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On Harmonic Theory in Flows

Hong Kyung Pak

Abstract. Recently [8], a harmonic theory was developed for a compact contact manifold from the

viewpoint of the transversal geometry of contact flow. A contact flow is a typical example of geodesi-

ble flow. As a natural generalization of the contact flow, the present paper develops a harmonic theory

for various flows on compact manifolds. We introduce the notions of H-harmonic and H∗-harmonic

spaces associated to a Hörmander flow. We also introduce the notions of basic harmonic spaces asso-

ciated to a weak basic flow. One of our main results is to show that in the special case of isometric flow

these harmonic spaces are isomorphic to the cohomology spaces of certain complexes. Moreover, we

find an obstruction for a geodesible flow to be isometric.

1 Introduction

Let F be a geodesible flow on a manifold M of dimension m = 1 + q generated by
a nonsingular vector field T. Then there exists a Riemannian metric g on M with

respect to which F is geodesic, that is, the dual 1-form ω to T satisfies

(1.1) ιTω = 1, LTω = 0,

where ιT (resp. LT) denotes the interior product (resp. the Lie derivative) with respect
to T. The contact form ω on a contact manifold (M, ω) satisfies

(1.2) ω ∧ (dω)q/2 6= 0.

The contact flow Fω generated by ω is a typical example of geodesible flows. Another
important example of geodesible flows is an isometric flow which is defined by a
nonsingular Killing vector field.

There have been extensively studied harmonic theory on a compact Sasakian man-

ifold by many mathematicians since Sasaki introduced contact metric structures [13].
For instance, Tachibana [14] and Ogawa [7] considered special harmonic spaces,
so-called C-harmonic and C∗-harmonic spaces, which seem to be closely associated
with the contact structure. In the compact Sasakian case, they showed that such C-

harmonic and C∗-harmonic spaces have nice relationships with the harmonic spaces
on the manifold and moreover, satisfy several nice properties like decomposition the-
orem.

On the other hand, Rumin [10], [11] constructed a new De Rham complex on a

compact contact manifold of dimension 2n + 1 whose cohomology is isomorphic to
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the De Rham cohomology on the manifold. Furthermore, he obtained a certain van-
ishing theorem of the k-th De Rham cohomology on a compact pseudo-Hermitian

manifold where k < n.

Recently [8], a harmonic theory on various harmonic forms, such as basic har-
monic, C-harmonic and C∗-harmonic forms and so on, was studied in a situation of
a compact contact manifold. The results obtained in [8] extend those established in
the K-contact or Sasakian case.

In the present paper, we develop a harmonic theory for various flows on a com-

pact manifold. As a natural generalization of the case of contact flows, we introduce
the notions of H-harmonic and H∗-harmonic spaces associated to a Hörmander
flow. We also introduce the notions of basic harmonic spaces associated to a weak
basic flow. One of our main results is to show that in the special case of isomet-

ric flow these harmonic spaces are isomorphic to the cohomology spaces of certain
complexes. Moreover, we find an obstruction for a geodesible flow to be isometric.

The author would like to thank the referee for his useful suggestions.

2 Fundamental Materials for a Flow

Let F be a flow on a Riemannian manifold (M, g) of dimension m = 1 + q gener-
ated by a unit vector field T. Let ω be the dual 1-form to T, which will be called a
flow form. A pair (F, ω) is denoted by a flow F whose flow form is ω. There is an
orthogonal decomposition of the tangent bundle TM

TM = D ⊕ E,

where D := kerω and E is the tangent bundle to F. This gives rise to the associated
bigrading of the graded algebra Ω

∗ of all differential forms on M

(2.1) Ω
u

=

⊕

k+`=u

Ω
k,`,

where Ω
k,` := Γ(

∧k
D∗⊗

∧`
E∗). Correspondingly, the exterior differential operator

d is also decomposed into

d = d0,1 + d1,0 + d2,−1
=: dE + dB + d2,−1,

where each di, j is the bihomogeneous differential of bidegree (i, j).

And let δ := δ0,1 + δ1,0 + δ2,−1
=: δE + δB + δ2,−1 be the decomposition of the

codifferential operator δ corresponding to the decomposition of d with respect to g.
The following relations hold on φ ∈ Ω

s,r ;

δEφ = (−1)m(s+r+1)+1 ∗ dE ∗ φ,

δBφ = (−1)m(s+r+1)+1 ∗ dB ∗ φ,

δ2,−1φ = (−1)m(s+r+1)+1 ∗ d2,−1 ∗ φ,
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where ∗ is the Hodge star operator defined by the Riemannian metric induced from
g. Note that ∗φ ∈ Ω

q−k,1 for φ ∈ Ω
k,0.

Let e(ω) be the formal adjoint of ιT with respect to the metric g defined by

e(ω)φ := ω ∧ φ.

Since dim F = 1, we have:

Lemma 2.1 Let (F, ω) be a flow on a Riemannian manifold (M, g). Then for any k the

operator e(ω) : Ω
k,0 −→ Ω

k,1 is an isomorphism with inverse ιT : Ω
k,1 −→ Ω

k,0.

Proof Let φ ∈ Ω
k,0 satisfy e(ω)φ = 0. Then ιTφ = 0, so that

φ = ιTe(ω)φ + e(ω)ιTφ = 0.

Thus e(ω) is injective.

Now for ψ ∈ Ω
k,1 take ιTψ ∈ Ω

k,0. Since e(ω)ιTψ = ψ, we conclude that e(ω) is
surjective.

The metric g is decomposed into g = gD +gE. We say that a flow (F, ω) is geodesic
with respect to g if LXgE = 0 for all X ∈ Γ(D). Or equivalently, ω satisfies (1.1). The

following observation is immediate.

Lemma 2.2 Let (M, g,F, ω) be as in Lemma 2.1. Then F is geodesic if and only if

dω = d2,−1ω ∈ Ω
2,0.

It is useful to introduce operators L, Λ on Ω
k

(2.2) Lφ := dω ∧ φ, Λφ := (−1)m(k+1)+1 ∗ L ∗ φ,

and the spaces J and J∗

(2.3) Jk := ker Λ ∩ Ω
k,0, Jk+1

∗
:= ker L ∩ Ω

k,1.

These spaces were discussed in [11] for the contact flow case. Note that L is the formal
adjoint of Λ with respect to g and that ∗φ ∈ Jm−k

∗
for φ ∈ Jk.

Lemma 2.3 Let (M, g,F, ω) be as in Lemma 2.1. Then L (resp. Λ) commutes with

operators e(ω) and d (resp. ιT and δ). Moreover,

L = e(ω)d + de(ω), Λ = διT + ιTδ.

In particular, if F is geodesic then L (resp. Λ) commutes with ιT (resp. e(ω)).
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Proof It can be easily seen that L commutes with e(ω), d and L = e(ω)d + de(ω). In
particular, when F is geodesic we have from (1.1)

LιTφ = dω ∧ ιTφ = ιTLφ

for φ ∈ Ω
k.

Furthermore, we find useful operator identities. These are only due to the fact that

(F, ω) is a flow.

Lemma 2.4 Let (M, g,F, ω) be as in Lemma 2.1. Then we have

d2,−1
= ιTL on Ω

k,1,

δ2,−1
= e(ω)Λ on Ω

k,0.

3 Harmonic Spaces for a Hörmander Flow

Let (F, ω) be a flow on a Riemannian manifold (M, g) of dimension m = 1 + q. It

should be noted that the condition d2,−1ω = 0 on M if and only if the distribution D

is integrable. On the contrary, d2,−1ω 6= 0 on M means that D satisfies a Hörmander
condition, that is, Γ(D) generates Γ(TM) as a Lie algebra. In this sense:

Definition A flow (F, ω) is a Hörmander flow on a manifold M if the distribution

D := kerω satisfies a Hörmander condition.

A contact flow is an example of a Hörmander flow. In what follows we consider
a Hörmander flow (F, ω). Then dω 6= 0 on M. Such a 2-form dω is called the
fundamental form associated to a Hörmander flow (F, ω).

From now on M is supposed to be compact. Let 〈· , ·〉 be the global inner product
on M

〈φ, ψ〉 :=

∫

M

φ ∧ ∗ψ.

Introduce on Ω
∗ Laplacians ∆ and ∆B defined as

∆ := dδ + δd, ∆B := dBδB + δBdB.

∆B is called the basic Laplacian. A form φ ∈ Ω
∗ is said to be harmonic if ∆φ = 0.

Let H∗ be the space of all harmonic forms on (M, g). Observe that bigrading (2.1)

gives rise to

(3.1) ∆ = ∆
0,0 + ∆

−1,1 + ∆
1,−1,

where ∆
0,0

= dEδE + δEdE + dBδB + δBdB + d2,−1δ2,−1 + δ2,−1d2,−1. It is obvious that
on Ω

k,`

(3.2) ker ∆
0,0

= ker ∆.
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Set Hk,` := ker ∆
0,0 on Ω

k,`. In view of (3.2) we have an orthogonal decomposition

H
k
= H

k,0 ⊕ H
k−1,1.

Tachibana [14] established notions of C-harmonic and C∗-harmonic forms on
a compact Sasakian manifold which seem to be closely associated with the contact
structure. Since a contact flow is a geodesible Hörmander flow, it is natural to extend
these notions to the case of a Hörmander flow by considering the operators given in

(2.2).

Definition Let (F, ω) be a Hörmander flow on a compact Riemannian manifold
(M, g). A k-form φ ∈ Ω

k is a H-harmonic (resp. H∗-harmonic) form if it satisfies

ιTφ = 0, dφ = 0, δφ = e(ω)Λφ (resp. e(ω)φ = 0, dφ = ιTLφ, δφ = 0).

Let Hk
H (resp. Hk

H∗) be the space of all H-harmonic (resp. H∗-harmonic) k-forms for
(F, ω).

In case of the contact flow, the spaces HH and HH∗ coincide with CH and C∗H

respectively [8]. Then we obtain:

Theorem 3.1 Let (F, ω) be a Hörmander flow on a compact Riemannian manifold

(M, g) of dimension m = 1 + q. Then for any k

H
k,0

= H
k
H ∩ Jk, H

k,1
= H

k+1
H∗ ∩ Jk+1

∗
.

Proof Let φ ∈ H
k,0. By definition, φ satisfies

dEφ = dBφ = δBφ = δ2,−1φ = 0.

From Lemma 2.4, this means that φ ∈ H
k
H and δ2,−1φ = 0. On the other hand, ob-

serve that the operator Λ restricted to Ω
k,0 sends to Ω

k−2,0. This, combined with
Lemma 2.1, says that ker δ2,−1

= ker Λ on Ω
k,0. Therefore, we deduce Hk,0

=

Hk
H ∩ Jk.

Similarly, for ψ ∈ Hk,1 we find

dBψ = d2,−1ψ = δEψ = δBψ = 0.

This means that ψ ∈ Hk+1
H∗ and d2,−1ψ = 0. In this case the operator L restricted to

Ω
k,1 sends to Ω

k+2,1, so that Hk,1
= Hk+1

H∗ ∩ Jk+1
∗

.

From the definition the following duality holds:

Corollary 3.2 Under the same situation as in Theorem 3.1, we have for any k

H
k
H = H

m−k
H∗ .
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Remarks (a) We may define looser notions than the above definition (cf. [7]). A
k-form φ ∈ Ω

k is called a H̃-harmonic (resp. H̃∗-harmonic) form for a Hörmander

flow (F, ω) if

dφ = 0, δφ = e(ω)Λφ (resp. dφ = ιTLφ, δφ = 0).

Let Hk
H̃

(resp. Hk
H̃∗

) be the space of all H̃-harmonic (resp. H̃∗-harmonic) k-forms.
Considering bigrading gives rise to an orthogonal decomposition

H
k
H̃ = H

k,0
H̃

⊕ H
k−1,1
H̃

,

where H
k,0
H̃

:= Hk
H̃
∩Ω

k,0 and H
k,1
H̃

:= Hk+1
H̃

∩Ω
k,1. It is immediate from the definition

that H
k−1,1
H̃

= Hk−1,1, so that

(3.3) H
k
H̃ = H

k
H ⊕ H

k−1,1.

Similarly if we set H
k,0
H̃∗

:= Hk
H̃∗

∩ Ω
k,0 and H

k,1
H̃∗

:= Hk+1
H̃∗

∩ Ω
k,1, then we have a

corresponding orthogonal decomposition

(3.4) H
k
H̃∗

= H
k,0
H̃∗

⊕ H
k−1,1
H̃∗

= H
k,0 ⊕ H

k
H∗ .

From (3.3) and (3.4) observe that for any k

(3.5) H
k
H̃ ∩ H

k
H̃∗

= H
k, H

k
H̃ ∪ H

k
H̃∗

= H
k
H ⊕ H

k
H∗ .

(b) The Hörmander condition imposed in Theorem 3.1 ensures L 6= 0 on M. It
may be helpful to consider another extreme case where the distribution D = kerω
for (F, ω) is integrable. In this case, we easily find that for any k

(3.6) Jk
= Ω

k,0, Jk
∗

= Ω
k−1,1,

so that
H

k
H = H

k,0, H
k
H∗ = H

k−1,1

and

H
k
H̃ = H

k
= H

k
H̃∗
.

It follows from this observation that if we drop the Hörmander condition in Theo-
rem 3.1 then Hk,0 (and Hk,1) varies according to L (and Λ) vanishes or not.

On the other hand, it should be noted that (3.6) does not hold in general. For
example, if Fω is a contact flow of codimension 2n then for any k = 1, . . . , n

J2k 6= Ω
2k,0.

Indeed, we have the following formula [8]

(ΛLp − Lp
Λ)φ = 2p[(2n + 2 − 2p − 2l)Lp−1φ + 2e(ω)ιTLp−1φ]
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for any l-form φ ∈ Ω
l, where p is any non-negatve integer and L−1 ≡ 0. Then we see

that

Λ(dω)k
= 2k(2n + 2 − 2k)(dω)k−1.

Therefore, Λ(dω)k 6= 0 on M because k ≤ n.

Since Jk
= Ω

k,0 for k = 0, 1, we deduce:

Corollary 3.3 Let (M, g,F, ω) be as in Theorem 3.1 and M be connected. Then

H
0
H = H

0
= R, H

1
H = H

1,0 ⊂ H
1.

4 Harmonic Spaces for a Weak Basic Flow

Let (F, ω) be a flow on a compact Riemannian manifold (M, g) of dimension m =

1 + q. We define a subspace Ω
∗,`
B (` = 0, 1) of Ω

k,` by

Ω
k,0
B := {φ ∈ Ω

k,0 | dEφ = 0}

Ω
k,1
B := {φ ∈ Ω

k,1 | δEφ = 0}.

An element in Ω
∗,`
B is called a basic form for F. We note that (Ω∗,0

B , dB) is nothing

but the ordinary basic complex (Ω∗

B(F), dB) with respect to the flow F (see [9], [16]).
Observe that LTφ = 0 for φ ∈ Ω

∗,0
B .

Now we choose an orientation on (M, g,F) as follows. In our situation, ω is the
characteristic form for F. Its transversal volume form is defined by ν := ∗ω. The

volume form on M is, by convention, given by µ = ν ∧ ω.
Let ∆B be the basic Laplacian given in Section 3. Note that ∆B(Ωk,`) ⊂ Ω

k,`. We
start with the following observation.

Theorem 4.1 Let (F, ω) be a flow on a Riemannian manifold (M, g) of dimension

m = 1 + q with transversal volume form ν ∈ Ω
q,0
B . If F is isoparametric, i.e., the mean

curvature 1-form κ for F satisfies κ ∈ Ω
1,0
B , then ∆B : Ω

∗,`
B −→ Ω

∗,`
B is well-behaved for

` = 0, 1.

Proof Let ∗D be the star operator on Ω
∗,0 with respect to the horizontal metric gD.

Since ν ∈ Ω
q,0
B , the restriction of ∗D to Ω

∗,0
B induces an isomorphism

∗D : Ω
k,0
B −→ Ω

q−k,0
B .

It is obvious that for φ ∈ Ω
k,0
B

(4.1) ∗φ = ∗Dφ ∧ ω, ∗Dφ = (−1)q−k ∗ (φ ∧ ω).

We introduce an auxiliary codifferential operator δT on Ω
k,0 defined by

δT := (−1)q(k+1)+1 ∗D dB ∗D .
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δT can be extended to Ω
∗ by defining δT = δT ⊗ id. From the construction it is clear

that

δT(Ω
k,0
B ) ⊂ Ω

k−1,0
B .

In addition, a direct computation similar as in [16] shows that on Ω
k,0
B

(4.2) δB = δT + ιN ,

where N denotes the mean curvature vector field for F dual to κ. Indeed, by using a
Rummler’s formula

(4.3) dBω = −κ ∧ ω,

we have from (4.1)

δBφ = (−1)m(k+1)+1 ∗ dB(∗Dφ ∧ ω)

= (−1)m(k+1)+1 ∗
(

dB ∗D φ ∧ ω + (−1)q−k ∗D φ ∧ dBω
)

= (−1)q(k+1)+1
(

∗DdB ∗D φ− ∗De(κ) ∗D φ
)

,

which proves (4.2). The hypothesis κ ∈ Ω
1,0
B implies

(4.4) δB(Ω
k,0
B ) ⊂ Ω

k−1,0
B .

Therefore, we conclude that

∆B : Ω
k,0
B −→ Ω

k,0
B

is well-behaved.

Next, from δBδE + δEδB = 0 it is easy to see that δB(Ω
k,1
B ) ⊂ Ω

k−1,1
B . Moreover, if

we notice

(4.5) ∗ : Ω
k,1
B (resp. Ω

k,0
B ) −→ Ω

q−k,0
B (resp. Ω

q−k,1
B ),

then (4.4) implies δEdBψ = ∗dEδB ∗ψ = 0 for ψ ∈ Ω
k,1
B . It follows that ∆B : Ω

k,1
B −→

Ω
k,1
B is also well-behaved.

Remarks (a) The tenseness problem for foliations has been attacked by several
mathematicians: Given a foliation F on a compact manifold M, is there a Rieman-
nian metric g with respect to which the mean curvature form κ for F is basic? Re-
cently, it was answered in the affirmative when F is Riemannian [2], [5]. That is, if

F is a Riemannian foliation then there exists a bundle-like metric stisfying κ ∈ Ω
1,0
B .

Thus a Riemannian flow satisfies two hypotheses, κ, ν ∈ Ω
∗,0
B , imposed on The-

orem 4.1. However, this problem is still open when F is a flow admitting basic
transversal volume form but is not Riemannian.
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For the contact flow case Theorem 4.1 was proved in [8]. Observe that a contact
flow (F, ω) satisfies the hypotheses of Theorem 4.1.

(b) When p := dim E > 1, we replace the space Ω
∗,1
B by Ω

∗,p
B . Then by a similar

way we can show that ∆B : Ω
∗,`
B −→ Ω

∗,`
B is well-behaved for ` = 0, p.

In the sense of Theorem 4.1 we may define following harmonic spaces for an

isoparametric flow with basic transversal volume form. For simplicity, such a flow
is called a weak basic flow.

Definition Let (F, ω) be a weak basic flow on a compact Riemannian manifold

(M, g). A form φ ∈ Ω
∗,`
B (` = 0, 1) is said to be basic harmonic if ∆Bφ = 0. Let

H
∗,`
B (` = 0, 1) be the space of all basic harmonic forms for (F, ω).

Remark We observe that H
∗,1
B is a new basic harmonic space for F, while H

∗,0
B co-

incides with the ordinary basic harmonic space H∗

B(F) with respect to the flow F. It
was proved in [8] that in case of the contact flow there is a basic Hodge isomorphism

for any k

(4.6) H
k,0
B = Hk

B(F),

where HB(F) := ker dB

im dB
is the ordinary basic cohomology space of the basic complex

(

Ω
∗

B(F), dB

)

with respect to F. It is well-known that (4.6) holds for the case of Rie-
mannian foliations (see [3], [16]).

By a similar way as in the proof of Theorem 3.1, we have:

Theorem 4.2 Let (F, ω) be a weak basic flow on a compact Riemannian manifold

(M, g) of dimension m = 1 + q. Then for any k

H
k,0

= H
k,0
B ∩ Jk, H

k−1,1
= H

k−1,1
B ∩ Jk

∗
.

Since ∗∆B∗ = ∆B, it holds a duality property from (4.5).

Corollary 4.3 Let (F, ω) be as in Theorem 4.2. Then for any k

H
k,0
B = H

q−k,1
B .

In the low degree case we easily verify from the definition:

Corollary 4.4 Let (M, g,F, ω) be as in Theorem 4.2 and M be connected. Then

H
0,0
B = H

0
= R, H

1,0
B = H

1,0 ⊂ H
1.

If, in particular, F is geodesic, we have further:

Corollary 4.5 Let (M, g,F, ω) be as in Theorem 4.2. If, moreover, F is geodesic then

dim H
q,0
B ≥ 1.
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Proof It suffices to show dim H
0,1
B ≥ 1. Indeed, the flow form ω ∈ Ω

0,1 satisfies

δω = 0, dBω = 0

since F is geodesic. That is, ω ∈ H
0,1
B .

Remarks (a) Corollary 4.4 is a special case of the following result in the cohomology

terminology: for any foliation F on a compact manifold the inclusion H1
B(F) −→ H1

is injective (say, see [16, 9.9]). Corollary 4.5 in the cohomology terminology is also
found in [16, 9.21]. Here Hk denotes the k-th De Rham cohomology space on M.

(b) Carrière [1] gave an example of Riemannian flows on compact 3-dimensional

manifolds with H2
B(F) = 0. His example is not geodesic.

We abbreviate “geodesic weak basic flow” to “basic flow”. From Carrière’s example

it is natural to consider the problem when a basic flow achieves dim H
q,0
B = 1. A

characterization to this problem will be given in Section 5.

Now we investigate the relationship between the spaces Hk
H , Hk

H∗ and H
k,`
B . In

case of the contact flow, the following result is found in [8]. Note that a contact flow
is a basic Hörmander flow. We have:

Theorem 4.6 Let (F, ω) be a weak basic Hörmander flow on a compact Riemannian

manifold (M, g) of dimension m = 1 + q. Then for any k

H
k,0
B = H

k
H , H

k,1
B = H

k+1
H∗ .

Proof If a form φ ∈ Ω
k is H-harmonic, then ιTφ = 0 means that φ ∈ Ω

k,0, and so
dφ = 0 is equivalent to dEφ = dBφ = 0. Furthermore, we see from Lemma 2.4 that

δφ = e(ω)Λφ = δ2,−1φ, so that δBφ = 0. Therefore φ ∈ H
k,0
B , and vice versa.

If ψ ∈ Ω
k+1 is H∗-harmonic, then ψ ∈ Ω

k,1 because e(ω)ψ = 0. It follows that

δψ = 0 is equivalent to δEψ = δBψ = 0. Since dψ = ιTLψ = d2,−1ψ, we see that

dBψ = 0. Thus ψ ∈ H
k,1
B , and vice versa.

5 Harmonic Spaces for an Isometric Flow

In this section, we are interested in the following question: when is the operator

e(ω) : Ω
k,0
B −→ Ω

k,1
B well-behaved? This is related to the following question: when

does (Ω
∗,1
B , dB) become a differential complex?

Lemma 5.1 Let (F, ω) be a Riemannian flow on a Riemannian manifold (M, g) with

bundle-like metric. Then for any k we have an isomorphism

e(ω) : Ω
k,0
B −→ Ω

k,1
B

with inverse ιT .

Proof For a Riemannian foliation, it is useful to take an basic adapted orthonormal
frame for a distinguished chart

(

U , (x, y)
)

of the foliation, say {ω1 = ω, ωa} with
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ωa ∈ Ω
1,0
B (a = 1, . . . , q) (see [4]). Then we can compute locally for φ ∈ Ω

k,0
B as

follows. Write φ = φA(y)ωA. Then

δE

(

e(ω)φ
)

= (−1)mk+1 ∗ dE ∗
(

φA(y)ω ∧ ωA

)

= (−1)mk+1 ∗ dE

(

φA(y) ∗D ωA

)

= (−1)mk+1 ∗
(

dEφA(y) ∧ ∗DωA + φA(y)dE ∗D ωA

)

= 0.

This means that e(ω) : Ω
k,0
B −→ Ω

k,1
B is well-defined. Hence e(ω) is injective by

Lemma 2.1.

Finally it is enough to show ιTψ ∈ Ω
k,0
B for ψ ∈ Ω

k,1
B . Since F is Riemannian, ψ

can be written as ψ = ψA(y)ω ∧ ωA. Hence a similar way gives rise to

dE(ιTψ) = dE

(

ψA(y)ωA

)

= dEψA(y) ∧ ωA + ψA(y)dEωA

= 0,

so that ιTψ ∈ Ω
k,0
B .

In order to develop a harmonic theory, we consider an isometric flow which is
generated by a nonsingular Killing vector field. It is well-known [1], [16] that an
isometric flow is equivalent to a geodesible Riemannian flow. Given an isometric

flow F on M, there exists a Riemannian metric g on M with respect to T defining F

is a unit Killing vector field. In this case, we have further relations.

Lemma 5.2 Let (F, ω) be an isometric flow on a Riemannian manifold (M, g) gener-

ated by a unit Killing vector field T. Then

LT = −δe(ω) − e(ω)δ.

In particular, if φ ∈ Ω
∗,1
B then LTφ = 0.

Proof It suffices to notice that

LT = ∗LT∗

because T is Killing. Then Lemma 2.3 completes the proof.

A contact flow (F, ω) is said to be R-contact if F is Riemannian. Observe that a R-

contact flow is an isometric flow. In the compact case we extend a result [8] obtained
for the case of a R-contact flow.

Theorem 5.3 Let (F, ω) be an isometric flow on a compact Riemannian manifold

(M, g) of dimension m = 1 + q. Then for any k the operator e(ω) : H
k,0
B −→ H

k,1
B

is an isomorphism with inverse ιT .

https://doi.org/10.4153/CMB-2003-057-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-057-9


628 Hong Kyung Pak

Proof For φ ∈ H
k,0
B , we see from Lemma 5.1 e(ω)φ ∈ Ω

k,1
B . Since F is geodesic,

Lemma 2.2 implies

(5.1) d
(

e(ω)φ
)

= dω ∧ φ ∈ Ω
k+2,0.

Thus dB

(

e(ω)φ
)

= 0.
On the other hand, by Lemma 5.2 we have

(5.2) δ
(

e(ω)φ
)

= −LTφ− e(ω)δφ = 0,

which implies δB

(

e(ω)φ
)

= 0. Hence e(ω)φ ∈ H
k,1
B .

Now we show that ιT : H
k,1
B −→ H

k,0
B is also well-behaved. Indeed, for ψ ∈ H

k,1
B a

similar way shows

d(ιTψ) = LTψ − ιTdψ = 0,

δ(ιTψ) = ∗de(ω) ∗ ψ = ∗(dω ∧ ∗ψ) ∈ Ω
k−2,1.

The last formula says that δB(ιTψ) = 0. Hence ιTψ ∈ H
k,0
B .

Theorem 5.3, together with Theorem 4.2, yields a Poincare type duality on HB as

follows.

Corollary 5.4 Under the same situation as in Theorem 5.3, we have an isomorphism

∗̄ := ∗ ◦ e(ω) : H
k,0
B −→ H

q−k,0
B for any k.

In addition, the following result shows that H
q,0
B provides an obstruction for a

geodesible flow to be isometric.

Corollary 5.5 Let (F, ω) be a basic flow on a compact connected Riemannian manifold

(M, g). Then dim H
q,0
B ≥ 1. Furthermore, the following are equivalent.

(a) F is isometric with a bundle-like metric g,

(b) dim H
q,0
B = 1.

Proof Notice that
H

q,1
B = H

m
= R.

Thus Theorem 5.3 yields

(5.3) H
q,0
B = H

q,1
B = R.

For the converse, refer to [6].

From Lemma 5.1 and Lemma 5.2 we can discuss the question when (Ω
∗,1
B , dB)

becomes a differential complex.

Theorem 5.6 Let (M, g,F, ω) be as in Lemma 5.2. Then (Ω
∗,1
B , dB) is a differential

complex.
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Proof First we claim that dB : Ω
k,1
B −→ Ω

k+1,1
B is well-behaved for any k. Take an basic

adapted orthonormal frame {ω1 = ω, ωa} for a distinguished chart. By Lemma 5.2

we can write ψ ∈ Ω
k,1
B as ψ = ψA(y)ω ∧ ωA. Then Lemma 2.2 implies

δE(dBψ) = (−1)m(k+1)+1 ∗ dE ∗
(

dBψA(y) ∧ ω ∧ ωA − ψA(y)ω ∧ dBωA

)

= (−1)m(k+1)+1 ∗ dE

(

(−1)k ∗D

(

dBψA(y) ∧ ωA

)

+ (−1)kψA(y) ∗D dBωA

)

= 0.

Thus dBψ ∈ Ω
k+1,1
B .

On the other hand, it follows from Lemma 2.2, Lemma 2.4 and Lemma 5.1 that

(5.4) d2,−1ψ = ιT(dω ∧ ψ) ∈ Ω
k+2,0
B .

Now on Ω
∗ we get d2

B + dEd2,−1 + d2,−1dE = 0 because d2
= 0. Thus (5.4) implies

d2
Bψ = dEd2,−1ψ = 0,

which completes the proof.

Theorem 5.6 allows us to define a new cohomology space associated to the differ-
ential complex (Ω

∗,1
B , dB)

(5.5) H
∗,1
B := H(Ω

∗,1
B , dB).

Recall that the cohomology space H
∗,0
B of the differential complex (Ω

∗,0
B , dB) is noth-

ing but the ordinary basic cohomology space H∗

B (F). Theorem 5.6, combined with

Lemma 5.1, says that:

Corollary 5.7 Let (M, g,F, ω) be as in Lemma 5.2. Then we have a complex isomor-

phism

e(ω) : (Ω
∗,0
B , dB) −→ (Ω

∗,1
B , dB)

with inverse ιT .

Furthermore, we can show that e(ω) induces a cohomology isomorphism.

Theorem 5.8 Let (M, g,F, ω) be as in Theorem 5.3. Then

e(ω) : H
∗,0
B −→ H

∗,1
B

is an isomorphism with inverse ιT .

Proof Take φ ∈ Ω
k,0
B with dBφ = 0. Then by Lemma 2.2 and Lemma 5.1 we see that

e(ω)φ ∈ Ω
k,1
B and dB

(

e(ω)φ
)

= 0. Thus e(ω)[φ] := [e(ω)φ] is well-defined.
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Suppose that [e(ω)φ] = 0. Then there exists ψ ∈ Ω
k−1,1
B such that e(ω)φ = dBψ.

A direct computation by using Lemma 2.4 and Lemma 5.2 gives rise to

φ = ιTe(ω)φ = ιTdψ = −dιTψ.

It follows that [φ] = 0, that is, e(ω) is injective.

Now given [ψ] ∈ Hk,1
B , take ψ ∈ Ω

k,1
B with dBψ = 0. Then ιTψ ∈ Ω

k,0
B and

dBιTψ = LTψ − ιTdψ = 0,

so that [ιTψ] ∈ H
k,0
B .

Corollary 5.9 Under the same situation as in Theorem 5.8, we have a basic Hodge

isomorphism

H
k,1
B = Hk,1

B

for any k.

Corollary 5.9 can transfer previous results in terms of harmonic spaces into those
in the cohomology terminology under the situation of an isometric flow. For exam-

ple, Corollary 5.4 in the cohomology terminology is found in [16]. Corollary 5.5 in
the cohomology terminology is found in [16], [6]. In particular, (5.3) was obtained
in [12] by a different method, namely, by constructing the Gysin sequence for an
isometric flow.
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