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Abstract

In this study, a novel machine learning algorithm, restricted Boltzmann machine, is introduced. The algorithm is applied
for the spectral classification in astronomy. Restricted Boltzmann machine is a bipartite generative graphical model with
two separate layers (one visible layer and one hidden layer), which can extract higher level features to represent the
original data. Despite generative, restricted Boltzmann machine can be used for classification when modified with a free
energy and a soft-max function. Before spectral classification, the original data are binarised according to some rule. Then,
we resort to the binary restricted Boltzmann machine to classify cataclysmic variables and non-cataclysmic variables
(one half of all the given data for training and the other half for testing). The experiment result shows state-of-the-art
accuracy of 100%, which indicates the efficiency of the binary restricted Boltzmann machine algorithm.

Keywords: astronomical instrumentation — methods and techniques — methods: analytical — methods: data analysis
— methods: statistical

1 INTRODUCTION

With the rapid development of both the astronomical instru-
ments and various machine learning algorithms, we can ap-
ply the spectral characteristics of stars to classify the stars. A
great quantity of astronomical observatories have been built
to get the spectra, such as the Large Sky Area Multi-Object
Fibre Spectroscopic Telescope (LAMOST) in China. A vari-
ety of machine learning methods, e.g., principal component
analysis (PCA), locally linear embedding (LLE), artificial
neural network (ANN), and decision tree etc., have been
applied to classify these spectra in an automatic and effi-
cient way. In this study, we apply a novel machine learning
method, restricted Boltzmann machine (RBM), to classify
the cataclysmic variables (CVs) and non-CVs.

CVs are composed of the close binaries that contain a white
dwarf accreting material from its companion (Warner 2003).
Generally, they are small with an orbital period of 1–10 h.
The white dwarf is often called ‘primary’ star, whereas the
normal star is called the ‘companion’ or the ‘secondary’ star.
The companion star, which is ‘normal’ like our Sun, usually
loses its material onto the white dwarf via accretion.

The three main types of CVs are novae, dwarf novae,
and magnetic CVs. Magnetic CVs (mCVs) are binary star
systems with low mass and also with a Roche lobe-filling
red dwarf, which ‘gives’ material to a magnetic white dwarf.
Polars (AM Herculis systems) and Intermediate Polars (IPs)

are two major subclasses of mCVs (Wu 2000). More than a
dozen of objects have been classified as AM Her systems.
Most of the objects were found to be X-ray sources1 before
classified as AM Her’s resorting to optical observations.

Besides, Muno et al. (2009) presented a catalogue of 9017
X-ray sources identified in Chandra observations of a 2 ×
0.8° field around the Galactic center. And they found that the
detectable stellar population of external galaxies in X-rays
was dominated by accreting black holes and neutron stars,
while most of their X-ray sources may be CVs.

1.1 Previous work in spectral classification in
astronomy

Singh, Gulati, & Gupta (1998) applied PCA and ANN to
stellar spectral classification on O- to M-type stars, where
O-type stars are the hottest and the letter sequence (O to M)
indicates successively cooler stars up to the coolest M-type
stars. They adopted PCA for dimension reduction firstly, in
which they reduced the dimension to 20, with the cumulative
percentages larger than 99.9%. Then, they used multi-layer
back propagation (BP) neural network for classification.

Sarty and Wu (2006) applied two well-known multivariate
analysis methods, i.e., PCA and discriminant function anal-
ysis, to analyse the spectroscopic emission data collected by

1 http://ttt.astro.su.se/�stefan/amher0.html
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Williams (1983). By using the PCA method, they found that
the source of variation had correlation to the binary orbital
period. With the discriminant function analysis, they found
that the source of variation was connected with the equivalent
width of the Hβ line (Sarty & Wu 2006).

McGurk et al. (2010) applied PCA to analyse the stel-
lar spectra obtained from SDSS (Sloan Digital Sky Sur-
vey) DR6. They found that the first four principal compo-
nents (PCs) could remain enough information of the original
data without overpassing the measurement noise. Their work
made classifying novel spectra, finding out unusual spectra,
and training a variety of spectral classification methods, etc.,
not as hard as before.

Bazarghan (2012) applied self-organising map (SOM, a
kind of unsupervised ANN algorithm) to stellar spectra ob-
tained from the Jacoby, Hunter, and Christian (JHC) library,
and the author obtained the accuracy of about 92.4%. In the
same year, Navarro, Corradi, & Mampaso (2012) used the
ANN method to classify the stellar spectra with low signal-
to-noise ratio (S/N) on the samples of field stars, which were
along the line of sight towards NGC 6781 and NGC 7027
etc.,. They not only trained but also tested the ANNs with
various S/N levels. They found that the ANNs were insen-
sitive to noise and the ANN’s error rate was smaller, when
there were two hidden layers in the architecture of the ANN
in which there were more than 20 hidden units in each hidden
layer.

In the above, some applications of PCA for dimension re-
duction and ANN for spectral classification were reviewed in
astronomy. Furthermore, support vector machine (SVM) and
decision trees have also been used for spectral classification
in astronomy.

Zhang and Zhao (2004) applied single-layer perceptron
(SLP) and SVMs etc., for the binary classification problem,
i.e., the classification of AGNs (active galactic nucleus) and
S & G (stars and normal galaxies), in which they first se-
lected features using the histogram method. They found that
SVM’s performance was as good as or even better than that
of the neural network method when there were more features
chosen for classification. Ball et al. (2006) applied decision
trees to SDSS DR3. They investigated the classification of
143 million photometric objects and they trained the clas-
sifier with 477 068 objects. There were three classes, i.e.,
galaxy, star, and neither of the former two classes, in their
experiment.

From the perspective of feature extraction methods, some
researches in spectral classification based on linear dimen-
sion reduction technique, e.g., PCA, have been reviewed.
Except from linear dimension reduction method, nonlinear
dimension reduction technique has also been applied in spec-
tral classification for feature extraction.

Daniel et al. (2011) applied locally linear embedding
(LLE, a well known nonlinear dimension reduction tech-
nique) to classify the stellar spectra coming from the SDSS
DR7. There were 85 564 objects in their experiment. They
found that most of the stellar spectra was approximately a

one-dimensional (1D) sequence lying in a three-dimensional
(3D) space. Based on the LLE method, they proposed a novel
hierarchical classification method being free of the feature
extraction process.

1.2 Previous application of RBM

In this subsection, we present some representative applica-
tions of the RBM algorithm so far.

Salakhutdinov, Mnih, & Hinton (2007) applied RBM for
collaborative filtering, which is closely related to recommen-
dation system in machine learning community. Gunawardana
& Meek (2008) applied RBM for cold-start recommenda-
tions. Taylor & Hinton (2009) applied RBM for modeling
motion style. Dahl et al. (2010) applied RBM to phone recog-
nition on the TIMIT data set. Schluter & Osendorfer (2011)
applied RBM to estimate music similarity. Tang, Salakhut-
dinov, & Hinton (2012) applied RBM for recognition and
de-noising on some public face databases.

1.3 Our work

In this study, we applied the binary RBM algorithm to classify
spectra of CVs and non-CVs obtained from the SDSS.

Generally, before applying a classifier for classification,
the researchers always preprocess the original data, for ex-
ample, normalisation to get better features and thus to get
better performance. Thus, firstly, we normalise the spectra
with unit norm2. Then, to apply binary RBM for spectral
classification, we binarise the normalised spectra by some
rule, which we will discuss in the experiment. Finally, we
use the binary RBM for classification of the data, one-half of
all the given data for training and the other half for testing.
The experiment result shows that the classification accuracy
is 100%, which is state-of-the-art. And RBM outperforms
the prevalent classifier, SVM, with accuracy of 99.14% (Bu
et al. 2013).

The rest of this paper is organised as follows. In Section
2, we review the prerequisites for training RBM. In Section
3, we introduce the binary RBM and the training algorithm
for RBM. In Section 4, we present the experiment result.
Finally, in Section 5, we conclude our work in this study and
also present the future work.

2 PREREQUISITES

2.1 Markov chain

A Markov chain is a sequence composed of a number of
random variables. Each element in the sequence can transit
from one state to another one randomly. Indeed, a Markov
chain belongs to a stochastic process (Andrieu et al. 2003).
In general, the number of possible states for each element or
random variable in a Markov chain is finite. And a Markov

2 We say the norm of a vector x = (x1, . . . , xn) is unit, if �ix
2

i = 1.
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chain is a random process without memory. It is the current
state rather than the states preceding the current state that
can influence the next state of a Markov chain. This is the
well-known Markov Property (Xiong, Jiang, & Wang 2012).

Mathematically, a Markov chain is a sequence, X1, X2,
X3, . . . , with the following property:

P(Xn+1 = xn+1|X1 = x1, X2 = x2, . . . , Xn = xn)

= P(Xn+1 = xn+1|Xn = xn),

where the Xi (i = 1, 2, . . . ) is a random variable and it
usually can take on finite values for a specific problem in
the real world. And all the values as a whole can form a
denumerable set S, which is commonly called the state space
of the Markov chain (Yang et al. 2009).

Generally, all the probabilities of the transition from one
state to another one can be represented as a whole by a
transition matrix. And the transition matrix has the following
three properties:

• square: both the row number of the matrix and the col-
umn number of the matrix equal the total number of the
states that the random variable in the Markov chain can
take on;

• the value of a specific element is between 0 and 1: it
represents the transition probability from one state to
another one;

• all the elements in each row sum to 1: the sum of the
transition probabilities from any specific one state to all
the states equals 1.

If the initial vector, a row vector, is X0, and the transition
matrix is T, then after n steps of inference, we can get the
final vector X0 · Tn.

Then, we introduce the equilibrium of a Markov chain. If
there exists an integer Ñ, which renders all the elements in
the resulting matrix TÑ nonzero, or rather, greater than 0,
then we say that the transition matrix is a regular transition
matrix (Greenwell, Ritchey, & Lial 2003). If the transition
matrix T is a regular transition matrix, and there exists one
and only one row vector V satisfying the condition that v · Tn

approximately equals V, for any probability vector v and large
enough integer n, then we call the vector V as the equilibrium
vector of the Markov chain.

2.2 MCMC

Markov chain Monte Carlo (MCMC) is a sampling algorithm
from a specific probability distribution. For the detailed in-
formation of MCMC, the readers are referred to Andrieu
et al. (2003). The sampling process proceeds in the form of a
Markov chain and the goal of MCMC is to get a desired dis-
tribution, or rather, the equilibrium distribution via running
many inference steps. The larger the number of iterations is,
the better the performance of the MCMC is. And MCMC
can be applied for unsupervised learning with some hidden

variables or maximum likelihood estimation (MLE) learning
of some unknown parameters (Andrieu et al. 2003).

2.3 Gibbs sampling

Gibbs sampling method can be used to obtain a sequence of
approximate samples from a specific probability distribution,
in which sampling directly is usually not easy to implement.
For the detailed information of the Gibbs sampling, the read-
ers are referred to Gelfand (2000). The sequence obtained via
the Gibbs sampling method can be applied to approximate the
joint distribution and the marginal distribution with respect
to (w.r.t.) one of all the variables etc. In general, the Gibbs
sampling method is a method for probabilistic inference.

The Gibbs sampling method can generate a Markov chain
of random samples under the condition that each of the sam-
ple is correlated with the nearby sample, or rather, the prob-
ability of choosing the next sample equals to 1 in the Gibbs
sampling (Andrieu et al. 2003).

3 RBM

Considering that RBM is a generalised version of Boltzmann
Machine (BM), we first review BM in this section. For the de-
tailed information of BM, the readers are referred to Ackley,
Hinton, & Sejnowski (1985).

BM can be regarded as a bipartite graphical generative
model composed of two layers in which there are a number
of units with both inter-layer and inner-layer connections.
One layer is a visible layer v with m binary visible units
vi, i.e., vi = 0 or vi = 1 (i = 1, 2, . . . , m). For each unit in
the visible layer, the corresponding value is observable. The
other layer is a hidden (latent) layer h with n binary hidden
units hj. As in the visible layer, h j = 0 or h j = 1 (j = 1,
2, . . . , n). For each unit or neuron in the hidden layer, the
corresponding value is hidden, latent or unobservable, and it
needs to be inferred.

The units coming from the two layers of a BM are con-
nected with weighted edges completely, with the weights wij
(vi ↔ hj) (i = 1, 2, . . . , m, j = 1, 2, . . . , n). For the two
layers, the units within each specific layer are also connected
with each other, and also with weights.

For a BM, the energy function can be defined as follows:

E(v, h) = −
m∑

i, j=1

viai jv j −
n∑

i, j=1

hidi jh j

−
m∑

i=1

n∑
j=1

viwi jh j −
m∑

i=1

vici −
n∑

j=1

hjb j, (1)

where aij is the weight of the edge connecting visible units
vi and vj, dij the weight of the edge connecting hidden units
hi and hj, wij the weight of the edge connecting visible unit
vi and hidden unit hj. For a RBM, the bj is the bias for the
hidden unit hj in the following activation function (Sigmoid
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function f(x) = sigmoid(x) = 1/(1 + e−x))

p(h j = 1|v) = 1

1 + e−b j−
∑m

i=1 wi jvi

.

And in a RBM, the ci is the bias for the visible unit vi in the
following formula:

p(vi = 1|h) = 1

1 + e−ci−
∑n

j=1 wi jh j

.

Then, for each pair of a visible vector and a hidden vector
(v, h), the probability of this pair can be defined as follows:

p(v, h) = e−E(v,h)

PF
,

where the denominator PF in the fraction (a partition func-
tion) is:

PF =
∑
ṽ,h̃

p(̃v, h̃). (2)

Besides, a RBM is a graphical model with the units for both
layers not connected within a specific layer, i.e., there are only
connections between the two layers for the RBM (Hinton &
Salakhutdinov 2006). Mathematically, for a RBM, aij = 0
for i, j = 1, 2, . . . , m and dij = 0 for i, j = 1, 2, . . . , n. Thus,
the states of all the hidden units hj’s are independent given a
specific visible vector v and so are the visible units vi’s given
a specific hidden vector h. Then, we can obtain the following
formula:

p(h|v) =
∏

j

p(h j|v) and p(v|h) =
∏

i

p(vi|h).

3.1 Contrastive divergence

Contrastive divergence (CD) is proposed by Hinton and it
can be used to train RBM (Hinton, Osindero, & Teh 2006).
Initially, we are given vi (i = 1, 2, . . . , m), then we can
obtain hj (j = 1, 2, . . . , n) by the sigmoid function given in
the above. And the value of hj is determined by comparing
a random value r ranging from 0 to 1 with the probability
p(h j = 1|v). Then, we can reconstruct v by p(vi = 1|h).

We can repeat the above process backward and forward
until the reconstruction error is small enough or it has reached
the maximum number of iterations, which is set beforehand.
To update the weights and biases in a RBM, it is necessary
to compute the following partial derivative:

∂ log p(v, h)

∂wi j

= Edata[vih j] − Erecon[vih j], (3)

∂ log p(v, h)

∂ci

= vi − Erecon[vi], (4)

∂ log p(v, h)

∂bj

= Edata[hj] − Erecon[hj], (5)

where E[�] represents the expectation of �, and the sub-
script ‘data’ means that the probability is original-data-driven

whereas the subscript ‘recon’ means that the probability is
reconstructed-data-driven.

Then, the weight can be updated according to the following
rule:

�wi j = η(Edata[vih j] − Erecon[vih j]),

where η is a learning rate, which influences the speed of
convergence. And the biases can be updated similarly.

In Equations (3)–(5), Edata[�]’s are easy to compute. To
compute or inference the latter term Erecon[�], we can resort
to MCMC.

3.2 Free energy and soft-max

To apply RBM for classification, we can resort to the follow-
ing technique. We can train a RBM for each specific class.
And for classification, we need the free energy and the soft-
max function for help. For a specific visible input vector v, its
free energy equals to the energy that a single configuration
must own and it equals the sum of the probabilities of all
the configurations containing v. In this study, the free energy
(Hinton 2012) for a specific visible input vector v can be
computed as follows:

F(v) = −
⎡
⎣∑

i

vici +
∑

j

log(1 + ex j )

⎤
⎦ , (6)

where xj = bj + �iviwij.
For a given specific test vector v, after training the RBMc

on a specific class c, the log probability that RBMc assigns to
v can be computed according to the following formula:

log p(v|c) = −Fc(v) − log PFc,

here, the PFc is the partition function of RBMc. For a specific
classification problem, if the total number of classes is small,
there will be no difficulty for us to get the unknown log
partition function. In this case, given a specific training set,
we can just train a ‘soft-max’ model to predict the label for a
visible input vector v resorting to the free energies of all the
class-dependent RBMc’s:

log p(label = c|v) = e−Fc(v)−log P̃Fc∑
d e−Fd (v)−log P̃Fd

. (7)

In Equation (7), all the partition functions P̃Fs can be learned
by maximum likelihood (ML) training of the ‘soft-max’ func-
tion, where the maximum likelihood method is a kind of pa-
rameter estimation method generally with the help of the log
probability. Here, the ‘soft-max’ function for a specific unit
is generally defined in the following form:

p j = exj∑k
i=1 exi

,

and the parameter k means that there are totally k different
states that the unit can take on.
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For clarity, we show the complete RBM algorithm in the
following. The RBM algorithm as a whole based on the CD
method can be summarised as follows:

• Input: a visible input vector v, the size of the hidden
layer nh, the learning rate η, and the maximum epoch
Me;

• Output: a weight matrix W, a biases vector for the hid-
den layer b, and a biases vector for the visible layer
c;

• Training:
Initialisation: Set the visible state with v1 = x, and set
W, b, and c with small (random) values,
For t = 1, . . . , Me,
For j = 1, . . . , nh,
Compute the following value:
p(h1 j = 1|v1) = sigmoid(b j + ∑

i v1iWi j);
Sample h1j from the conditional distribution P(h1 j|v1)

with the Gibbs sampling method;
End
For i = 1, 2, . . . , nv, //Here, the nv is the size of the
visible input vector v
Compute the following value:
p(v2 j = 1|h1) = sigmoid(ci + ∑

j Wi jh1 j);
Sample v2i from the conditional distribution
P(v2i|h1) with the Gibbs sampling method;
End
For j = 1, . . . , nh,
Compute the following value:
p(h2 j = 1|v2) = sigmoid(b j + ∑

i v2iWi j);
End
Update the parameters:
W = W + η[P(h1 = 1|v1)v1 − P(h2 = 1|v2)v2];
c = c + η(v1 − v2);
c = c + η[P(h1 = 1|v1) − P(h2 = 1|v2)];
End

For classification, after training the RBM using the above
algorithm, we need to compute the free energy function by
Equation (6) and then we can assign a label for the sample v
with Equation (7).

4 EXPERIMENT

4.1 Data description

There have been a large amount of surveys in astronomy.
SDSS is one of those surveys and it is one of the most not
only ambitious but also influential ones (The official web-
site of SDSS is http://www.sdss.org/). The SDSS has begun
collecting data since 2000. From 2000 to 2008, the SDSS
collected deep and multi-colour images containing no less
than a quarter of the sky and it also created 3D maps for
over 930 000 galaxies and also for over 120 000 quasars.
Data Release 7 (DR7) is the seventh major data release and
it provides spectra and redshifts etc., for downloading.

Figure 1. Spectrum of a cataclysmic variable star. The online
version is available at: http://cas.sdss.org/dr7/en/tools/explore/obj.asp?
id=587730847423725902.

All the data used in our experiment are coming from the
SDSS. All the samples in the entire data set are divided into
two classes, one class composed of non-CVs whereas the
other class composed of CVs. There are totally 6 818 non-
CVs and 208 CVs in our data set. Each sample is composed
of 3 522 variables, or rather, spectral components. Among the
total 6 818 non-CVs, there are 1 559 belonging to Galaxies,
3 981 belonging to Stars, and the remaining 1 278 belonging
to QSOs (Quasi-stellar objects)3.

In the following, we show the CVs in detail in our exper-
iment. It is common that there will be transparent Balmer
absorption lines in their spectra when the CVs outburst. A
representative spectrum of the CV from the SDSS is shown
in Figure 1. Much work has been done on the CVs for
ages. Without high-tech, the earlier researches are focused
on the optical characteristics of the spectrum. Then, with the
help of the high-tech astronomical instruments, the multi-
wavelength studies of the spectrum become to be true and
the astronomers can obtain much more information about the
CVs than before (Bu et al. 2013). From 2001 to 2006, Szkody
et al. had been using the SDSS to search for CVs. The CVs in
our data set are from their studies (Szkody et al. 2002, 2003,
2004, 2005, 2006, 2007), and we are deeply grateful to their
researches. For clarity, we show the number of the CVs they
found using the SDSS in Table 1. And the spectrum of a CV
in our data set is shown in Figure 2.

In our experiment, we chose randomly half of the whole
data for training and the remaining half for testing for both
non-CVs and CVs. In detail, for non-CVs, half of the total
6 818 samples (i.e. 3 409) were randomly chosen to train
the RBM classifier and the remaining half to test the RBM

3 For detail, the readers are referred to the official website of SDSS DR7:
http://www.sdss.org/dr7/
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Table 1. The number of the CVs that Szkody et al.
searched using the SDSS.

Paper # of CVs

Szkody et al. (2002) 22
Szkody et al. (2003) 42
Szkody et al. (2004) 36
Szkody et al. (2005) 44
Szkody et al. (2006) 41
Szkody et al. (2007) 28

Figure 2. Spectrum of a cataclysmic variable star in our data set.

Table 2. The number of the original data for training and for testing
respectively, where the number 3 522 is the dimension of the original
data.

CV/non-CV Train/Test #×Dim

non-CV Train 3 409 × 3 522
non-CV Test 3 409 × 3 522
CV Train 104 × 3 522
CV Test 104 × 3 522

classifier. Similarly, for CVs, half of all the 208 samples (i.e.
104) were randomly chosen to train the RBM classifier and
the remaining half to test the RBM classifier. To explain it
clearly, we showed the data used for training and testing the
RBM classifier in Table 2.

4.2 Parameter chosen

In this subsection, we present the parameters in our experi-
ment. We chose all the parameters referring to Hinton (2012).
The learning rate in the process of updating was set to be 0.1.
The momentum for smoothness and to prevent over-fitting
was chosen to be 0.5. The maximum number of epochs was
chosen to be 50. The weight decay factor, penalty, was chosen
to be 2 × 10−4. The initial weights were randomly generated

Table 3. The parameters in our experiment.

Parameter Value

Learning rate 0.1
Momentum 0.5
Maximum epochs 50
Number of hidden units 100
Initial biases vector 0

Table 4. The classification accuracy with different
α′s.

α Accuracy

1/5 97%
2/5 100%
3/5 97%
4/5 97%
1/4 97%
1/2 97.2%
3/4 97%
1/3 100%
2/3 97%

from the standard normal distribution, while the biases vec-
tors b and c were initialised with 0. For clarity, we present
them in Table 3.

4.3 Experiment result

We first normalised the data to make it have unit l2 norm,
i.e. for a specific vector x = [x1, x2, . . . , xn], the l2 norm
of the vector satisfies �ix

2
i = 1. Then, we could get two

matrixes, one was A = 6818 × 3522 and the other was B =
208 × 3522. Then, we found out the maximum element and
the minimum element for CVs and non-CVs, respectively.
Finally, to apply binary RBM for classification, we found a
parameter to assign the value of the variable in our experiment
with 0 or 1, or rather, binarisation.

Mathematically, if

S(i, j) − min S(i, j) < α(max S(i, j) − min S(i, j)),

then we set S(i, j) with 0, otherwise we set S(i, j) with 1. Here,
we used S(i, j) (after binarisation) to denote the element of
the matrix A and B in the ith row and the jth column. The
parameter α satisfied 0<α<1. To investigate the influence of
the parameter α on the final performance of the binary RBM
algorithm, we first chose it to be 1/2 heuristically. Then,
we chose it to be 1/3. The experiment result shows that the
classification accuracy is 100%, which is state-of-the-art and
it outperforms the prevalent classifier SVM (Bu et al. 2013).

For clarity, we show the result in Table 4, in which we also
show the performance the binary RBM algorithm based on
other values for the variable α. From Table 4, we can see that
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the classification accuracy is 97.2%, when α = 1/2. However,
almost all of the CVs for testing is labelled as non-CVs.

Table 4 shows the classification accuracy computed by the
following formula:

Acc =
∑

[ŷ == y]

Card(y)
, (8)

where y is a vector, denoting the label of all the test samples.
In our experiment, there are 3 413 (3 409 non-CVs + 104
CVs) test samples. And ‘Card(y)’ represents the number of
elements in vector y. In Equation (8), the denominator ŷ is
the label of all the test samples predicted by Equation (7), in
which c = +1 or c = −1. In this paper, c = +1 means that the
sample belongs to non-CVs, whereas c = −1 means that the
sample belongs to CVs4. And

∑
[ŷ == y] means the total

number of equal elements in vector y and vector ŷ.

5 CONCLUSION AND FUTURE WORK

RBM is a bipartite generative graphical model, which can
extract features representing the original data well. By intro-
ducing free energy and soft-max function, RBM can be used
for classification. In this paper, we apply RBM for spectral
classification of non-CVs and CVs. And the experiment re-
sult shows that the classification accuracy is 100%, which
is the state-of-the-art and outperforms the rather prevalent
classifier, SVM.

Since RBM is the building block of deep belief nets
(DBNs) and deep Boltzmann machine (DBM), then we can
infer that DBM (Salakhutdinov & Hinton 2009) and DBN
can also perform well on spectral classification, which is our
future work.

ACKNOWLEDGEMENTS

The authors are very grateful to the anonymous reviewer for a thor-
ough reading, many valuable comments, and rather helpful sug-
gestions. The authors thank the editor Bryan Gaensler a lot for
the helpful suggestions on the organisation of the manuscript. The
authors also thank Jiang Bin for providing the CV data.

REFERENCES

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. 1985, Cogn. Sci.,
9, 147

Andrieu, C., De Freitas, N., Doucet, A., et al. 2003, Mach. Learn.,
50, 5

Ball, N. M., Brunner, R. J., Myers, A. D., & Tcheng, D. 2006, ApJ,
650, 497

Bazarghan, M. 2012, Ap&SS, 337, 93
Bu, Y., Pan, J., Jiang, B., Chen, F., & Wei, P. 2013, PASA, 30, e24
Dahl, G., Mohomed, A. R., & Hinton, G. E. 2010, Ad. NIPS, 23,

469

4 You can use any two different integers to represent the labels of the samples
belonging to non-CVs and CVs, and this does not impact the result of the
experiment.

Daniel, S. F., Connolly, A., Schneider, J., Vanderplas, J., & Xiong,
L. 2011, AJ, 142, 203

Gelfand, A. E. 2000, J. Am. Stat. Assoc., 95, 1300
Greenwell, R. N., Ritchey, N. P., & Lial, M. L. 2003, Calculus

with Applications for the Life Sciences (Boston, MA: Addison-
Wesley)

Gunawardana, A., & Meek, C. 2008, in Proceedings of the 2008.
Vol. 2. no. 3, ed. P. Pu, D. Bridge, B. Mobasher, & F. Ricci.
Lausanne, Switzerland: ACM Conference on Recommender
Systems, (ACM), 19

Hinton, G. E. 2012, in Neural Networks: Tricks of the Trade, ed.
G. Montavon, G. B. Orr, & K.-R. Müller (Berlin Heidelberg:
Springer), 599

Hinton, G. E., Osindero, S., & Teh, Y. W. 2006, Neural Computation,
18, 1527

Hinton, G. E., & Salakhutdinov, R. R. 2006, Sci., 313, 504
Muno, M. P. et al. 2009, ApJS, 181, 110
McGurk, R. C., Kimball, A. E., & Ivezić, Ž. 2010, AJ, 139,
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