j \in [1, m]$. The conclusion (i) of Main Lemma is a direct result of Lemma 2.6 because Lemma 2.6 is available for the above choice of indices. We shall prove the conclusion (ii). There are indices k, ℓ with $(i, j) \leftrightarrow (k, \ell)$ for any i, j with $a_{ij} \in C$ by the assumption (A_2) . So, we have only to show that k = j and $\ell = i$ whenever $(i, j) \leftrightarrow (k, \ell)$. By virtue of the assumption (A_0) , it suffices to study the following three cases.

1°) $m+1 \leq i \leq n, \ 1 \leq j \leq m, \ 1 \leq k \leq m \text{ and } m+1 \leq \ell \leq n.$

2°) $m+1 \leq i \leq n, \ 1 \leq j \leq m, \ m+1 \leq k \leq n \text{ and } 1 \leq \ell \leq n.$

3°) $m+1 \leq i, j, k, \ell \leq n$.

Observe the relations

$$(i, j) \leftrightarrow (k, \ell), (j, i) \leftrightarrow (i, j), (k, \ell) \leftrightarrow (\ell, k), (\ell, j) \leftrightarrow (j, \ell)$$

for the case 1°) and

$$(i, j) \leftrightarrow (k, \ell), (1, i) \leftrightarrow (i, 1), (k, 1) \leftrightarrow (1, k)$$

for the cases 2°) and 3°) respectively. In any case, indices in the relations do not satisfy the assumption (A₃) except the case $(k, \ell) = (j, i)$. Thus, Main Lemma is completely proved.

§3. A result from the value distribution theory

We shall introduce some definitions and notations. For a domain

D in the complex plane *C*, a divisor $\nu(z)$ on *D* is defined as an integervalued function on *D* such that $\{z \in D; \nu(z) \neq 0\}$ has no accumulation point in *D*. Let us take a divisor ν on $\{z \in C; |z| \leq R\}$ $(0 \leq R \leq +\infty)$ with $\nu(0) = 0$. We put

$$\begin{split} n(r,\nu) &:= \sum_{|z| \leq r} \nu(z) \\ N(r,\nu) &:= \int_0^r \frac{n(t,\nu)}{t} dt = \sum_{|z| \leq r} \nu(z) \log \frac{r}{|z|} \end{split}$$

where $0 \leq r \leq R$.

Let f be a non-constant meromorphic function on C. We define $\nu_f(a) = n, = 0$ and = -m if f(z) has a zero of order n at z = a, if $f(a) \neq 0$ and if f(z) has a pole of order m at z = a, respectively. And, put $N(r, f) = N(r, \nu_f)$. Then, the well-known Jensen's formula is given as follows.

(3.1) If $f(0) \neq 0$, ∞ , then

$$\frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\theta})| \, d\theta = N(r, f) + \log |f(0)| \quad (r > 0) \; .$$

Now, let us take a holomorphic map f of C into $P^N(C)$. For an arbitrarily fixed homogeneous coordinates $w_1: \dots: w_{N+1}$, we can take holomorphic functions f_1, \dots, f_{N+1} such that $f = f_1: \dots: f_{N+1}$ and f_i $(1 \leq i \leq N+1)$ have no common zeros. In the following, we shall call such a representation of f a reduced representation. For a reduced representation $f = f_1: f_2: \dots: f_{N+1}$, we put

$$u(z) := \max_{1 \le i \le N+1} \log |f_i(z)|$$

and, following H. Cartan [2], define the characteristic function of f as

$$T(r, f) = \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) d\theta - u(0) ,$$

which is determined independently of any choice of a reduced representation of f.

Assume that f is non-degenerate, i.e., f(C) is not contained in any hyperplane of $P^{N}(C)$. For a hyperplane

$$H: a^{1}w_{1} + a^{2}w_{2} + \cdots + a^{N+1}w_{N+1} = 0$$

and a reduced representation $f = f_1 : f_2 : \cdots : f_{N+1}$, we consider a holomorphic function

$$F := a^1 f_1 + a^2 f_2 + \cdots + a^{N+1} f_{N+1}$$

and define $\nu(f, H) := \nu_F$.

DEFINITION 3.2. For a positive integer p, we define

$$N_{p}(r, f, H) := N(r, \min(p, \nu(f, H)))$$
$$N(r, f, H) := N(r, \nu(f, H)) .$$

We can conclude from (3.1)

(3.3)
$$N_p(r, f, H) \leq N(r, f, H) \leq T(r, f) + K$$

where K is a constant not depending on r.

We recall here the second fundamental theorem in the value distribution theory given by H. Cartan in [2], which is essentially used in the followings.

THEOREM 3.4. Let f be a non-degenerate holomorphic map of C into $P^{N}(C)$ and H_{i} $(1 \leq i \leq q)$ be hyperplanes in general position with $f(0) \notin \bigcup_{i} H_{i}$. Then,

$$(q-N-1)T(r,f) \leq \sum\limits_{1 \leq i \leq q} N_N(r,f,H_i) + S(r)$$
 ,

where

$$S(r) = O\left(\log r\right) + O\left(\log T(r, f)\right)$$

and "||" means that this holds outside an open set E in **R** such that $\int_{E} \frac{dt}{t} < +\infty.$

Remark. In Theorem 3.4, if f is rational, i.e., represented as $f = f_1 : f_2 : \cdots : f_{N+1}$ with polynomials f_i , then S(r) = O(1).

Now, let us consider two non-degenerate holomorphic maps f, g of C into $P^{N}(C)$ and N+2 hyperplanes H_{1}, \dots, H_{N+2} in general position. We assume that

(3.5)
$$\nu(f, H_i) = \nu(g, H_i) = 0$$

i.e., $f(C) \cap H_i = g(C) \cap H_i = \phi$ for $i = 1, 2, \dots, N+1$ and

(3.6)
$$\min(\nu(f, H_{N+2}), N) = \min(\nu(g, H_{N+2}), N) .$$

We choose homogeneous coordinates $w_1: w_2: \cdots : w_{N+1}$ on $P^N(C)$ such that H_i are represented as

$$egin{array}{lll} H_i\colon w_i = 0 & 1 \leq i \leq N+1 \;, \ H_{N+2}\colon w_1 + w_2 + \cdots + w_{N+1} = 0 \;. \end{array}$$

In this situation, we can prove the following

PROPOSITION 3.7. Take reduced representations $f = f_1: f_2: \cdots: f_{N+1}$ and $g = g_1: g_2: \cdots: g_{N+1}$. Then there exists some constants $c_1, c_2, \cdots, c_{N+1}, d_1, d_2, \cdots, d_{N+1}$ such that $c_i - d_j \neq 0$ for some i, j and

(3.8)
$$\sum_{1 \le i, j \le N+1} (c_i - d_j) f_i g_j = 0 \; .$$

To prove this, we need some preparations. For brevity, we denote H_{N+2} by H and define

$$N'(r, f) := N(r, \nu(f, H) - \min(\nu(f, H), \nu(g, H)))$$
$$N'(r, g) := N(r, \nu(g, H) - \min(\nu(f, H), \nu(g, H)))$$

for each positive number r.

LEMMA 3.9. It holds that

 $N'(r, f) + N'(r, g) \leq N(r, f, H) - N_N(r, f, H) + N(r, g, H) - N_N(r, g, H) .$

Proof. According to the assumption (3.6), we see easily

$$\begin{aligned} (\nu(f, H) - \min(\nu(f, H), \nu(g, H))) + (\nu(g, H) - \min(\nu(f, H), \nu(g, H))) \\ &= |\nu(f, H) - \nu(g, H)| \\ &\leq |\nu(f, H) - \min(\nu(f, H), N)| + |\nu(g, H) - \min(\nu(f, H), N)| \\ &= (\nu(f, H) - \min(\nu(f, H), N)) + (\nu(g, H) - \min(\nu(g, H), N)) . \end{aligned}$$

By linearlity and monotonicity of integrals, we can conclude Lemma 3.9.

LEMMA 3.10. It holds that

 $N'(r, f) + N'(r, g) = O(\log r) + O(\log (T(r, f) + T(r, g))) \parallel .$

Here, if f and g are both rational, the right hand side is replaced by O(1).

Proof. Since $N_N(r, f, H_i) = N_N(r, g, H_i) = 0 (1 \le i \le N + 1)$ by the assumption (3.5), Theorem 3.4 implies that

$$T(r, f) - N_N(r, f, H) = O(\log r) + O(\log T(r, f)) \parallel,$$

$$T(r, g) - N_N(r, g, H) = O(\log r) + O(\log T(r, g)) \parallel.$$

Therefore, by (3.3), we see

$$egin{aligned} & N(r,f,H) = O(\log r) + O(\log T(r,f)) & \parallel, \ & N(r,g,H) - N_N(r,f,H) = O(\log r) + O(\log T(r,g)) & \parallel. \end{aligned}$$

By virtue of Lemma 3.9, we can conclude

$$\begin{aligned} N'(r, f) + N'(r, g) \\ &\leq O(\log r) + O(\log T(t, f)T(r, g)) & \| \\ &\leq O(\log r) + O(\log (T(r, f) + T(r, g))) & \| . \end{aligned}$$

The latter half of Lemma 3.10 is due to Remark to Theorem 3.4.

Proof of Proposition 3.7. We take a holomorphic function h on C such that $\nu_h = \min(\nu(f, H), \nu(g, H))$. And, we consider a holomorphic map Φ of C into $P^{2N}(C)$ defined as

(3.11)
$$\Phi = f_1 \tilde{g} : f_2 \tilde{g} : \cdots : f_{N+1} \tilde{g} : -g_1 \tilde{f} : \cdots : -g_N \tilde{f},$$

for some fixed homogeneous coordinates on $P^{2N}(C)$, where $\tilde{f} := f_1 + \cdots + f_{N+1}/h$ and $\tilde{g} := g_1 + \cdots + g_{N+1}/h$. Since f_i and g_i $(1 \le i \le N+1)$ have no zeros and \tilde{f} and \tilde{g} have no common zeros, (3.11) is a reduced representation of Φ . For the proof of Proposition 3.7, we have only to show that Φ is degenerate. In fact, in this case, there exist some constants $c_1, \cdots, c_{N+1}, d_1, d_2, \cdots, d_N$, at least one of which is not zero, such that

$$\sum_{1 \le i \le N+1} c_i f_i (g_1 + \cdots + g_{N+1}) - \sum_{1 \le j \le N} d_j g_j (f_1 + \cdots + f_{N+1}) = 0.$$

Here, at least one of c_i 's is not zero, because g is non-degenerate. Putting $d_{N+1} = 0$, we have the desired relation (3.8).

Now, let us assume that Φ is non-degenerate. We denote by u_1 : $u_2: \dots: u_{2N+1}$ the above fixed homogeneous coordinates on $P^{2N}(C)$ and consider 2N + 2 hyperplanes

$$egin{array}{ll} \dot{H}_i\!:\!u_i=0 & 1 \leq i \leq 2N+1 \ , \ & ilde{H}_{2N+2}\!:\!u_1+u_2+\cdots+u_{2N+1}=0 \end{array}$$

in $P^{2N}(C)$, which are located in general position. Then,

$$\begin{split} \nu(\varPhi, H_i) &= \nu_{\bar{g}} = \nu(g, H) - \min\left(\nu(f, H), \nu(g, H)\right) & \text{ if } 1 \leq i \leq N+1 , \\ &= \nu_{\bar{f}} = \nu(f, H) - \min\left(\nu(f, H), \nu(g, H)\right) & \text{ if } N+2 \leq i \leq 2N+1 . \end{split}$$

Moreover, since $\sum_{1 \leq i \leq N+1} (\tilde{g}f_i - \tilde{f}g_i) = 0$,

$$u(\Phi, H_{2N+2}) = \nu_{\tilde{f}g_{N+1}} = \nu_{\tilde{f}}.$$

We apply here Theorem 3.4 to a holomorphic map Φ of C into $P^{2N}(C)$ and hyperplanes H_1, \dots, H_{2N+2} . We have

(3.12)
$$T(r, \Phi) \leq \sum_{1 \leq j \leq 2N+2} N_{2N}(r, \Phi, \tilde{H}_j) + O(\log rT(r, \Phi)) \qquad || \\ \leq (N+1)(N'(r, f) + N'(r, g)) + O(\log rT(r, \Phi)) \quad || .$$

Put

$$u_{\varphi} := \max \left(\log |f_1 \tilde{g}|, \dots, \log |f_{N+1} \tilde{g}|, \log |g_1 \tilde{f}|, \dots, \log |g_N \tilde{f}| \right)$$

$$u_f := \max \left(\log |f_1|, \log |f_2|, \dots, \log |f_{N+1}| \right)$$

$$u_g := \max \left(\log |g_1|, \dots, \log |g_N| \right) = \max \left(\log |g_1|, \dots, \log |g_{N+1}| \right),$$

where we used a reduced representation of g with $g_{N+1} \equiv 1$. Then,

$$u_{\varphi}(z) \ge \begin{cases} u_f(z) + \log |\tilde{g}(z)| \\ u_g(z) + \log |\tilde{f}(z)| . \end{cases}$$

Taking the mean value of each term on $\{z \in C; |z| = r\}$, we obtain by (3.1)

$$T(r, \Phi) + u_{\phi}(0) \\ \ge \begin{cases} T(r, f) + u_{f}(0) + N(r, \tilde{g}) + \log |\tilde{g}(0)| \\ T(r, g) + u_{g}(0) + N(r, \tilde{f}) + \log |\tilde{f}(0)| . \end{cases}$$

Here, $N(r, \tilde{g}) = N'(r, f)$ and $N(r, \tilde{f}) = N'(r, g)$. So, by (3.12),

(3.13)
$$T(r, f) + T(r, g) \leq 2T(r, \phi) - N'(r, f) - N'(r, g) + O(1) \\ \leq (2N + 1)(N'(r, f) + N'(r, g)) + O(\log rT(r, \phi)) \parallel .$$

On the other hand, since

 $\max(|f_1\tilde{g}|,\cdots,|f_{N+1}\tilde{g}|,|g_1\tilde{f}|,\cdots,|g_N\tilde{f}|) \leq (N+1)(\max_i|g_i|) \times (\max_j|f_j|)/|h|,$ we have

$$u_{q}(z) \leq u_{f}(z) + u_{q}(z) - \log|h| + \log(N+1)$$

and by (3.1)

36

$$\frac{1}{2\pi}\int_0^{2\pi} \log|\mathbf{h}(re^{i\theta})| \, d\theta = N(r,h) + \log|h(0)| \, d\theta$$

Therefore,

$$T(r, \Phi) \leq T(r, f) + T(r, g) - N(r, h) + O(1)$$
$$\leq T(r, f) + T(r, g) + O(1) .$$

By (3.13) and Lemma 3.10, we can conclude

$$T(r, f) + T(r, g) \leq O(\log r) + O(\log (T(r, f) + T(r, g)))$$

If f or g is transcendental, then

$$\lim_{r\to\infty}\frac{\log r}{T(r,f)+T(r,g)}=0.$$

Factoring each term of the above inequality by T(r, f) + T(r, g) and tending r to the infinity, we have an absurd inequality. In the case that f and g are both rational, the remaining terms of the obtained inequalities in the above arguments can be replaced by O(1). We have a contradiction in this case too. Therefore, Φ is degenerate and hence Proposition 3.7 is completely proved.

§4. The Proofs of Theorems I and II

We shall prove first Theorem II stated in §1 for the case n = 1. Let f, g be algebraically non-degenerate holomorphic maps of C into $P^N(C)$ such that there are hyperplanes H_i $(1 \le i \le N + 2)$ in general position satisfying the condition $\nu(f, H_i) = \nu(g, H_i) = 0 (1 \le i \le N + 1)$ and

$$\min(\nu(f, H_{N+2}), N) = \min(\nu(g, H_{N+2}), N)$$

As was shown in §3, if we choose homogeneous coordinates such that

(4.1)
$$H_i: w_i = 0 \qquad 1 \le i \le N+1 \\ H_{N+2}: w_1 + \dots + w_{N+1} = 0$$

and reduced representations $f = f_1 : f_2 : \cdots : f_{N+1}$, $g = g_1 : g_2 : \cdots : g_{N+1}$, we have the relation (3.8) for some constants c_i and d_j , where f_i and g_j have no zeros.

We put $a_{ij} = f_i g_j$ and consider the set

$$A := \{a_{ij}; 1 \leq i, j \leq N+1\}$$
.

And, we define subsets C of A and Γ of $C \times C$ as

$$C := \{a_{ij} \in A ; c_i - d_j \neq 0 \text{ for constants } c_i, d_j \text{ as in } (3.8)\},\$$

$$\Gamma := \{(a_{ij}, a_{k\ell}); a_{ij}/a_{k\ell} \text{ is of constant and } (i, j) \neq (k, \ell)\}$$

respectively. For these sets, we shall show that the assumption $(A_0) \sim (A_3)$ in §2 are all satisfied. The assumption (A_0) is obviously valid. If $c_{i_1} - d_{j_1} = 0$, $c_{i_2} - d_{j_2} = 0$ and $c_{i_1} - d_{j_2} = 0$ $(1 \leq i_1, i_2, j_1, j_2 \leq N + 1)$, then

$$c_{i_2} - d_{j_2} = (c_{i_2} - d_{j_1}) + (d_{j_1} - c_{i_1}) + (c_{i_1} - d_{j_2}) = 0$$
 ,

whence (A_1) is satisfied.

The assumption (A_2) can be easily seen by the relation (3.8) and the following classical theorem of E. Borel,

THEOREM 4.2 ([1]). Let h_1, h_2, \dots, h_p be nowhere vanishing holomorphic functions on C satisfying the relation

$$h_1+h_2+\cdots+h_p=0.$$

Then, there is a partition of the set of indices $I := \{1, 2, \dots, p\}$ into the disjoint union of subsets

$$I=I_1\cup\cdots\cup I_k$$

such that for any $i, j \in I_{*}$ $h_{i}/h_{j} \equiv \text{const.}$ and

$$\sum_{i\in I_{\kappa}}h_i\equiv 0 \qquad (1\leq \kappa\leq k)$$

Particularly, for any i = 1, ..., p, there is some j such that $i \neq j$ and $h_i/h_j \equiv \text{const.}$

To verify the assumption (A₃), we take $a_{i_{\sigma}j_{\sigma}}$ and $a_{k_{\sigma}\ell_{\sigma}}$ $(1 \leq \sigma \leq s)$ in C satisfying the condition

$$(i_1, j_1) \leftrightarrow (k_1, \ell_1), (i_2, j_2) \leftrightarrow (k_2, \ell_2), \cdots, (i_s, j_s) \leftrightarrow (k_s, \ell_s)$$

namely, $f_{i_{\sigma}}g_{j_{\sigma}}/f_{k_{\sigma}}g_{\ell_{\sigma}} \equiv \text{const.} \ (1 \leq \sigma \leq s)$. This implies that

$$f_{i_1}f_{i_2}\cdots f_{i_s}g_{j_1}g_{j_2}\cdots g_{j_s} = cf_{k_1}f_{k_2}\cdots f_{k_s}g_{\ell_1}g_{\ell_2}\cdots g_{\ell_s}$$

for some constant c. If $\{i_1, \dots, i_s\} = \{k_1, \dots, k_s\}$, we have a relation

$$g_{j_1}g_{j_2}\cdots g_{j_s}=cg_{\ell_1}g_{\ell_2}\cdots g_{\ell_s}.$$

On the other hand, there is no algebraic relation among g_1, \dots, g_{N+1}

38

because g is assumed to be algebraically non-degenerate. We can conclude $\{j_1, j_2, \dots, j_s\} = \{\ell_1, \ell_2, \dots, \ell_s\}$. Similarly, $\{j_1, \dots, j_s\} = \{\ell_1, \dots, \ell_s\}$ implies $\{i_1, \dots, i_s\} = \{k_1, \dots, k_s\}$. This shows that the assumption (A₃) is also satisfied.

By virtue of Main Lemma, we can conclude that, after a suitable change of indices i and j of f_i and g_j individually,

$$f_i g_j / f_k g_\ell \equiv \text{const.}$$

if and only if $(i, j) = (\ell, k)$ for any (i, j) and (k, ℓ) with $c_i - d_j \neq 0$ and $c_k - d_\ell \neq 0$. Moreover, by the relation (3.8) and Theorem 4.2, we have

$$f_i g_j - f_j g_i \equiv 0$$

for any i, j with $a_{ij} \in C$. In particular, as a result of (i) of Main Lemma,

$$f_i g_j = f_j g_i$$

if $m+1 \leq i \leq N+1$, $1 \leq j \leq m$ or $1 \leq i \leq m$, $m+1 \leq j \leq N+1$. Easily we see

$$rac{f_1}{g_1} = rac{f_2}{g_2} = \cdots = rac{f_{N+1}}{g_{N+1}} \, .$$

Going back to the original indices, this shows that there is a permutation $\pi = \begin{pmatrix} 1, 2, \dots, N+1 \\ \pi_1, \pi_2, \dots, \pi_{N+1} \end{pmatrix}$ such that

$$\frac{f_1}{g_{\pi_1}} = \frac{f_2}{g_{\pi_2}} = \cdots = \frac{f_{N+1}}{g_{\pi_{N+1}}}$$

Therefore, f and g are related as $L \cdot g = f$ with a projective transformation

$$L: w'_i = w_{\pi_i} \qquad 1 \leq i \leq N+1 \; .$$

Let us prove Theorem II for the general case. Let f, g be meromorphic maps which satisfy the conditions as in Theorem II, where we assume $f(0), g(0) \notin H_{N+2}$. Choosing homogeneous coordinates as in (4.1), we take representations $f = f_1 : f_2 : \cdots : f_{N+1}$ and $g = g_1 : g_2 : \cdots : g_{N+1}$ with nowhere zero holomorphic functions $f_1, f_2, \cdots, f_{N+1}, g_1, g_2, \cdots, g_{N+1}$. For any $a = (a_1, a_2, \cdots, a_{N+1}) \in \mathbb{C}^{N+1} - \{0\}$, we consider a holomorphic map f_a of C into $P^N(C)$ defined as

$$f_a(z) = f_1(az) : f_2(az) : \cdots : f_{N+1}(az) \quad (z \in C)$$

where $az = (a_1z, a_2z, \dots, a_{N+1}z)$. And, we define a map $g_a: C \to P^N(C)$ similarly by g. Then, the following fact is valid.

LEMMA 4.3. Let E be the set of all $a \in \mathbb{C}^n - \{0\}$ such that $\nu(f_a, H_{N+2})(z) \neq \nu(f, H_{N+2})(az)$ or $\nu(g_a, H_{N+2})(z) \neq \nu(g, H_{N+2})(az)$ for some z. Then, for the canonical map $\varpi : (z_1, \dots, z_n) \in \mathbb{C}^n - \{0\} \mapsto z_1 : \dots : z_n \in \mathbb{P}^{n-1}(\mathbb{C})$, the set $\varpi(E)$ is nowhere dense in $\mathbb{P}^{n-1}(\mathbb{C})$.

For the proof, see e.g., [3], Proposition 2.7, p. 275.

Let S_{N+1} be the set of all permutations of indices $1, 2, \dots, N+1$. By L_x we denote the projective linear transformation of $P^N(C)$ defined as

$$L_{\pi}: w_i' = w_{\pi_i} \qquad (1 \le i \le N+1)$$

for each $\pi = \begin{pmatrix} 1, 2, \dots, N+1 \\ \pi_1, \pi_2, \dots, \pi_{N+1} \end{pmatrix} \in S_{N+1}$. For any a in $C^n - (E \cup \{0\})$, since f_a and g_a satisfy the assumptions of Theorem II as holomorphic maps of C into $P^N(C)$, applying Theorem II for the case n = 1, we can conclude that $L_x \cdot g_a = f_a$ for some $\pi \in S_{N+1}$. Let F_x be the set of all points a in $C^n - (E \cup \{0\})$ such that $L_x \cdot g_a = f_a$. Then, $C^n - (E \cup \{0\}) = \bigcup_{x \in S_{N+1}} F_x$. Each F_x is an analytic subset of $C^n - (E \cup \{0\})$. In this situation, it can be easily seen that $F_{\pi_0} = C^n - (E \cup \{0\})$ for some π_0 . This shows that Theorem II is also true for the case $n \ge 2$.

We shall prove next Theorem I. Let f, g be algebraically nondegenerate meromorphic maps of C^n into $P^N(C)$ such that $\nu(f, H_i) = \nu(g, H_i) = 0$ for $i = 1, \dots, N + 1$ and

$$\min\left(\nu(f, H_j), N\right) = \min\left(\nu(g, H_j), N\right)$$

for $j = N + 2, \dots, 2N + 3$. Apply Theorem II to N + 2 hyperplanes H_1, H_2, \dots, H_{N+1} and H_i for each $i = N + 2, \dots, 2N + 3$. There is a projective linear transformation L_i such that $L_i \cdot g = f$ and L_i permutes hyperplanes H_1, \dots, H_{N+1} and fixes H_i . By the assumption of nondegeneracy, we have easily $L := L_{N+2} = \dots = L_{2N+3}$. This implies that L fixes N + 2 hyperplanes H_{N+2}, \dots, H_{2N+3} in general position. It follows that L = identity and so f = g, which completes the proof of Theorem I.

References

- [1] E. Borel, Sur les zéros des fonctions entières, Acta Math., 20 (1897), 357-396.
- [2] H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica, 7 (1933), 5-31.
- [3] H. Fujimoto, On meromorphic maps into the complex projective space, J. Math. Soc. Japan, 26 (1974), 272-288.
- [4] —, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., 58 (1975), 1-23.
- [5] —, A uniqueness theorem of algebraically non-degenerate meromorphic maps into P^N(C), Nagoya Math. J., 64 (1976), 117-147.
- [6] —, Remarks to the uniqueness problem of meromorphic maps into P^N(C), I, Nagoya Math. J., 71 (1978), 13-24.
- [7] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367-391.
- [8] G. Pólya, Bestimmung einer ganzen Funktionen endlichen Geschlechts durch viererlei Stellen, Math. Tidskrift, B. København 1921, 16-21.

Nagoya University