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REMARKS TO THE UNIQUENESS PROBLEM OF

MEROMORPHIC MAPS INTO PN(C)9 II

HIROTAKA FUJIMOTO

§ 1. Introduction

In [7], R. Nevanlinna gave the following uniqueness theorem of
meromorphic functions as an improvement of a result of G. Pόlya ([8]).

THEOREM A. Let f, g be non-constant meromorphic functions on C~
If there are five mutvjally distinct values al9 •• ,α5 such that f~\a>i) =
g-\ai) (1 ̂  ί ^ 5), then f = g.

The author attempted to generalize this to the case of meromorphic
maps of Cn into PN(C) and obtained some results in the previous papers
[4], [5] and [6]. One of them is the following;

THEOREM B. Let f and g be meromorphic maps of Cn into PN(C)
one of which is algebraically non-degenerate. If there are 2N + 3
hyperplanes Ht (1 ̂  i ^ 2N + 3) in general position such that v(f, H^ =
v(g,Hi) for pull-backs v(f>Hi), v(g,Hi) of the divisors (Hi) by f and
g respectively, then f = g.

Relating to this, the following theorem will be proved.

THEOREM I. Let f,g be algebraically non-degenerate meromorphic
maps of Cn into PN(C). If there are hyperplanes Ht in general position
such that

namely, f(Cn) Π Ht = g(Cn) Π Hi = φ for i = 1,2, -,N + 1 and

min Mf, Hj), N) = min (v(g, Hs), N)

for j = N + 2,. .,ZN + 3, then f = g.
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26 HIROTAKA FUJIMOTO

This will be given as a consequence of the following generalization
of a classical result of R. Nevanlinna ([7], Satz 7, p. 388).

THEOREM II. Let /, g be algebraically non-degenerate meromorphίc
maps of Cn into PN(C). If there are N + 2 hyperplanes in general
position such that

for ί = 1,2, . , N + 1 and

min (v(f, HN+2), N) = min (v(g, HN+2), N) ,

then f and g are related as L-g = / with a protective linear trans-
formation L of PN(C) which permutes hyperplanes H19 . -,HN+ι and
leaves HN+Z fixed.

In § 2, we shall give a combinatorial lemma which plays an essential
role in this paper. In § 3, we shall recall some classical results in the
value distribution theory for holomorphic maps of C into PN(C) and
obtain a new result from them. Theorems I and II are completely
proved in §4.

§2. Main Lemma

For later use, we shall give in this section a graph-theoretic com-
binatorial lemma. We consider a set A = {aυ 1 <: i <̂  n, 1 <̂  j ^ n}
consisting of n2 elements abstractly. Let non-empty subsets C of A and
Γ of C X C be given in some manner. For any atJf au in C, we write

(i, J) +> (fc, i) , or (i, j) Φ (fc, β)

if (α^, αw) e Γ, or (α^, αfê ) g Γ respectively. We assume that

(Ao) for any αtJ, akι in C (i, /) Φ (ΐ, j) and (i, j) <-> (Λ, ̂ ) whenever

(Jc,β)*+(i,j),
(AO if α f l^, α f l i a and α i β i l are in A — C (1 ^ i^h^h ^ w), then

Λί2y2 are also in A — (7,
(A2) for any ais e C there exists some au e C such that (i, /) <̂  (fc, β),
(A3) if αίff^, α t ^ e C (1 ^ σ <; s) satisfy the conditions

(ii, Λ) ^> (fci> A)> (hy h) +> (K β2), , (ίs, js) <* (ks, β8) ,

then {iί9i2, - , Q = {fci, fc2, , k8} occurs when and only when {j19 j 2 , . -, js}
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MEROMORPHIC MAPS 27

= {A> -^29 9 #s}> where some indices may appear repeatedly in {ί19 , is}
etc. and the equalities mean in this case that they appear the same
times in both sides.

In this situation, we give

MAIN LEMMA. By changing indices i and j of α^/s individually, it
holds that

(i) there is a partition of indices

{1,2, . , n} = {l, 2, , raj U {mx + 1, , raj U U {ra^ + 1, . ., n}

such that dij eC if and only if i and j are in the same class
{rar_j + 1, ,raj for some τ(l ^ τ <; t), where ra0: = 0, mt: = n and t^2,

(ii) for any aij9 akί in C, (i9 j) <-> (k, t) if and only if i = i and

For the proof, we need some preparations.

LEMMA 2.1. For any i (1 ^ i <^ n)9 there exist some j\ and j2 such
that aih and aHi are in A — C.

Proof. Assume that atJ e C for any j (1 ^ j ^ n). By the assump-
tion (A2), we can take some kj9 Sj such that (i,j)<->(kj9£j) for each j .
Here, j Φ ls. In fact, if not, i Φ kj9 which contradicts the assumption
(A3). And, i Φ kj by the same reason. Since {1,2, , i — 1, i + 1, . , n)
cannot contain n distinct elements, we have indices j ' , j " such that kr =
kj,, and f Φ j " . Then, for the relations

(i, f) <+ ikr9 £,,), (kr,9 ijn) +» (i, j") ,

{i, kr) = {kr9 i} but {j'9 iy) Φ {ίy9 j"}. This contradicts the assumption
(A3). Thus, there exists some jx such that aijx & C. The existence of j2

with aHi & C is shown similarly.
We introduce here a provisional notation. For integers fc, £ with

k ^ ί, we denote by [k9 £] the set of all integers i with k <̂  ί ^ £.
By a suitable change of indices, we may assume au e C for any

i e [1, ra] and α^ e C for any e [ra + 1, ή]9 where 1 <^ m <* n — 1 by
Lemma 2.1. Then, as is easily seen by the assumption (A^, if aiokQeC
for some koe[29n] and ioe[l,ra], then aίkoβC for any ie[l,m] and
α f̂co e C for any / e [ra 4- 1, w]. By this reason, choosing indices suitably,
we may assume that aiά^C if ie [1, ra], / e [1, ra/] and atJeC if i e
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28 HIROTAKA FUJIMOTO

[m + 1, ri\, j e [1, m'], or i e [1, ra], j e [m' + 1, n]9 where 1 ^ mr <̂  w — 1.

Moreover, it may be assumed that

(2.2) there are indices m19 ,m£_1,mί, ,mί_i with

m = : mx < ra2 < < mt_x < mt: = n

m' = : mi < m^ < < m ^ < m't: = w

such that atj g C if and only if i e [m r - 1 + 1, mr] and e [mf

τ_λ + 1, m ]̂

for some τ 6 [1, t], where we put m0 = 7n'0 = 0.

Later, mτ = mi (1 ^ τ ^ ί) will be shown. We assume m' <^m for

a while by exchanging the situations of indices i and i of aid if necessary.

For each j in [mx + lfn], we define an index Ij as follows.

(2.3) If (l,j)Φ(i,£) for any i e [ l , m ] and £e[m' + l,ri\, we put

J^ = l . Otherwise, choose indices i19i2, ,ΐα in [l,m] and ^ , 2̂» >̂ α

in [m7 + l,τι] such that

(1, j) +> (ί19 £J, (ί19 j) ++ (ί2, £2), . . . , (<α - 1, ) -w (ίβ, ^β)

and (ia, j) Φ (i, ̂ ) for any i e [1, m], ί e [m' + 1, ri\. And, put / y : = ia.

These choices are certainly possible. Indeed, if we cannot choose

the above ia9 then there are infinitely many iβe[lfm\f £βe[m' + l,ri\

(β = 1,2, . . •) such that (ίβ,j) «-> (iβ+1, £β+ι). We have necessarily iβ = iβ,9

for some β, β' with β + 2 <; β' and relations

(iβ, i) <+ ttβ+ι> tβ+i)> ttβ+ι> i) +* (iβ+2, tβ+2), , (v-i> f> +* (ir> £β)

This contradicts the assumption (A3), because

but

LEMMA 2.4. If there are indices kQe[m + l9n]9 £09f0 in [l9n] such

that

( * )i (/„ J) ̂  (fco, £d, (K K) +* (ϊy, r) 9

then j = j \

Proof. As in (2.3), we can take indices i19 , i β - i , ^ >iό'-i in

[1, m] and A, , ̂ α> ^> » C in [mf + 1, n] such that
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MEROMORPHIC MAPS 29

( 1 , j) <-> (h, £x), (i19 j) ++ (i 2, £2), , (ia-ι> ί) <-> (Ij> #a)

(«, AO <-> (1, A («, 4) ~ («, ί'O, , dj>, C) ++ (C-i, f ) .

For the relations (*X and (*)2, we see

{Ij, tCQ9 1, fy, , ΐ α _ i , ί-u * * * > V- i> * i'j

= {WQ, I j'> %ι> ' ' , ί α _i , Xj, 1 , 1\y ' ' * , V-1J «

So, by the assumption (A3)

This implies i = / because / Φ £Of £19 , ̂ α, j v .

LEMMA 2.5. For cm̂ / fce[m + l,w] there is one and only one

j e \mf + 1, n] such that (Ij9 j) <+ (k, £) for some £ e [1, ri\.

Proof. The uniqueness of the desired index is a result of Lemma

2.4. On the other hand, by the assumption (A2), there are indices

tt"m'+l9 * * * 9 tt"n9 ̂ ra'+iί * * * f &n SUCll t l i a t

(/m,+ 1, m' + ΐ)<+ (km*+l9 £m>+1), , (In, n) «•> (fcn, £n) ,

where m + 1 ^ fcTO/+1, - —,kn <^n by the property (2.3) of 7/s. Then,

km+1, - ,kn are distinct with each other because of Lemma 2.4. There-

fore,

n — mf ^ n — m

and so m ^ m7. Since mf <±m is assumed, we have m = mf and

{̂ m+i> , fcn} = {m + 1, , w}. The index j with kj = k is the desired

one.

LEMMA 2.6. mt = m'r (1 ̂  r ^ f) for the numbers defined as in (2.2).

Proof. As in the proof of Lemma 2.5, we have m ( = mx) = m7 ( = mO

The same arguments are available for the other τ. So, we obtain

Lemma 2.6.

LEMMA 2.7. For any ie[m + 1, n] and je[l,m] there exist some

k G [1, m] and £ e [m + 1, n] such that (i, j) ++ (fc, £).

Proof. Assume the contrary. According to the assumtion (A2), we

choose indices fc0, £0 e [1, n] such that
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30 HIROTAKA FUJIMOTO

By the assumption, m + 1 <. k0 ̂  n. On the other hand, there are
indices j0, j'o in [m + 1, n] and f0, £" in [1, n] such that

( # ) , (/*, y0) +> (ί, ^o), (feo, o <-> σ, 6, /o

because of Lemma 2.5. Moreover, by the property (2.3) of J/s, we have

(1, y0) ** (ii, £d> (ii, Λ) ** (i2, A), , (i«-i, ?Ό) «+ Ujo> £a)

(A, tϊ) ++ (1, Λ), (4 4) ̂  dί, fo), , (/yί, O ** (4-i, Λ)

for some i19 , iα - 1, iί, , ΐ^_i e [1, m] and £lf , ̂ β, ^ί, , C in
[m + l,n]. Observe the indices of the relations (#X, (#)2 and (jf)s. It is
easily seen that they contradict the assumption (A3). Thus, we have
Lemma 2.7.

LEMMA 2.8. By a suitable change of indices ϊs of ais among
1,2, -, m, there is some index £tj for each i e [m + 1, n] and j e [1, m]
such that (iyj) *+ (j, itj)9 where m + 1 ̂  £tj ^ n.

Proof. We take k19 ,k m in [1,m] and £lf — 9£m in [m +1,n] such
that

(m + 1,1) «-» (fci, £x), ., (m + 1, m) ̂ > (fcm, ̂ J

by the use of Lemma 2.7. As is easily seen by the assumption (Ao) and
(A3), we have {kιy , km} = {1, , m}. By a change of indices, we may
assume that kx = 1, , km = m. For any i e [m + 1, n], we choose
Aί, , A4 in [l,m] and £'lf C in [m + l,ri\ so that

«, 1) <^ (fcί, ̂ 0, , (i, m) ++ (fcς, £'J .

By the same reason as the above, {k[, , k'm} = {1,2, , m}. Assume
that k'j Φ j for some j and take the index f with fc^ = /. We observe
the relations

(ΐ, i) ̂ > (ΛJ, ̂ ) , (ftj, £$ *> (m + 1, ΛJ), (m + 1, j) ̂ > 0', ̂ ) , (/, ̂ ) ̂  «, /)

As is easily seen by the facts j Φ £'J9Ί<fj9£j9j
f

9 this contradicts the as-
sumption (A3). Therefore, k'ό = / for any j and we have Lemma 2.8.

LEMMA 2.9. After a suitable change of indices j's of aυ among
m + 1, , n, it holds that (i9 j) «-> (j, i) for any j e[m + l9ri] and
je[l,m\.

Proof. As a consequence of Lemma 2.8, we may assume that
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(m + 1,1) <•* (1, C M ) , , (n, 1) ++ (1, £n) ,

where {im+ϊ9 ,£n} = {m + 1, ,ri\ by the assumption (A3). Changing

indices if necessary, we have {£, 1)«->.(1, ί) for any £e[m + l,n]. As-

sume that for some i0 e [1, m] and ; 0 e [m + 1, w] (ί09 jd Φ (j0, i0). Then, by

Lemma 2.8, there is some £oe[m + 1, w] (jQ9 id ++ do, £d s u c h that £0 Φ j 0 .

If we choose km+19 - -,kn in [m + l,n] such that (j,h) ++ (io>^) f ° r e a c h

y 6 [m + 1, n], it is easily seen that {km+19 , kn} = {m + 1, , n}. There-

fore, there are an index k0 such that (fc0, i0) ^> (i0, yo), where k0 Φ j0 by

the assumption. We observe the relations

(ΐ0, id <+ do, id9 (K id *+ (io> Jd> (1> K) <+ (K1), OΌ, 1) <^ (1, jd .

Obviously, these indices do not satisfy the assumption (A3). Thus, we

get Lemma 2.9.

Proof of Main Lemma. By Lemma 2.9, we may assume that (i, j)

++(j,ϊ) for any ie[m + l,n] and / e [ l , m ] . The conclusion (i) of Main

Lemma is a direct result of Lemma 2.6 because Lemma 2.6 is available

for the above choice of indices. We shall prove the conclusion (ii).

There are indices k, £ with (i, j) ^> (fc, £) for any i, j with aυ e C by the

assumption (A2). So, we have only to show that k = j and £ — i

whenever (i,j)++(k,£). By virtue of the assumption (Ao), it suffices to

study the following three cases.

1°) m + l<Li<^n, 1^ j ^m, l<ίk<Lm and m + 1 ^ i ^ n.

2°) m + l<*i<:n, l^j^m, m + l ^ k ^ n and 1 ^ ^ ^ w.

3°) m + 1 <: i,j,k,i <: ^.

Observe the relations

(i, Λ ^ (fc, ί), 0", i) ++ (i, Λ, (fc, ^) *> (^, fc), (i, j) ++ 0", ̂ )

for the case 1°) and

(i, /) ^ (fc, ^), (1, i) ^ (ί, 1), (&, 1) ^ (1, fc) ,

for the cases 2°) and 3°) respectively. In any case, indices in the rela-

tions do not satisfy the assumption (A3) except the case (k, £) = (j9i).

Thus, Main Lemma is completely proved.

§3. A result from the value distribution theory

We shall introduce some definitions and notations. For a domain
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D in the complex plane C, a divisor v(z) on D is defined as an integer-
valued function on D such that {zeD; viz) Φ 0} has no accumulation
point in D. Let us take a divisor v on {z e C; \z\ < R} (0 < R <̂  + oo)
with K0) = 0. We put

2V(r, y): = Γ ^ % ^ d ί = Σ v(z) log -L- ,

where 0 ^ r 5g β.
Let / be a non-constant meromorphic function on C. We define

vs(a) = n, = 0 and = - m if /(«) has a zero of order % at z = α, if
/(α) ^ 0 and if /(s) has a pole of order m at « = a, respectively. And,
put N{r,f) = N(r,vf). Then, the well-known Jensen's formula is given
as follows.

(3.1) If /(0) =£ 0, co, then

-^- Γlog \f(re«)\ άβ = ΛΓ(r, /) + log |/(0)| (r > 0) .
2τr Jo

Now, let us take a holomorphic map / of C into PN(C). For an
arbitrarily fixed homogeneous coordinates w1: : w^+1, we can take
holomorphic functions /x, , fN+1 such that / = /i: : /V+i and /<
(1 ^ i ^ AT + 1) have no common zeros. In the following, we shall call
such a representation of / a reduced representation. For a reduced
representation / = fx: f2: : fN+u we put

: = max log\ft(z)\

and, following H. Cartan [2], define the characteristic function of / as

T(r,f) = J L Γw(rβ*#)<W - w(0) ,
2ττ Jo

which is determined independently of any choice of a reduced representa-
tion of / .

Assume that / is non-degenerate, i.e., /(C) is not contained in any
hyper plane of PN(C). For a hyperplane

Hia'w, + a2w2 + + aN+ιwN+1 = 0
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and a reduced representat ion f = fim.f2ι ••• '/N+I> we consider a holo-

morphic function

and define v(f,H) := vF.

DEFINITION 3.2. For a positive integer p, we define

Np(r, f, H): = N(r, min (p, „(/, #)))

We can conclude from (3.1)

(3.3) Np(r, f, H) £ N(r, /, H) £ T(r, f) + K ,

where K is a constant not depending on r.

We recall here the second fundamental theorem in the value dis-
tribution theory given by H. Cartan in [2], which is essentially used
in the followings.

THEOREM 3.4. Let f be a non-degenerate holomorphic map of C
into PN(C) and Hi (1 ^ i <̂  q) be hyperplanes in general position with
/(0) £ U tHt. Then,

(q-N- l)Γ(r,/) ^ Σ NN{r,f,Hd + S(r) ,

where

Sir) = 0 (log r) + O (log Γ(r, /)) ||

and " | | " means that this holds outside an open set E in R such that

1dt s ,
E t

Remark. In Theorem 3.4, if / is rational, i.e., represented as
/ = /i :/ 2 : :/ΛΓ+I with polynomials / o then S(r) = 0(1).

Now, let us consider two non-degenerate holomorphic maps f,g of
C into PN(C) and Λf + 2 hyperplanes ίZΊ, ,HN+2 in general position.
We assume that

(3.5) v(f,HJ = v(g,HJ = O

i.e., /(C) Π if, = flr(C) Π Hi=φ for i = 1,2, -,2SΓ + 1 and

(3.6) min (*(/, ^ + 2 ) , N) = min Mg, HN+2), N) .
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We choose homogeneous coordinates wι: w2: : wN+1 on PN(C) such that

Hi are represented as

Hi'.Wi^O 1 ^ i ^ N + 1 ,

# * + 2 : wx + w2 + ... + w^+1 = 0 .

In this situation, we can prove the following

PROPOSITION 3.7. Take reduced representations f = /x : / 2 : :/y+i

and g = ^ : <72: : ̂ + 1 . Tfoew ίfeere exists some constants c19 c2, ,

c^+1,di,ώ2, -,dN+ι such that ct — d3 Φ 0 /or some i,/

(3.8) Σ (Ci-djViQj = 0 .

To prove this, we need some preparations. For brevity, we denote

HN+2 by ί ί and define

N'(r, f) : = iV(r, K/, fl) - min („(/, fl), ^ ,

iV (̂r, fir) : = iV(r, Kflr, H) - min (v(/, fl), u(g9 H)))

for each positive number r.

LEMMA 3.9. /ί holds that

N'(r, f) + N'(r, g) £ N(r, f, H) - NN(r, / , H) + N(r, g, H) - NN(r, g, H) .

Proof. According to the assumption (3.6), we see easily

, H) - min (v(f9 fl), v(g, H))) + Wg, H) - min (*(/, fl), Kflr, fl)))

= \v(f,H)-v(g,H)\

^ \v(f,H) - min (v(f,H),N)\ + \v(g,H) - min (v(f,H),N)\

= (*(/, fl) - min M/, fl), ΛO) + (p(fir, fl) - min (p(flr, fl),

By linearlity and monotonicity of integrals, we can conclude Lemma 3.9.

LEMMA 3.10. It holds that

N'(r, f) + N'{r, g) = O(log r) + O(log (Γ(r, /)

Here, if f and g are both rational, the right hand side is replaced by

0(1).

Proof. Since NN(r, f, HJ = NN(r, g9 Hτ) = 0(1 ̂  t ^ iV + 1) by the

assumption (3.5), Theorem 3.4 implies that
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T(r, f) - NN(r, f, H) = O(log r) + O(log

T{r, g) - NN(r, g, H) = O(log r) + O(log T(r, #

Therefore, by (3.3), we see

N(r, f, H) - NN(r, f, H) = O(log r) + O(log Γ(r,

2V(r, g, H) - Λ^(r, / , H) = O(log r) + O(log T(r,

By virtue of Lemma 3.9, we can conclude

g O(log r) + O(log T(t, f)T(r,

^ O(logr) + O(log(Γ(r,/) +

The latter half of Lemma 3.10 is due to Remark to Theorem 3.4.

Proof of Proposition 3.7. We take a holomorphic function h on C

such that vh = min O(/, # ) , p(#, j?)). And, we consider a holomorphic

map Φ of C into P2iV(C) defined as

(3.11) Φ=Λg:f2g:- - :fN+19 : - &/: : - gNf ,

for some fixed homogeneous coordinates on P2N(C), where / : = fx +

+ fN+ι/h and g:= g1 + . . . + gN+1/h. Since /< and ^ (1 ^ i ^ iV + 1)

have no zeros and / and g have no common zeros, (3.11) is a reduced

representation of Φ. For the proof of Proposition 3.7, we have only

to show that Φ is degenerate. In fact, in this case, there exist some

constants clf « 9cN+1,d19d2, ',dN, at least one of which is not zero,

such that

V1

gN+1) - Σ d^CΛ + . . . + fN+d = 0 .

Here, at least one of ct'& is not zero, because g is non-degenerate.

Putting dN+1 = 0, we have the desired relation (3.8).

Now, let us assume that Φ is non-degenerate. We denote by ux:

u2: : u2N+1 the above fixed homogeneous coordinates on P2N(C) and

consider 2N + 2 hyperplanes

Hi: Ui = 0 1 ^ i ^ 2Λ̂  + 1 ,

H2N+2 :ux + u2+ + u2N+ι = 0

in P2N(C), which are located in general position. Then,

https://doi.org/10.1017/S0027763000021619 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021619


36 HIROTAKA FUJIMOTO

v(Φ, Ht) = v, = v(g9 H) - min (*(/, H), v(g, H)) if 1 ^ i ^ 2V + 1 ,

= »/, = p(/,fl) - min (v(f,H),v(g,H)) iί N + 2 ^ i ^ 2N + 1 .

Moreover, since ]•] (#/* — /#*) = 0,

v(Φ,H2N+2) =

We apply here Theorem 3.4 to a holomorphic map Φ of C into P2N(C)
and hyperplanes fΓ^ -,H2N+2. We have

Γ(r, Φ) ^ Σ ΛΓ2i,(r, Φ, ̂ ) + O(log rT(r, Φ)) \\
(3.12) lSiSMΓ+s

^ (2V + DίiV^r, / ) + iSΓ7(r, flr)) + O(log rT(r, Φ)) \\ .

Put

uφ := max (log | /^ | , , log \fN+1g |, log | ^ / | , . ., log \gNf\)

w g:= max (log \gx\f •• , , log |^ | ) = max (log | ft |, -,

where we used a reduced representation of g with gN+1 = 1. Then,

(«) + l o g i Λ«) I

Taking the mean value of each term on {zeC; \z\ = r}, we obtain by
(3.1)

T(r, Φ)
\T{r,f) + %(0) + N(χ,g) + log|ί(0)|

Here, N(r,g) = N'(r,f) and N(r,f) = N'(r,g). So, by (3.12),

Γ(r, /) + T(r, g) ^ 2T(r, Φ) - N'(r, f) - N'(r, g) + 0(1)

^ (22V + l)(2V'(r, /) + N'(r, g)) + O(log rT(r, Φ)) || .

On the other hand, since

max

we have

iφ) ^ u}(z) + uβ(z) - log|Λ| + log(2V

and by (3.1)
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— Γlog \h(reiθ)\ dθ = N(r9 h) + log |Λ(0)| .

2π Jo

Therefore,

Γ(r, Φ) ̂  Γ(r, /) + Γ(r, g) - ΛΓ(r, Λ) + 0(1)

By (3.13) and Lemma 3.10, we can conclude

T(r, f) + Tir, g) ̂  O(log r) + O(log (Γ(r, /) + Γ(r,

If / or g is transcendental, then

lim l°*l = 0 .

Factoring each term of the above inequality by T(r, f) + T{r, g) and
tending r to the infinity, we have an absurd inequality. In the case
that / and g are both rational, the remaining terms of the obtained
inequalities in the above arguments can be replaced by 0(1). We have
a contradiction in this case too. Therefore, Φ is degenerate and hence
Proposition 3.7 is completely proved.

§4. The Proofs of Theorems I and II

We shall prove first Theorem II stated in § 1 for the case n = 1.
Let /, g be algebraically non-degenerate holomorphic maps of C into
PN(C) such that there are hyperplanes Hi (1 ίg i :g N + 2) in general
position satisfying the condition v(f,Hi) = v(g,Hi) = 0(1 <̂  ί <^N + 1)
and

min (v(f, HN+2), N) = min (v(g, HN+2), N) .

As was shown in §3, if we choose homogeneous coordinates such that

Hi:Wi = 0 l < i < i V + l
(4.1) ~~ —

HN+2: wx + + wN+1 = 0

and reduced representations / = fx: / 2 : : fNJrl, g — gx\ g2: : gN+ι,
we have the relation (3.8) for some constants ct and dj9 where ft and
g3 have no zeros.

We put dij = fιgs and consider the set
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And, we define subsets C of A and Γ of C x C as

C := {aίό eA Ci — djΦO for constants cίf dj as in (3.8)} ,

Γ := {(aίj9ak£); a^/a^ is of constant and (i,j) Φ (k, £)}

respectively. For these sets, we shall show that the assumption (Ao)
~(A3) in §2 are all satisfied. The assumption (Ao) is obviously valid.
If ciχ - dh = 0, ch - dh = 0 and ch - dh = 0 (1 ^ ii,i2,h,h ^ N + ΐ),
then

whence (Aj) is satisfied.
The assumption (A2) can be easily seen by the relation (3.8) and

the following classical theorem of E. Borel,

THEOREM 4.2 ([1]). Let huh2, ,hp be nowhere vanishing holo-
morphic functions on C satisfying the relation

K + h2+ + hp = 0 .

Then, there is a partition of the set of indices / : = {1,2, ,p} into the

disjoint union of subsets

I = /1 u U /*

such that for any i,j elκ hi/hj = const, and

Σ ^ = 0 (1 ^ K ̂  k) .
ieiκ

Particularly, for any i = 1, , p, there is some j such that i Φ j and
hi/hj = const.

To verify the assumption (A3), we take aίσjσ and akaίσ (1 <; σ ^ s)
in C satisfying the condition

ϋι, J\) ++ (K A)> (h> h) ^> (K £J, , (is, js) ^> (&s, ̂ s) ,

namely, fiagjJfkσQeσ = const. (1 <; σ ^ s). This implies that

for some constant c. If {<x, , i j = {fĉ  .. ,fe5}, we have a relation

flWk. "'9jg = cgiχgt% - g£s .

On the other hand, there is no algebraic relation among gl9 , 0
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because g is assumed to be algebraically non-degenerate. We can con-
clude {jlf j2, , J = {A,£2, - , A} Similarly, {j19 ...,/,} = {̂ , . . . ,£ s }
implies {ίlf , is} = {kl9 , fcβ}. This shows that the assumption (A3) is
also satisfied.

By virtue of Main Lemma, we can conclude that, after a suitable
change of indices i and j of ft and ίfy individually,

fiffj/fuSi = const.

if and only if (i,j) = (£,k) for any (ΐ,i) and (k, ΐ) with c< — dj Φ 0 and
ck — d£ Φ 0. Moreover, by the relation (3.8) and Theorem 4.2, we have

fiΰj - fj9i = 0

for any i, j with atj e C In particular, as a result of (i) of Main
Lemma,

i f m + l ^ i ^ N + 1 , l ^ ^ m o r l ^ ί

E a s i l y w e s e e

fi __ fz _. . . . __ /N+

Going back to the original indices, this shows that there is a permuta-

tion 7r = ί1'2' ' ' *'N + λ) such that
\π19 π2, , πN+i )

J\ __ J 2 = = . . . = = JN + l

Therefore, / and g are related as L g = f with a projective transform-
ation

Let us prove Theorem II for the general case. Let /, g be mero-
morphic maps which satisfy the conditions as in Theorem II, where
we assume /(0),#(0) eHN+2. Choosing homogeneous coordinates as in
(4.1), we take representations / = fx: f2: : fN+1 and g = gλ\ g2: : ^ + 1

with nowhere zero holomorphic functions f19f2, -,/#+!,#i,#2> >ffar+i-
For any α = (ax, α2, , aN+ι) e C^+1 — {0}, we consider a holomorphic map
fa of C into PNiC) defined as
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/«(«) = /i(<w): fiiβΛ): : /*+1(αz) (z e C)

where αz = {axz9 a2z, , ί%+12). And, we define a m a p ga-C -* PN(C)

similarly by g. Then, the following fact is valid.

LEMMA 4.3. Let E be the set of all aeCn — {0} such that v(fa, HN+2)(z)
Φ v(f,HN+2)(az) or v(ga,HN+2)(z) Φ v(g,HN+2)(az) for some z. Then, for
the canonical map & : (zl9 , zn) e Cn — {0} >-> zx: : zn e Pn~\C), the set

is nowhere dense in Pn~\C).

For the proof, see e.g., [3], Proposition 2.7, p. 275.
Let SN+ι be the set of all permutations of indices 1,2, ,2V + 1.

By Lπ we denote the projective linear transformation of PN(C) defined
as

Lπ: w't = wπi (1 ^ i ^ N + 1)

for each π = (lf 2f ' " ' N + λ) e SN+1. For any a in Cn - (£7 U {0}), since

/ α and ga satisfy the assumptions of Theorem II as holomorphic maps
of C into PN(C)9 applying Theorem II for the case n = 1, we can con-
clude that Lff ga ~faίor some πeSN+ί. Let FΛ be the set of all points
a in Cn - (£7 U {0}) such that L,. ̂ α = / β . Then, Cw - (ί7 U {0}) = LU*™ F ,
Each Fπ is an analytic subset of Cn — (£7 U {0}). In this situation, it
can be easily seen that F*o = Cn — (E U {0}) for some τr0. This shows
that Theorem II is also true for the case n*>2.

We shall prove next Theorem I. Let /, g be algebraically non-
degenerate meromorphic maps of Cn into PN(C) such that v(f, Ht) —
v(g, Hi) = 0 f or i = 1, •, N + 1 and

min Mf, Hj), N) = min (rfg, Hά), N)

for = N + 2, , 2N + 3. Apply Theorem II to N + 2 hyperplanes
HlfH2,---,HN+1 and #« for each i = N + 2, -,2N + 3. There is a
projective linear transformation Lt such that Lvg = / and L̂  permutes
hyperplanes ί^, -,HN+1 and fixes iί^. By the assumption of non-
degeneracy, we have easily L : = L̂ +2 = . - . = : L2Λr+3. This implies that
L fixes ΛΓ + 2 hyperplanes ffjv+2, > fl*2^+3 in general position. It follows
that L = identity and so / = #, which completes the proof of Theorem
I.
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