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The Rudin—-Shapiro Sequence and Similar
Sequences Are Normal Along Squares

Clemens Millner

Abstract. 'We prove that digital sequences modulo m along squares are normal, which covers some
prominent sequences, such as the sum of digits in base g modulo m, the Rudin-Shapiro sequence,
and some generalizations. This gives, for any base, a class of explicit normal numbers that can be
efficiently generated.

1 Introduction

This paper deals with digital sequences modulo m. Such sequences are “simple” in the
sense that they are deterministic and uniformly recurrent sequences. We show that
the situation changes completely when we consider the subsequence along squares,
i.e., we show that this subsequence is normal. Thus, we describe a new class of normal
numbers that can be efficiently generated, i.e., the first n digits of the normal number
can be generated by using O(nlog(n)) elementary operations.

In this paper we let N denote the set of positive integers and we let P denote the set
of prime numbers. We let U denote the set of complex numbers of modulus 1 and we
use the abbreviation e(x) = exp(2mix) for any real number x. For two functions, f
and g that take only strictly positive real values, we write f = O(g) or f «< gif f/gis
bounded. Welet | x | denote the floor function and {x} denote the fractional part of x.
Furthermore, we let y,(x) denote the indicator function for {x} in [0, a). Moreover,
we let 7(n) denote the number of divisors of n, w(n) denote the number of distinct
prime factors of n, and ¢(n) denote the number of positive integers smaller than n
that are co-prime to n. Furthermore, let €§q) (n) €{0,...,q -1} denote the j-th digit
in the base g expansion of a non-negative integer n, i.e., n = ¥, 854) (n)q’, where
r = |log a (n)]. We usually omit the superscript, as we work with arbitrary but fixed
base g > 2.

1.1 Digital Sequences

The main topic of this paper is digital sequences modulo m’. We use a slightly different
definition of digital function than the one found in [1].
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Definition 1.1 We call a function b:N — N a strongly block-additive q-ary func-
tion or digital function if there exist m € Ny and F:{0,...,q — 1} - N such

that F(0,...,0) = 0and b(n) = ¥, F(£§$Zn—1(”)’ . .,sgq)(n)), where we define
e_j(n)=0forall j>1.

The difference from the usual definition is the range of the sum (Nj or Z) which
does not matter for all appearing examples.

Remark 1.2  The name strongly block-additive g-ary function was inspired by
(strongly) g-additive functions. Bellman and Shapiro [3]] and Gelfond [9] denoted a
function f to be g-additive if f(aq"+b) = f(aq") + f(b) holdsforallr >1,1< a < g,
and 0 < b < g". Mendeés France [14] denoted a function f to be strongly g-additive if
flag"+b) = f(a)+ f(b) holds forall r >1,1< a < q,and 0 < b < q". Thus, for a

strongly g-additive function f, we can write f(n) = ¥ f(e§q) (n)).

A quite prominent example of a strongly block-additive function is the sum of
digits function s, (n) in base q. This is a strongly block-additive function with m = 1
and F(x) = x. In particular, (s;(n) mod 2) ey gives the well-known Thue-Morse
sequence.

Another prominent example is the Rudin-Shapiro sequence r = (r,,) .0 which is
given by the parity of the number of blocks of the form “11” in the digital expansion in
base 2. Let b be the digital sequence corresponding to g = 2, m = 2and F(x, y) = x- y.
Then we find r, = (b(n) mod 2). This can be generalized to functions that are given
by the parity of blocks of the form “111---11” for fixed length of the block [13].

Digital sequences are regular sequences [5]. Consequently we find that digital se-
quences modulo m' are automatic sequences [[1, Corollary 16.1.6], which implies some
interesting properties. For a detailed treatment of automatic sequences, see [1].

We define the subword complexity of a sequence a that takes only finitely many
different values to be

pa(n) =#{(a;i,...,di4n-1) i >0}.

It is well known that the subword complexity of automatic sequences is sub-linear (see
(1, Corollary 10.3.2]), i.e., for every automatic sequence a we have p,(n) = O(n). For
arandom sequence u € {0, 1}, one finds that p,(n) = 2" with probability one. Thus,
automatic sequences are far from being random.

1.2 Main Result

It is well known that these properties are preserved when considering arithmetic sub-
sequences of automatic sequences and, therefore, digital sequences modulo m’. How-
ever, the situation changes completely when one considers the subsequence along

squares.
Definition 1.3 A sequenceu € {0,...,m’ — 1} is normal if, for any k € N and any
(cor-..»cko1) €{0,...,m' =1}, we have

lim %#{i CN:u(i) = cor oy u(i+k=1) = coy} = (m').

N—oo
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Drmota, Mauduit and Rivat showed a first example for that phenomenon [6]. They
considered the classical Thue-Morse sequence (t, ) >0 and showed, not only that

p(tnz)nzo (k) = 2k>

but also that (t,2)n>0 is normal. The fact that p(; ,),.,(k) = 2k had already been
proved by Moshe [15], who was able to give exponentially growing lower bounds for
extractions of the Thue-Morse sequence along polynomials of degree at least 2. In
this paper we go one step further than Drmota, Mauduit and Rivat and show a similar
result for general digital sequences.

Theorem 1.4  Let b be a digital function and m’ € N with gcd(q -1, m’) = 1 and
ged(m’,gcd({b(n) : n € N})) = L Then (b(n*) mod m’) ey is normal.

There are only few known explicit constructions of normal numbers in a given base
[4, Chapters 4 and 5]. This result provides us with a whole class of normal sequences
for any given base that can be generated efficiently, i.e., it takes O(n log n) elementary
operations to produce the first n elements.

The easiest construction for normal sequences is the Champernowne construc-
tion, which is given by concatenating the base b expansion of successive integers.
For example, for base 10 this gives 123456789101112131415 ---. Using the first n’
integers takes O(n'log(n")) elementary operations and gives a sequence of length
O(n'log(n")).

Scheerer [17] analyzed the runtime of some algorithms that produce absolutely
normal numbers, i.e., real numbers in [0, 1] whose expansion in base b is normal for
every base b. Algorithms by Sierpinski [19] and Turing [20] use double exponentially
many operations and algorithms by Levin [11] and Schmidt [18] use exponentially
many operations. Moreover, Becher, Heiber and Slaman [2] gave an algorithm that
takes just above n? operations to produce the first n digits.

Digital sequences modulo m’ have interesting (dynamical) properties. First, they
are primitive and, therefore, uniformly recurrent [I, Theorem 10.9.5] , i.e., every block
that occurs in the sequence at least once, occurs infinitely often with bounded gaps.

There is a natural way to associate a dynamical system (the symbolic dynamical
system) with a sequence that takes only finitely many values.

Definition 1.5 The symbolic dynamical system associated with a sequence u €
{0,...,m" —1}" is the system (X(u), T), where T is the shift on {0,...,m’ — 1}1
and X (u) the closure of the orbit of u under the action of T for the product topology
of {0,...,m" -1},

Some of the mentioned properties of automatic sequences also imply important
properties for the associated symbolic dynamical system.

The fact that every digital sequence modulo m’, denoted by u, is uniformly recur-
rent implies that the associated symbolic dynamical system is minimal, i.e., the only
closed T invariant sets in X(u) are @ and X (u) [8}[16].

Furthermore, the entropy of the symbolic dynamical system associated with se-
quence u, which takes only finitely many values, is equal to lim,_, log(pu(n))/n
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([10] or [7]]). Consequently, we know that the entropy of the symbolic dynamical
system associated with a digital sequence modulo m’ equals 0, and therefore, the dy-
namical system is deterministic.

1.3 Outline of the Proof

In order to prove our main result, we will work with exponential sums. We present
here the main theorem on exponential sums and further show its connection to The-

orem 4]
Theorem 1.6  For any integer k > 1 and (o, ..., ax-1) € {-,..., mr;;l}k such that
(ags.-->0a5-1) #(0,...,0), there exists n > 0 such that
k-1
(1.1) So= Y e( D aeb((n+€)?) « N
n<N  £=0

Lemma 1.7 Theorem|[L.6|implies Theorem|[L4]

Proof Let (co,...,ck1) € {0,...,m'—1}* be an arbitrary sequence of length k. We
count the number of occurrences of this sequence in (b(n*) mod m’),<n. Assuming

that holds, we obtain, by using the well-known identity 3" 5! e(¢€) = m' for
¢ =0 mod m’ and 0 otherwise,

|{n <N:(b(n*) mod m’,...,b((n+k-1)*) mod m") = (co,...,ck-1)}|

= Z l[b(nz)sco mod m’] """ 1[b((n+k—1)2)sck_1 mod m’]
n<N

ioe(:ﬁ(b((n+€)2)—q))

1 OC(,)C() 4 oeee 4 (X;C_ICk,l k=l 0(2 2
CITR T S 2 o2 blns0)
(€7 ;) n<N =0 7"
e{0,...,m" -1}* =ty

- (m)k
with the same # > 0 as in Theorem To obtain the last equality we separate the
term with (ag,...,a;_;) = (0,...,0). [ |

The structure of the rest of the paper is presented next. In Section [2| we discuss
some properties of digital sequences. These properties will be very important for the
estimates of the Fourier terms. In Section [3} we derive the main ingredients of the
proof of Theorem 1.6} which are upper bounds on the Fourier terms

k-1
Hi(hd)= 5 3 e Sacba(used+ic)-hg™),

0<u<q* £=0

where I = (ig, ..., ix_;) € N¥ with some special properties defined in Sectionand
by is a truncated version of b which is properly defined in Definition2.1]
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The main results of Section[3} Proposition[3.7)yields a bound on averages of Fourier
transforms and Proposition 3.8]yields a uniform bound on Fourier transforms.

In Section[4} we discuss how Proposition[3.7/and Proposition3.8|are used to prove
Theorem The approach is very similar to [6] and we will mainly describe how
it must be adapted. We use Van der Corput-like inequalities in order to reduce our
problem to sums depending only on few digits of n?, (n +1)?,...,(n + k —1)%. By
detecting these few digits, we are able to remove the quadratic terms, which allows
a proper Fourier analytic treatment. After the Fourier analysis, the remaining sum
is split into two sums. The first sum involves quadratic exponential sums which are
dealt with using the results from Section[5.2}

The Fourier terms H: (h,d) appear in the second sum and Propositions 3.7/ and
provide the necessary bounds.

We must distinguish the cases K = ag +--- + a_; € Zand K ¢ Z. Sectionsand
each tackle one of these cases. In Section [4.1} we prove that, if K € Z, we deduce
Theorem [L.6] from Proposition[3.7} For K ¢ Z, Section [4.2]shows that we can deduce

Theorem|L.6|from Proposition
In Section 5] we present some auxiliary results also used in [6].

2 Digital Functions

In this section we discuss some important properties of digital functions. We start
with some basic definitions.

Definition 2.1 We define for 0 < 4 < A the truncated function b, and the two-fold
restricted function b, ) by
by(n) = Y F(gjrm-1(n),...,ej(n)) and b, (n)=by(n) - b,(n).
j<A

We see directly that b, (-):N - Nis a g¢**™~! periodic function and we extend it
to a (g**"~! periodic) function Z — N that we also denote by b (- ):Z — N.

For any n € N, we define F(n) := F(&,,-1(n),...,&(n)). Since F(0) = 0, we can
rewrite b(n) and by (n) for A > 1as follows

b= TH(| L) mon - R[50
j=20 q j=0 q

We show that for any block-additive function, we can choose F without loss of gen-
erality such that it fulfills a nice property.

Lemma 2.2 Let b:N — N be a strongly block-additive function corresponding to F'.
Then there exists another function F such that b also corresponds to F and
-1

(2.1) F(ng’)=0

3

-
]
—

holds for all n € N.

Proof We start by defining a new function G(n) := Z;":II F'(ng’). This already
allows us to define the function F: F(n) := F'(n) + G(n) - G(|n/q]).
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We find directly that G(0) = F(0) = 0. It remains to show that b corresponds to F
and that (2.1) holds, which are simple computations,

ST =2 r (1) - el ) - el )

- b(n) + G(O) = b(n).

Furthermore, we find

m-1 . m-1 . m-1 . m—1 .
> E(ng’)= )  F'(ng’) + ) G(ng’) - 3 G(ng’™)
j=1 j=1 j=1 j=1

m—1

Z F'(nq’) + G(ng"™") - G(n)

§ \‘.

m=1
F'(nq1)+0 > F'(ng’) = 0. [
j=1

\
,_.

Henceforth, we assume that holds for any strongly block-additive function b.
This allows us to find an easier expression for b.

Corollary 2.3  Let b(n) be a digital function fulfilling (2.1). Then
n ol n
v =R ([ g]) o= B H(] )
=0 q j=0 q
holds for all n, A € N.

We easily find the following recursion.

Lemma 2.4 LetaeN,n €N, and0< n, < g*. Then
(2.2) by(mq® +ny) = by_g(m) + be(n1q* + ny)
holds for all A > a and b(n1g* + ny) = b(ny) + be(n1g* + nz).

Proof We compute by (n19% + n,):

ba(ma +ns) = S (| 02 )
j=0 q

B(| 5 ]) - ()

o q’

—a-1

S| ]) ()

j=0
=by_g(m) + be(mq® +ny).

The second case can be treated analogously. ]

A-1

N

> 5
2

As we are dealing with the distribution of digital functions along a special subse-
quence, we will start discussing some distributional results for digital functions.
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Lemma 2.5 Let b be a strongly block-additive function and m' > 1. Then the following
three statements are equivalent.

(i)  There exists n € N such that m' + b(n).
(ii) There exists n < q" such that m' + F(n).
(iil) There exists n < q™ such that m' 4+ b(n).

Proof Obviously (iii) = (i).

Next we show that (i) = (ii). Let n¢ be the smallest natural number > 0 such that
m' + b(no). By Lemma .4} b(no) = b(|no/q|) + F(no) holds. By the definition of
ng, we have m’ | b(| no/q|), and therefore, m’ + F(no) = F(no mod q™).

It remains to prove that (ii) = (iii). Let no be the smallest natural number > 0 such
that m’ + F(ng). By (ii), we have ny < g™. We compute b(ny) mod m’,

b(ng) = ZF([%J) =F(ng) #0 (mod m’)
j20

as[%]<n0 forjzlimpliesthatF([%J) =0 (mod m'). [

Remark 2.6 The following example shows that in Lemma we cannot replace
m'+ - byged(m’,-)= L. Letm=1,q=3,m"=6and F(0) = 0,F(1) =2,F(2) = 3.
We see that gcd(m’, F(n)) > 1for all n < g™ = 3 and also gcd(m’, b(n)) > 1 for all
n < g™ = 3. However, b(5) = F(1) + F(2) = 5and ged(m', b(5)) = 1.

Next, we show a technical result concerning block-additive functions that will be
useful later on.

Lemma 2.7 Let b be a strongly block-additive function in base q and k > 1 such that
ged(k,q —1) = 1 and ged(k,gcd({b(n) : n € N})) = 1. Then there exist integers
e1, e < ¢*" ! such that

b(q" (er+1)=1)~b(q" (e +1)) £ b(q" " (e2+1) ~1) - b(q" ' (e2 +1)) (mod k)
holds.

Proof Without loss of generality we can restrict ourselves to the case p € P where
p | k. Let us assume on the contrary that there exists ¢ such that

b(q" (e +1) -1) - b(¢q" (e +1)) = c(modp)
holds foralle < g™, Under this assumption, we find a new expression for b(n) mod
p, where n < g™:

n-q"'c= Y (b(g"'(e+1)-1)-b(q" " (e+1))
e<ngm-!
= > (b(e)+bu1(q" e+q" " -1)-b(e+1))
e<ng™m!
=-b(ng" ")+ > bua(q" e+q" " -1)
e<ng™-!
=-b(ng" ") +n Y bua(q" 'e+q" ' -1).
e<gm-!
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The last equality holds since b,,,_1(q™ e + g™ ' —1) isa ¢! periodic function in e.
This gives

(2.3) b(n)=b(ng™™") = n( > bmoa(q" le+q™ T -1) - qm_lc) (modp).

e<qm—1

By comparing this expression for b(1) and b(q) (note that b(1) = b(q)), we find

(@-D( Y bualg"e+q"" =1)=q""c) =0 (mod p)

e<qm—1

> buoi(q" e+q" T -1)-q" =0 (mod p)

e<gm-!

asged(p,g-1) =1
Together with (2:3), this implies that p | b(n) for all n < ™. By Lemma|[2.5] this is
a contradiction to ged(p, gcd({b(n) : n e N})) = L [

We will use this result in a different form.

Corollary 2.8 Let b be a strongly block-additive function in base q and let m' > 1
such that gcd(m’,q —1) = 1 and ged(m’, gcd({b(n) : n € N})) = L. For every a €
L mﬂ;jl} there exist e}, e, < ¢*™ ' and d € N such that da ¢ 7. and

m'>

b(q" (e +1) =1) = b(q" (e1+1)) —b(q" ' (e2+1) = 1) + b(q" (e +1)) = d.

Proof Let a = x/y where ged(x,y) =1and1< y | m’. We apply Lemma [2.7] for
k = y and find ey, e, such that

b(q" (e +1) =1) = b(q" (e +1)) = b(q" (&2 +1) = 1) + b(¢" ! (e2 +1)) = d,
where d #0 (mod y). This implies da = d7x #0 (mod1). [ |

3 Bounds on Fourier Transforms

The goal of this section is to prove Propositions [3.7] and To find the necessary
bounds we first need to recall one important result on the norm of matrix products
that was first presented by Drmota, Mauduit, and Rivat [6]. Then we deal with Fourier

estimates and formulate Propositions3.7/and .8 Sections[3.3|and 3.4]give proofs of
Propositions[3.7]and 3.8] respectively.

3.1 Auxiliary Results for the Bounds of the Fourier Transforms

In this section we state sufficient conditions under which the product of matrices de-
creases exponentially with respect to the matrix row-sum norm.

Lemma 3.1 Let Mg, £ € N, be N x N matrices with complex entries My; j, for
1< i, j< N, and absolute row sums Zj-\;l |Mgiij| <1, for1 < i < N. Furthermore,
we assume that there exist integers mo > 1 and my > 1 and constants co > 0 and 1 > 0
such that the following hold.
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(i)  Every product A = (A;j)(i,j)ef1,...N}2 of Mo consecutive matrices My has the
property that

N

(31) |Ai,1| >cy oOr Z |Ai,j
j=1

<1-1n foreveryrowi.

(ii) EveryproductB = (B j)(i,j)e(,....n}2 Of m1 consecutive matrices My has the prop-
erty

N
(3.2) > IByjl <1-7.
j=1

Then there exist constants C > 0 and 8 > 0 such that

r+k-1

T el < e
uniformly for all r > 0 and k > 0 (where | - || oo denotes the matrix row-sum norm).
Proof See [6]. [ |

Lemma 3.2 Let x1, %3, &, & € R. Then

& - 2
le(xr) + e(xa + &)| +[e(x2) + e(x2 + &)| < 4 - 8 sin M) )"
Proof The proof is a straightforward computation and can be found at the end of

the proof of [13| Lemma 12]. [ |
3.2 Fourier Estimates

In this section, we discuss some general properties of the occurring Fourier terms. For
any k € N, we denote by J; the set of integer vectors I = (ig, ..., ix_1) with ig < g™}
and ip < ip < ipy +q™ ' for1 < € < k — 1. Furthermore, we denote by J the
set of integer vectors I' = (ig,...,i;_,) with ig = 0 and i,_, < i, < i, , + 1 This

set J; obviously consists of g™ ~1(q™! + 1)¥! elements. For any I € J,, h € Z and
(d, 1) € N?, we define

k-1
> e( Zocgb,\(u+€d+ig)—huq_"_m“),

()Su<q“'"‘1 £=0

H (h,d) = —
q

A+m-1

for fixed coefficients ap € {-%,.. ., "’7;71 }. The sum Hj (-, d) can then be seen as the

discrete Fourier transform of the function u — e( Zle‘;é aeb)(u+ed+ ie)) , which is
g™ periodic.

Furthermore, we define the important parameter K := ag + - + ag_1.

We would like to find a simple recursion for H) in terms of H) ;. Instead we relate

it to a different function for which the recursion is much simpler,

k-1
Gi(h,d) = q—ll > e( S aeby(q"  (u+ €d) +ig) - huq_l).

u<q* =0
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This sum G} (., d) can then be seen as the discrete Fourier transform of the func-
tion u — ¢( Sk weby (g (u+ed) + i¢)), which is g* periodic. We show now how
G and H are related.

Lemma 3.3 LetleJ\, heZ,(d,A)eN*and§€{0,...,q" " —1}. It holds

_ 1 he
(33) Hi(h g™+ 0) = o5 3 el ) G (),

where Jo 5 = Je,5(I) = (ie + €5 + €) ¢eqo,....k-1} € Jk-

Proof One checks easily that J; s(I) € Jx. We evaluate H: (h, g™ 'd + §).

Hi(h, g™ 'd + 0)

k-1
= # Z C(Zaebk(u-!-f(qm—ld-;-é\)-;-ie)_huq—)t—mH)

A+m-1
q 0<u<ghm-1 =0

m—1
- 2% o P o)

e<q™ 1 0<u<g?

k-1

x e( S aeby(q" ure+e(qg"d+8) + ig))
£=0
g1 > 2 e(- /\) ( A+m1)
e<qm 1 y<gt
k-1
xe( Y by ((u+ed)q" ™"+ (e0+ig +e)))
£=0
1 he .
= p—) <Z e( W)G 5(’1 d) | ]
£ qm—l

Next we define a transformation on Jj and a weight function v.

Definition 3.4 Letj>1ande, §¢€{0,...,q/ —1}. Then we define for I € J;

; i ml(g 4+ 08
Tsj,a(l) = ([Wj)ee{o ..... k-1}
vi(I,e0): —e(;coce j(ie+q™" 1(5+€6)))

We see immediately that [v/ (I, ¢, §)| = 1 for all possible values of j, I, e and 8. Fur-
thermore, we extend the definition of T/ for arbitrary e, § by

J J
TS,S( ) Te mod g/,8 mod g/ (I)

The next lemma shows some basic properties of these functions.
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Lemma 3.5 Let), j,ji,j»eN, &8¢€{0,....,q9/ —1}, and &;,8; € {0,...,q" —1}.
Then the following facts hold.

@) T/ (1) e

(11) T«;-Izz)lsz ° TSJllyal = Tg;;}’l2+£1,62qj1+81.

(iii) Gi(h,d)= q—ﬂ Yucq V(L u, d) e(~hug™).

Proof (i) and (ii) are direct consequences of basic properties of the floor function
and (iii) is just a reformulation of the definition of G in terms of v. [ |

Now we can find a nice recursion for the Fourier transform G.

Lemma 3.6 LetleJy,heZ,dAeNand1<j<A,8¢€{0,...,q/ —1}. We have

T j 1 AN 1! (1)
Gy(h,qg’d + ) = P > e(-heq ")V (1,¢,0) - G2 (h,d).

e<q’
Proof We evaluate G} (h,q’d + &) and use (2:2):

k-1
Gy(h,q’d +6) = % Z e( Z aeby(q" " (u+e(qg’d +8)) +ip) - huq_")
q u<q* £=0
1 1 = m—1+j m—1 .
== ) o= > e(Z(xgb;L(q Hu+ed)+q (£+€6)+zg))
9 4 ugr Neo

xe(~h(ug’ +e)g™)

1 = m—1 . -1 1
=— e(Zocgbj(q (£+€6)+lg)) e(—heq )W
e

9 g ez
k-1 - eq™ !+ 28q™ ! + i, A+
x > e(Z(xgb,\_j(q (u+ed)+| ; |) = hug )
u<gh-i =0 q
1 ; _a 1/ (D)
= —J,Eé:jvf(l,s,(?)e(—hsq )-thj (h,d). |

The following propositions are crucial for our proof of Theorem [L.6]

Proposition 3.7 IfK=0 (mod 1) and 1 <)\’ <, then there exists n > 0 such that
forany I3} ﬁ Yosd<gV |HL (h,d)[> < q~" holds uniformly for all integers h.

Proposition 3.8 IfK # 0 (mod 1), then there exists > 0 such that for any I € J},

Hy(h,d)| < g~ r;ggichﬁ_L(h, ld/q" )|

holds uniformly for all non-negative integers h, d and L.
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3.3 Proof of Proposition

We start by reducing the problem from Hj (h, d) to G (h, d) for which we have found
a nice recursion.

Proposition 3.9 For K € Z and 31 < ' < A, we find i > 0 such that for any I € Jy
1 1A
- 2 1Gi(hd)P <q"
0<d<q’

holds uniformly for all integers h.
Lemma 3.10  Proposition[3.9]implies Proposition[3.7]

Proof We see by (3.3) that
|H (h, d)I? <maX|G](h ld/q" " DI < 301G (ha|d]q" P

JeTg
Thus we find
1 1 _ _
= > H(hdP<Y = > [Gi(hd/g" P < q ™ u
0<d<qV JeJk 0<d<gV

Using Lemma3.6} it is easy to establish a recursion for

(== ¥ Gl )Gl (hd),
0<d<q"
where h € Z, (A,1") e N*and (I,I') € J2. For , A’ > land 1 < j < min(A, ") it yields

for CDﬂ I/\, (h) the following expression:

——— . T (DT, ()

Z I 7)) V(L e, 8)VI(I, 2, 8) D, jA, S ().

6<q1 &1<q/ e3<q’
To find this recursion, one has to split the sum over 0 < d < q*r into the
equivalence classes modulo g/. This identity gives rise to a vector recursion for
¥ (h) = (O} A,(h))(ul)egi. WEe use the recursion for j = 1. We have ¥) /(h) =
M(h/q") - ¥y_1a—1(h), where the (g™ (g™ +1))% x (g™ (g™ +1))? matrix
M(B) = (M(1,1r),(7,7) (B)) ((1,1"), (7, ") )es2 <2 s independent of A and A". By construc-
tion, all absolute row sums of M(3) are bounded by 1.

It is useful to interpret these matrices as weighted directed graphs. The vertices are
the pairs (I,1') € J} and, starting from each vertex, there are q° directed edges to the
vertices (T, 5(I), T¢,,s(I')), where (8,1, ;) € {0,...,q —1}?, with corresponding
weights
Lo(-loo
7 7
Products of j such matrices correspond to oriented paths of length j in these graphs,
which are weighted with the corresponding products. The entries at position

((LI),(J,]))

SZ)h) V(I e, V(T €5, 0).
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of such product matrices correspond to the sum of weights along paths from (I,1")
to (J,J'). Lemmaallows us to describe this product of matrices directly.

Lemma 3.11 The entry (I, I'),(J,]')) of M(h/q" )M(h/q*™")---M(h/q*~7*1) is
equal to

) _ (51 fz)h
ey Z 2 Yt enlrt eV (e8I e, 0) e (- B ):

6<q1 €1,62<q7

Proof This follows directly by Lemma |

This product of matrices corresponds to oriented paths of length j. These can
be encoded by the triples (&, 3, 8), and they correspond to a path from (I,I') to

(T’ (DT, 5(I’)) with unimodular weight v/ (I, &1, )vi(I’, &3, 8) e( - (81;%)]1) .
To s1mphfy further computatlons we define

nmon = 2 % Lz jo-nlir jan-r
d<qi &1,62<q7
and find directly that 3 ; ;ye5 nt)

.0 = = g/ and the absolute value of the entry
((1.1'),(J.J)) of

M(h/q" )M(h/q*™")---M(h/q" ™)
is bounded by ”8,)1'),(1,],) g
In order to prove Proposition[3.7} we will use Lemma3.Jjuniformly for & with M; =
M(h/q"). Therefore, we need to check and (3.2). Note that, since 1 < 1’ < A,
we have ¥y y/(h) = M(h/q") - M(h/q* 1) ¥)_y o (h).

Lemma 3.12  The matrices M defined above fulfill of Lemmal[3.]]

Proof We need to show that there exists an integer m, > 1 such that every product
A= (A, (@),0)esxs

of mq consecutive matrices M; = M(h/q"') verifies (3.1) of Lemma We define
mo = m—1+[log, (k +1)]. It follows directly from the deﬁmtlon that T 5 (I) = 0 for
all I € Jy. In the graph interpretation this means that for every vertex (I, i % ) there is a
path of length mg from (I,1") to (0, 0). Fix a row indexed by (I, I’) in the matrix A.
We already showed that the entry A (1,17, (0,0) is the sum of at least one term of absolute

value g™, i.e., ”(Zl;')),(o,o) > 1

There are two possible cases. If the absolute row sum is at most < 1 — # with <
g~>™ then we are done.
In case the absolute row sum is strictly greater than 1 — #, we show that

|A(1,1),00,0)] 2 q>m)2.

The inequality Ay, (0,0)| < g7>"/2 implies that A 1 1) (o,0) is the sum of at least

3myg (mo)

sies i (0,0) 2 2 Thus, we can use the triangle

two terms of absolute value g~
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inequality to bound the absolute row sum by

Y Aamoml <lAamool+a™ X al o
07 (7.7)%(0,0)
Since ¥ (5 ng'f;,))’(])],) = ¢*™, we find
> lAamaml <lAam.eol+1-a7"n{ (o)

.7
<qm 2412970 <1 g7,

This contradicts the assumption that the absolute row sum is strictly greater than
1-7n>1-q*". Consequently, we find |A (1,11}, 0,0)| > co for co = g7 /2. [ |

Lemma 3.13  The matrices M; fulfill (3.2) of Lemma
Proof Weneed to show that there exists an integer m; > 1such that for every product
B = (B(11),(.0)) ((1.1).(1.17))e72x32

of m; consecutive matrices M; = M(h/q'), the absolute row-sum of the first row
is bounded by 1 — 7. We concentrate on the entry B(g,0),(0,0); that is, we consider all
possible paths from (0, 0) to (0, 0) of length m; in the corresponding graph and show
thata positive saving for the absolute row sum is just due to the structure of this entry.

Since Tpy Log, (1)) (0) = +Hog (0] (0) = 0, we have at least two paths from (0, 0)
to (0, 0) and it follows that the entry B(g,0),(0,0) is certainly a sum of ko = ko(m;) > 2
terms of absolute value g~>™
are kg > 2 paths from (0,0) to (0,0) of length m, in the corresponding graph, or in
other words, n (0 0),(0,0) = =ko(my) > 2.

Our goal is to construct two paths (!, €5, 8") from (0,0) to (0,0) such that

, for every m; > m + [log, (k)]. This means that there

PRI R TICRR D F (e 2L [ FE R
i=1 7t
holds for all h € Z.

We construct a path from 0 to (g™ - 1,...,q™ ' - 1,¢™ %, ...,q"") = Iy € Iy
with exactly ny + 1 times g™ ! — 1, where ny = min{n € N : a, # 0}. We set n; =
log, (k)] + m and have the following lemma.

Lemma 3.14 Let ng, ny, and I, be as above. Then T ,}1 rol, 1(0) = Iy.
Proof This follows directly by the definitions and simple computations. |

Applying Lemma we obtain a transformation from 0 to I,. Applying this

transformation component-wise gives a path from (0, 0) to (Iy, Iy). We concatenate
this path with another path (e}, e;,0) of length n, = 3m — 1 where e; < ¢*™'. The
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weight of the concatenation of these two paths equals

v"(0,9™ = no —1L,1)v"*(Ip, €, 0)

e —e)h
x v (0,q™ = no —1,1)v™ (Io, €2,0) e( _(lqA‘”Zl))
_ e —e)h
=v"(Io, e1,0)v"2(Ip, €2,0) e(_(lq"‘”zl))'
We denote by Iy, the £-th coordinate of Iy and see that
I, + g™ le; m-1 , m-1¢_2m-1 _
sm-1gpy _ (| Tole £ 47 e " +q"" (g 1)
Teo (To) = ([ q>m-1 J ee{0--k-1} < (l q>m-1 J)t’e{omk—l}

m-1 2m-1

- ([quq—lJ ) ee{o-k-1} 0

Thus, we have found a path from (0, 0) to (0, 0) for each e, < g*™ .

We can use the special structure of I, to make the weight of this path more explicit.
First, we note that }.;°  a¢ = «,, by the definition of ng. Furthermore, we use the
condition K = ¥, ap € Z to find z’g;,ﬁoﬂ ap = —ap, (mod1).

We find by the definition of v that for each e < g*" %,

k-1

V" 1(Iy,e,0) = e( Z aebsm1(q™ e+ Io\e))
=0

e( o (b3m1(q" e+ q" " = 1) = bsua(q" e+ q" 7)) )
= e( (Xno( b(qm‘le + qm—l _ 1) _ b(qm—l(e + 1))) ) :

We find by Corollarythat there exist e;, e, < g™~! such that

b(g" (er+1) =1) = b(q" (e +1))
~b(q" ey +1)=1) +b(q" (es +1)) =d

and a,,d ¢ Z.
We now compare the following two paths from (0,0) to (0,0) of length m; =
ny+ny = [logq(k)J +4m -1

e (e1g™ + g™ —ng—1,e,9™ + g™ — ny — 1,1): we split up this path into the path of
length n; from (0,0) to (Iy,Iy) and the path of length n, from (Ip, Iy) to (0,0).
The first path can be described by the triple (¢ — 1o — 1, g™ — no —1,1), and its
weight is obviously 1. The second path, i.e., the path from (Iy, Iy) to (0,0), can be
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described by the triple (e;, e;,0) and its weight equals

e —e)h
( ) )

V"Z(Imebo)v”z(IOsez)O)e( s

= e(an, (b(¢" (e +1) 1) ~b(q" ' (e1 +1))))
(o (g (e + D)~ 1) = blg™ ez + 1)) - )

q/l—nl
=e(any,d) e( —M) .

qll—nl

Thus, the overall weight of the path from (0, 0) to (0, 0) equals

e(an,d) e( —(elq;_eri)h ) .

* (e1g™, e2q™,0): we compute directly the weight of this path.

y™ (0, elqnl,o)we(_(‘flq;‘z)h)
k-1 k-1 ) ,
= e( Z (Xebml(elqm) _ Z Ocebml (ezqnl)) e(_(elql_enzl))
£=0 =0

e(K(bm(eg") = b (e20™))) o ~520)

e —e)h
(Lol

q/lfnl

We recall briefly that ap € {-,..., m 1Y forall £ € {0, ...,k — 1} and, therefore,

m’

also a,, € {2, ..., ™=11 We finally see that
0 y

m'? m’

IB(0,0),(0,0)| < (ko -2+ ‘e(anod)e(—(e;;_eri)h) + e(—w) ‘ ) g™

=(ko-2+]1+ e(oc,,od)|)q_3"’1

= (ko — 2 + 2| cos(ma,,d)|)g>™

- (k0—2+2‘1—2( sin(mz’“’d))z‘)qaml
< (ko -a(sin(55)) ).

Thus we have

Z |B(0,0))(Ll’)| < (ko —4( Sin( Zim’))z)qﬁml +(1- k0q73m1)

.J)
<1- 4(sin( ﬁ))z g™,
Therefore, condition of Lemmais verified, with m; = |log g (k)] +4m-1and
n= 4( sin( n ) ) Zq_3"’1 > 4( sin( Z ) )Zk_3q_12"’+3 > 0. [ |

2m 2m

q/\—nl
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To conclude this section, we want to recall the important steps of the proof of
Proposition[3.7] At first we observe that

1
— > [Gi(hd)} = Y, (h).

0<d<gq"
Thus Propositior}is equivalent to CDi”I}L, (h) < q~™. Next we considered the vector
Yy (h) = (d)i’)a,(h))(l’p)egi and found the recursion
W (h) = M(h/q") - M(h[g"" ) ¥r a0 (h).
Then we defined M, := M(h/q") and showed that we can apply Lemma Therefore
we know that, since |CD§’£A,+1’0(h)| <1,
|(D§’,I,\’/(h)| <My Myl < Cq0Y < Cq0M2

with C and 8 obtained by Lemma H Thus we know that d)i’ﬁ,(h) < g™ with

1 = 6/2 uniformly for all 4. This concludes the proof of Proposition[3.7}
3.4 Proof of Proposition

We again start by reducing the problem from HZ, (h, d) to G, (h, d) for possibly dif-
ferent values of A, A" and I, I'.

Proposition 3.15 For K # 0 (mod 1) there exists 1 > 0 such that for any I € Iy
(G d)| << g max|G]_, (. [d/g")
k

€

holds uniformly for all non-negative integers h, d and L.
Lemma 3.16  Proposition[3.15|implies Proposition

Proof This follows directly by (3.3). ]
Henceforth, we assume that K ¢ Z holds. We formulate Lemma[3.6| as a matrix
vector multiplication.
; 1 h
J - M _ .
Gy(h,g'd + ) = q],Ma(e( ql))GA_](h,d),
where for any 8 € {0,...,4/ — 1} and z € U we have

i1

j _ ) j
My(=) = ; ( Lyert,an¥ (& 8)z") (L))es?

Proposition is a consequence of the following claim:

Claim 317  There exist my € N,n' € R* such that |[M{"(2)]e < g™ — 7’ for all
d<q™,zel.

Lemma 3.18 Claim implies Proposition
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Proof We first note that HMé(z) Joo < g/ holds forall z € U, j € N, and 8 < ¢’ by
definition. Next we split the digital expansion of d mod g* (read from left to right)
into | L/m | parts of length m; and possibly one part of length L mod m;. We denote
the first parts by 81, ..., 8|1/, | and the last part by &y, i.e.,

[L/mi]

d = qL mod ml( Z 8j'q[L/MIJ_j) +80-
j=1

Thus we find
Iﬁ?ﬂc;;(h,dn = [Gr(h, d) o

1
< g max |Mg (D)oo 1Gr- (. /" ]) oo
LL/m, .
H max | M (2g™ ) oo - gm0 ™) [ Gyp (B, [ d/q"])
=1 z€

1 m ’ m mod m;
S?(q g EmlgUmedm) G, (b, |d/g"]) e
< q M |Gror(hy [ d]q" ]) o>

> 0. |

7
_ 1
where 77 = 7 Tog(7™)

The rest of this section is devoted to proving Claim Observe that

m
IM(2) oo —n;a;cmaxz\ >

e, m;
A (D7) z%v (1,5,6)‘.
ql

Assume that we can find, for each I € J; and 6 < g™, a pair (1, €;) and m] < m; such
that for all z € U we have

5,6( ) T +16(I) and

(34) / / /
V™ (I,e1,8) + zv™ (I, &, +1,8)| + V"™ (I, £2,8) + zv™ (I, e+ 1,8)| < 4 — 7.

This gives

5 2| Z g 000

m

< (q"‘l —4) +Z‘Zzs tiym (I & +],6)‘

i=1 j=0
<q"i -y
We conclude that in total | M3 (z)] e < g™ ™ (g™ —n') < g™ —n', which establishes
Claim[3171
So it remains to find &1, &, m] satisfying (3.4)), and this turns out to be a rather
tricky task.
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We now fix some arbitrary I € J; and d € N. We start by defining, for 0 < x <
(4m-2)kandceN,

Mx,c = Mx,(c mod g*) = {E <k: Lif/qm_lj +dl=c (mOd qx)}

and show some basic properties of M.
Lemma 3.19  For every x < g2k there exists co such that Leen,,, e ¢Z.

Proof One finds easily that {0, ...,k —1} = Uccgx My, which means that

{My,c:c<q"}
is a partition of {0, ..., k — 1} for each x. Thus, we find, for every x,
Z Z ag:Zae:K¢Z,
¢ CeMy, <k
and the proof follows easily. ]

Lemma 3.20 Letd < g 2% and I € J;. Then there exists 0 < xo < (4m—2)(k—-1)
such that for each ¢ < g there exists ¢* < q"°+(4m_2) suchthat My, c = My i (4m-2),c+-

Remark 3.21 This is equivalent to the statement that
lie,/q" |+ dty = |ie,/q" | + A€y (mod ™)

implies
Lie,/q" "] + dty = |ig,/q" "] + d&; (mod g***"~?)

Proof We have already seen that {M, . : ¢ < q*} is a partition of {0,...,k —1}.
Furthermore, we find for 0 < x < (4m - 2)k and ¢ < g* that
Mx,c = U Mx+(4m—2),c+q"c’-
cr<q4m—2

This implies that { My 4m-2,c : ¢ < g*74" 2}

we find

is a refinement of {M, . : ¢ < ¢*} and

{M(am-2).0,c 1 € <1} 2 {M(am-2y1,c : € < q'" %}

22 {Mam-2)k,c €< 4

It is well known that k is the maximal length of a chain in the set of partitions of
{0, ..., k —1}. This means that there exists x; such that

{M(4m—2)x6,c c< q(4m—2)xo} — {M(4m—2)(x6+1),c’ i < q(4m—2)(xo+1)}. u

(4m—2)k}‘

Next, we define By = Ypen, , de-

We can now choose m; := (4m — 2)k, m] := xo + (4m — 2), where x, is given by
Lemma[3.20] We consider ¢y < ¢* and ¢ provided by Lemmas[3.19|and[3.20} and we
know that B¢, ¢ Z. Therefore we apply Corollary and find e, e; < ¢*™! such
that

b(q" (e +1) ~1) — b(g" (&1 +1)) — b(g" (e +1) ~1) + b(g" (e2 +1)) = d,
and dfy,.c, ¢ Z.
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We are now able to define
&= (g0 (e, +1) - ¢f — 1) mod g™+ 2
e2= (g (ey +1) — ¢ —1) mod g **™ 2,

It only remains to check (3.4), which we split up into the following two lemmata.

Lemma 3.22  Let xo, ¢; be defined as above. Then Ts"i‘:;‘*’"‘z (I) = T***m=2(1),

gi+l,d

Proof We need to show that

(3.5) [

ie+qm‘1(€d+si)J _ l ip+ g™ (ed + ¢ +1)J

Xo+4m—2 Xo+4m—2
q-° q

holds for all £ < k and i = 1,2. We know that ¢ belongs to My,+4m-2,c+ for some
¢ < g*°. Thus, we find for j = 0,1

g e )) ) Gemod )+ g e e ))

Xo+4m—2 Xo+4m—2
q-° q-°

:{c++£i+jJ~

xo+3m—1
q 0

Therefore, does hold, unless c* +¢&; +1=0 (mod g***™1). We find that

cFreirl=ct g7 " (e +1) — ¢ (mod g,

We first consider the case ¢ # co: ¢ +&; +1=c—co # 0 (mod g*). For ¢ = ¢y,
cg+ei+1=g°" " (e; +1) (mod g1,
However e; +1# 0 (mod g*™) as e; < g*™!. Thus, (3.5) holds. [ |

Lemma 3.23  There exists ' > 0, depending only on m’, such that for xy and ¢;,
defined as above,

2
(3.6) S (L e, 8) + 2 v A (Lg; +1,6)[ <4 -

i=1
holds for all z € U.
Proof We start by computing the weights v*°*4™~2([, ¢; + j, §). For arbitrary & <
ql"”"’_z, we find

on+4m—2(1, e, d)

= Z]’Ik e( Aebyyiam—2(ie+q" (e + fd)))

= e]’Ik e(aebp-1(ie+q" (e +€d))) e( arbyyizm(lie/q" | + e+ €d))

=e(g(e)) H e(oebyyi3m(lie/q™ "] + e+ ed)),

<k

where g(e) = Yk tebm1(ie + ¢" (e + €d)). Note that g(¢) only depends on
emod g™,
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We can describe this product by using the weights 8 defined above.

vt (1 e d)=e(g(e)) I e(Broram-2.c'bxorsmo(c’ +€)).

cr<qx0 +4m—2

Furthermore, we can rewrite every ¢’ < g***"~2 for which By +am-2,c # 0 as
some ¢* where ¢ < g*°. This gives then

vortm=2(1 e d) =e(g(e)): TT e(Brg.c brxorsm(c™ +€))
c<g*o

() I P b+ ) T e B tins(| 5]
Thus we find for € = ¢; + j that

Vx°+4m_2(1,8,' +j,d)

=e(g(ei+))- c};lm e(Bry,c by (€7 + i + )

x TI e(ﬁxo,c-bsmfl(lﬂj))

c<q*o q*
=e(g(—cog ~1+)) - T e(Bryc bxy(c™ —cg —1+j))
c<q*o
_ cF—cf—-1+j
L (B e+ S 1))
c<g*o
=e(g(-cg —-1+j))- i\ e(Bxg,c * by (€7 = cg =1+ )
c<g*o
_ -l -1+
x T el Bxoc " b3m-1| 4™ l(ei+1)+ g
Dl i e[

x e(Buo,co - b3m,1(qm_1(e,- +1) =1+ j)).

4 o+
For ¢ # co, we find | © q,fg =] qu:" |asct =c#co=c; mod g*.
Consequently, we find

pRrm2(re d) = e(x;), v (Le; +1,d) = e(x; + &),

where

xi=g(-cg —1) + Z Bxoc - bxo(¢" =g = 1)

c<q*o
+_ o+
+ > Brge bam—l(qm_l(ei +1) + [%J)
c<q™® 1
c#co

+ Baoyeo * b3m—1(qm_l(ei +1) -1)
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and
&= g(_c:)r) + Z Boyc* bxo(c+ - C(J)r) + Brorco * b3m71(qm_l(ei +1))
c<g*o
-g(=¢cg -1) - Z Bxore - bxo (€7 = ¢g = 1) = Brgrco * b3m_1(qm71(e,~ +1) -1).
c<g*o

Also, we find &, — &, = B4,,c,d ¢ Z, where
b(qm’l(el +1)) - b(g" (e; +1)-1) - b(qm’l(ez +1)) +b(q" (e +1)-1) = d.

This implies & - & > L.
It remains to apply Lemmato find that holds with 1’ = 8(sin(7%;))*. W

To finish of this section, we recall the important steps of the proof of Proposi-
tion We began by rewriting our recursion for G} as a matrix vector multipli-
cation, G (h,q"d + §) = q%Mg(e(—%))G,\_L(h, d). We then split up this matrix
Mj(-) into a product of many matrices M3 (-), where m; = (4m — 2)k. Then we

J
showed that HM";:_‘ ()| < g™ - n, where n = 8(sin(;Z;))?. This then implies Propo-

sition To show that HMg';l | < g™ - n, we found two different ¢; such that

T (I) = T,%, s(I) and
|Vmi(1) €1, 6) +va;(1) e+1,0)|+ |v'”{(I, €,0) + zvml’(I, &+1,0)<4-7
holds for all z € U.

4 Proof of the Main Theorem

In this section, we complete the proof of Theorem{L.6|following the ideas and structure
of [6]. As the proof is very similar, we only outline it briefly and comment on the
important changes.

The structure of the proof is similar for both cases. First we want to substitute the
function b by b, ;. This can be done by applying Lemmasandin the case K € Z.
For the case K ¢ Z we must use Lemmal5.7]first.

Thereafter, we apply Lemma [5.6| to detect the digits between ¢ and A. Next, we
use characteristic functions to detect suitable values for u;(n), uy(n), us(n). Lem-
mal(5.9|allows us to replace the characteristic functions by exponential sums. We split
the remaining exponential sum into a quadratic and a linear part and find that the
quadratic part is negligibly small. For the remaining sum, we apply either Proposi-
tion[3.7 or Proposition 3.8 depending on whether K ¢ Z.

The case K ¢ Z needs more effort to deal with.

4.1 The Case K€ Z

In this section, we show that if K = aq + -+ + ax_; € Z, Proposition [3.7] provides an
upper bound for the sum

k-1
So= 3 e(;(xgb((nJre)z)).

n<N =0

https://doi.org/10.4153/CJM-2017-053-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-053-1

1118 C. Miillner

Let v be the unique integer such that "' < N < ¢”, and we choose all appearing
exponents, i.e., A, i, p, as in [6].
By using Lemmal5.5and the same arguments as in [6]], we find that

S() = Sl + O(qv—(/l—v))’

where

lexeb)t((" + 5)2))-

=0

k-
Sl = Z e(
n<N ¢
Now we use Lemma|5.7, with Q = g#*™ ' and S = q"™¥, to relate S; to a sum in
terms of by, )1 [$1]* < % + %%(Sz),where Sy = les<s(1_ %) S5(s) and

k-1
)= Y e X ae(bua((n+)%) = bya((n+€+5g*" ™)),
nel(N,s) £=0
where I(N,s) is an interval included in [0, N — 1] (which we do not specify).

Next we use Lemma to detect the digits of (n + £)* and (n + £ + sq™ 'q")?
between y and A + m — 1, with a negligible error term. Therefore, we must take the
digits between g’ = y — p’ and y into account, where p’ > 0 will be chosen later.

We choose the integers u; = u(n), us = us(n), v = v(n), w; = wi(n), and
w3 = ws(n) to satisfy the conditions of Lemma [5.6|and detect them by character-
istic functions. Thus, we find $}(s) = S}(s) + O(g"~"), where

n® [} 2n us
S3(s) = Z Z Z (qu,Am+l(qA+ﬂl—1 B a) Xqﬂ’*H( W B ?3)

0<u;<U; 0<u3<U; nEI(N,S)

k-1
X e( Z 0((_1( bt r—ppr (U1 +81z) = bpr gy pr (ur + Lus +v(n)g? + 20sq™ ' gq? )) ),
=0

where y, is defined by and Uy = gm0 Uy = g7 #' Lemmaallows usto
replace the characteristic functions y by trigonometric polynomials. More precisely,
using with Hy = Uyg?" and Hs = Usq?” for some suitable p” > 0 (which is a
fraction of v chosen later), we have S5(s) = S4(s) + O(E;) + O(E3) + O(E;3), where
Ej, E3, and E, 5 are the error terms specified in and

Sa(s)= > 2 > >

0<u1<U; 0<u3<Us 0<v<gr-#+m-1 nel(N,s)

2
k-1

x e( > oce( bor A—prpr (1 + Cuiz) = by Ay pr (141 + Luiz + vq”’ + 2€sqm_1q”’)))
=0

1 25q™ 'n—v
X A—p+m-1 Z e( h A—p+m-1 ) >
q veheiTuma \ 4

where we use the last sum to detect the correct value of v = v(n).
The error terms Ej, E3, E; 3 can easily be estimated with the help of Lemma
just as in [6].
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By using the representations of Ay-1m, and Ays W obtain

(5)_m > > an (U Hy) a, (U5 Hs)
‘hllﬁHl “’lg,‘SHg, 05h<q"_"+m_1

D > o e hsus L)
+m-1
0<u;<U; 0<u3<Us 0<v<gh-p+m-1 Ui Us “

k-1
e( Z 06@( borp—prp (U1 + €uz) = bpr y_pipr (uy + Cuz + vl + 20sq™'q" )) )

hyn? hsn  2hsn
Z (q)H—m—l +?+ q/l—y)'

We now distinguish the cases h; = 0 and h; # 0. For h; # 0, we can estimate the
exponential sum by using Lemma 5.4/and the estimate

> \/ged(h, q*) <4 Hy.

1<in<H,

Thus, we find
A—p+m—1_
|Z ( hin? h3n N 2hsn)| < AH Ha M2 Au
/1+m 1 v A—p 1439 '
0<|hy|<H, \h3|<H3 h=0 q g

This then gives S4(s) = Ss5(s) + O(1g>*/*), where S5(s) denotes the part of S4(s) with
]’l] =

’
We set u; = uy qP u; and us = uy q” uy, where 0 < uy’, u3 q” . Furthermore,

we define ip = |(u] + €u)/q |. AsT = (ie)oceck = ([(u] + €u)/q" |)oceck i
contained in J;, we have, by the same arguments as in 6],

Ss(s)< >0

|h3‘SH3 0£h<ql_"+m_1 q

x Z Z|Hi_#(h,u;)Hf\7”(h,ug+25q’”‘1)‘

0§ug<q"*l‘+1 IeJy
camin( N, [sin(n( 22+ Z2))| 7).

Using the estimate |H. (B ub +25q™")| < 1and the Cauchy-Schwarz inequality
yields

1
v+l—u

> |Hf\,”(h,u;)Hi_H(h,ug+25q""1)|

0<uf<g’—#+t
B 2y 1/2
< q(” u+1)/2( Z |Hi_y(h,u§)| )
0§u;<qvﬂ‘“

We now replace A by A — y + m —1, " by v — u + 1 and apply Proposition[3.7}

A—ptm—1_) _
Ss(s) «< q*n(l—y)/z lhsle:Hs ;,Z:%) min( N, sin( n( Zi + (ﬂ_zlﬁsm_l) )‘ 1).
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Next we average over s and h, as in [6]], by applying Lemma 5.2] Thus we have a
factor 7(g* ™) <4 (A - 1)@ compared to 7(2*#) = A — u + 1. Combining all the
estimates as in [6] then gives

|So| « qv—(/\—v) 4 v(w(q)+1)/2qvq—n(/\—v)/2 " q"—P’/Z n q"‘P"/z +A1/2qv/2+3/1/8’
provided that the following conditions hold:
2 <pus<v-p, pl<f2 W <2, 2 >,
(v—p)+2A—p)+2(p"+p")<A/4, v—p +p "+ A —p <.

LJ ensures that the above

For example, the choice A = v + [%J and p’ = p” = [200

conditions are satisfied.

Summing up we proved that for " < min(1/200, 5/40), where  is given by Propo-
sition So < q”(l"") « N holds, which is precisely the statement of Theo-
rem [L.6]

4.2 The Case K ¢ Z

In this section we show that, for K = ag + -+ + ax_; ¢ Z, Proposition[3.8|provides an
upper bound for the sum S = ¥,y e(Zh2a aeb((n + £)?)).

Let 4, A, p, and p; be integers satisfying
(4.1) 0<p1<p<p=v=2p<v<A=v+2p <2y,
to be chosen later, just as in [6]. Since K ¢ Z we cannot use Lemma [5.5] directly.
Therefore, we apply Lemmal5.7|with Q = 1and R = ¢”. Summing trivially for 1 < r <
Ry = g yields |So|* «« X2t 4+ N5 k(1= 2)R(Si(r)), where

k-1

S = Y e X ae(b((n+0)?)=b((n+r+0)?)))

neh(r) =0
and I;(r) is an interval included in [0, N - 1]. By Lemma[5.5 we conclude that
bioo((n+€)?) = by oo ((n+7+20)%)
for all but O(Ng~(="=P)) values of n. Therefore, we see that
Si(r) = Si(r) + 0(q"" 47,
with S{(r) = X per ) ( Z62p ae(ba((n+£)?) = by((n+ 1+ £)%))). This leads to
[Sof? << g+ g S si()
Ri<r<R

and the Cauchy-Schwarz inequality gives
2v
|So|4 « q4v72p+2p1 . q6v+2p—2A . q Z |S{(r)|2.
R;<r<R
For |S;(r)|* we can use Lemma 5.7|again: let p’ € N, to be chosen later, be such that
1< p’ < p. After applying Lemmal5.7|with Q = g#*™~! and

(4.2) S=q* <q" ",
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we observe that for any 7 € N we have
ba((7+5q""" 1)) = ba (%) = by n (71 + 59" 7)%) = by (7°),

and thus

4v 3y
(4.3) |So|* << g*' 2P ¥ 4 gOv2e=2A 4,9 Yo 1Sa(ns),
N RS Ri<r<R 1<s<S

with

k-1
Sy(rs)= Y e( Y ate((bua (1 +€)2) = by ((n+ 7+ €)?)

nel(r,s) £=0

—byua((n +sq”+m_1 +0)%) + bur((n +sq“+m_1 +r+ ﬁ)z))),

where I,(r, s) is an interval included in [0, N —1].

We now apply a Fourier analysis similar to the case K = 0 (mod 1) [6]. We set
U=gMm ¢ Uy = g" ¥ and V = g*#*™1 We apply Lemmaand detect the
correct values of uy, u,, uz by characteristic functions. This gives

Sa(r,5) = Z Z Z Z

0<u;<U 0<uy<U 0<u3<Us; nel,(r,s)
k-1
€ Z Oce( bpr)A_ﬂ+pr(u1 + €u3) - bpr,l_[”p'(uz + €u3)
£=0
— b g pr (thy + Cuz + v(n)q"’ + 2€sqm’1q‘°’)
+ b pm i pr (g + Cuz + v(n)qpl +2(e+ r)sqm_lqp’)) )

o g~ g ) (S - (5 )

+0(q"").

Furthermore, we use Lemma5.9)to replace the characteristic functions y by trigono-
metric polynomials. Using (5.4) with U, = U, = U, H; = H, = Ugf?,and H; = U3¢"*,
and integers p,, ps satisfying p, < y — p’, p3 <y — p’, we obtain

Sa(r,s) = S3(r,s) + O(q"’p’) + O(E30(r)) + O(E31(0)) + O(Ez(r))
+ O(E32(0)) + O(E32(7’)) + O(E33(T)) + O(E34(7’)),
for the error terms obtained by and S;(r,s) obtained by replacing the charac-

teristic function by trigonometric polynomials. We now reformulate S3(r, s) by ex-
panding the trigonometric polynomials, detecting the correct value of v = v(n), and
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restructuring the sums:

1

qzl—y+m—l

S3(r,s) = > an (U, Hy)

0<h<gr-#+m=1|hy|<H;

> an, (UL Hy) Y an(Us' Hs)

|ha|<H, |h3|<H3
Z Z Z h1u1 + h2u2 h3u3 hy )
el - _ _
A—u+m-1
0<1;<U 0<u,<U 0<1u3<Us 0<v<V U Us gt

k-1
X e( Z 06(3( bpr’)t_!ﬁ_pr(ul + €M3) - bp/,,\_‘u_,.p/(uz + €u3)
€=0
= bpr y—ppr (1 + Cuz + vq”, + 2€sqm’1q”’)

+ b g pr (g + Cuiz + vq”’ +2(€+ r)sq’”_lq”,)) )

X

hn® + hy(n+r)*  2h3n 2hsn)
+ + .
q/\+m—1 q" q)l—y

nely(r,s)

One can estimate the error terms just as in [6] and find that they are bounded by
either g*77* or ¢"~*2. In conclusion, we deduce that

(4.4) Sa(r,) = S3(r,8) + O(q"") + O(q" ") + O(g" ).
We now split the sum S3(r, s) into two parts
(4.5) S3(r,s) = S4(r,s) + Sy (r,5),

where S4(r,s) denotes the contribution of the terms for which h; + h, = 0, while
S4(r,s) denotes the contribution of the terms for which h; + h, # 0. We can estimate
Si(r,s) asin [6] and find S (r, s) <« v*g"+2(8A-9%6+70"+p2) ‘and it remains to consider
Su(r,s). Setting uy = ul + q° ul, uy = ul + q” u}, and us = ul + q° u}, where
0 < ul',ull,uf < ¥, we can replace the two-fold restricted block-additive function
by a truncated block-additive function:

bpra—pspr (U1 + €uz) = bl_#( uy + Cusy + [ (uy + Eug')/qplj),
bpra—pspr (2 + Cuz) = by, (uh + €ul + [ (uf + fu;')/qplj),
bpr d—prpr (U1 + Uz + vq”/ + 2€sq"’_1q"') =
bA_,,( ul + v+ e(uy+2sq™ ") + | (u) + L’ug')/qp/J) ,
by p—prp (U2 + €us + vqp’ +2(€+ r)sq"’_lq"l) =
bl,y( uh + v+ 2s7q™ "+ e(uh +2sq™ ) + | (u + €u§')/q”'J) .
Using the periodicity of b modulo V := g*"#*™~1 we replace the variable v by v; such

that v; = u] + v (mod g*~#*"~1). Furthermore we introduce a new variable v, such
that vy = ub + v + 2s7q™ ' = vy + 1) — u + 25s7¢™ ' (mod g*#*™~1). We then follow
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the arguments of 6] and find

A—y+m—171 /1—;4+m—171

Sa(r,s) < g*2# > > > min(U 2, hy?%)

h=0 h'=0 |ha|<H,
. -1 -1
> min(UsL A3 )] > > >
|h3|<H;3 ()gu”<qP’ 0<u”<q/" 0<u"<qP’ 0Sug<U;

|H1(ul’u3)(h' h - h2>”3)||H1(u2’u3)(h,_h2’ug)|

« |I_II(ul ,u3)(h/ h, u3 +2s5q™ 1)||I_Il(u2 ,u3)(h/)ug +25qm_1)|

y Z (thrn 2hs3n 2hsn)|

e + +
A+m-1 v A—
nely(r,s) q q q K

with

1) = (| ] [ [0 for ) 2

The next few steps are again very similar to the corresponding ones in [6], and we
skip the details. We find

Sa(r,s) < (A —p) ged(2s,q*#) g**=2
x > > min(U 2 h5%)Se(ha, s, uy, us )28 (hay s, uy, uf )/

4
o<ul’,uf ,ul/<qf’ |h2|<H,

. 2]’127’ + 2q/1—v+m—lh3 ‘ _1)
sSin 7t >
q/\+m—1

> min(U3", h3') min( q",

|h3|<H;

where

Se(ha,s,u”,uf) = ),
0<ui<Uj 0<h/<gh—#+m-1
LTS (W = o, )P (0 + 259" ).

Here we introduce the integers H) and x such that

’ A=v+m A—p+p’ +p3—p1+m+1 K
Hy=gq H;/R, = g+ s - g~.

This leads to S4(r,s) < Sq1(7,5) +Sa2(r,s) + Sa3(r,s), where Sy (7, 5), Sa2(r, 5), and
S43(r,s) denote the contribution of the terms |h,| < Hj, Hj < |hy| < q“milw’ and
gMt™m# < |hy| < H,, respectively.

Estimate of Sy (r,s) By we have

2h3 + 2]’12 rq"_’\_m“

-1
Z min(qv,‘sinﬂ ) <vq’,

v
|hs|<H; q
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and, therefore,

841(7, 5) < V(A - ‘[,[) ng(Zs, q/\—ﬂ)qv+2i—2[4 U_2 U3_1
2 > Ss(haysuf'suf )2 S(hays,uy, ug)' 2.

7 !
0<uy’,ujl ,ui<q¢’ |ha|<H;

By Proposition 3.8|(replacing A by A — y and L by A —  — «), we find some 0 < 1 < 1
such that

HR2 ™ O = b)) << 77077 max G — by L/ D).

By Parseval’s equality and recalling that #(J;) = g™ (g™ ! +1)*7, it follows that
max|HY[ (0 = ho,us[q" P < 3 30 1GR(H = ha, [u3/q" D)

|ha|<H} JeTk JeJk |ha|<H,,
< qm—l(qm—l + 1)k_1.

We obtain ¥, <x; |H§(_uljl’ug,)(h’ — hyy u)]P < g7 Amer) = ( qu_%‘ ) " uniformly in
A,y Hy, ul, v and uf.

The remaining proof is analogous to the corresponding proof in [6]. The only dif-
ference is again that by using Lemma we obtain a factor (A — #)“(4) instead of

(A = u). This gives
1
RS g,

(6) S Sa(rs) < v(A - )@t grn (epme),

<r<R1<s<$§
which concludes this part.

Estimate of Sy,(r,s) and Sy3(r,s) By following the arguments of [6] and applying
the same changes as in the estimate of Sy; we find

1 I’
(4.7) — 3 3 Sua(r,s) < p(A - u) 2D grererteoe
RS Rij<r<R 1<s<S
(48) e Z Z S43(1’,S) <p (/\ — ”)2+w(q) qV*p+3p'.
RS R;<r<R1<s<$8
Combining the estimates for S, It follows from (4.6)), (4.7), and (4.8) that
1 ’ 4 7
E Z Z 84(7‘,5) « v3+w(‘1)qV(q—2ﬂ (p1=p"=p3) + q—Ps + q—p+3p )

Rj<r<R1<s<S

Choosing p; = p — p’ and p, = p3 = p’, we obtain
€ SN Su(rs) < 3@ gv (g2 (p=30') o g=p" 4 g=(p=30))
RS Ri<r<R 1<s<8

Since 0 < #’ < 1, we obtain using (4.5) and that

1

2 S Y S(rs) « @ gv (g (=3 o gmp" g g3 (BA-9u8pT)y

Rj<r<R1<s<S
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We recall from (&.2) that S = g%’ and from that y = v—2p, A = v+ 2p, and we
insert the estimation from above in (4.3),

4 4v=2p’ 4v-2 3+ 4v, —n'(p-3p" —p’ —X417p+4p”
|So|* << g*" 7% 4+ g¥ 2P 4y (q)q (q’i(P ”)+q"+q2 PPy,

W'o’

For p’ = |v/146] and p = 4p’, we obtain |Sy| < vC+@(@)/4gv="7 « N7 for all
m < n'/584. Therefore we have seen that Proposition [3.8 implies the case K # 0
(mod 1) of Theorem [L.6]

5 Auxiliary Results

In this last section, we present some auxiliary results that are used in Section[4Jto prove
the main theorem. For this proof, it is crucial to approximate characteristic functions
of the intervals [0, «) mod 1 where 0 < a < 1 by trigonometric polynomials. This is
done by using Vaaler’s method (see Section[5.5). As we deal with exponential sums,
we also use a generalization of Van der Corput’s inequality that we will see in Section
In Section[5.1} we acquire some results dealing with sums of geometric series that
we use to bound linear exponential sums. Section[5.2]is dedicated to one classic result
on Gauss sums and allows us to find appropriate bounds on the occurring quadratic
exponential sums in Section (4] The last part of this section deals with carry propa-
gation. We find a quantitative statement that carry propagation along several digits
is rare, i.e., exponentially decreasing. We would like to note that all these auxiliary
results have already been presented in [6].

5.1 Sums of Geometric Series

We will often make use of the following upper bound for geometric series with ratio
e(f), f e Rand Ll,Lz € Z, L] < L2

| > e(€&)| <min(L, - Ly, |sinmé|™),

Li<€<L,

that is obtained from the formula for finite geometric series.
The following results allow us to find useful estimates for special double and triple
sums involving geometric series.

Lemma 5.1 Let (a,m) € Z* withm > 1, 8 = gcd(a, m), and b € R. For any real
number U > 0, we have

sin(ﬂan + b)|*1)

m

(5.1) Z min( U,

0<n<m

< 8min( U, sin( n%”_l) + 27mlog(2 m).

Proof Thisis [[6, Lemma 6]. |
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Lemma 5.2 Let m >1and A > 1 be integers, and b € R. For any real number U > 0,
we have
an+b

-1
)‘ ) < 17(m) U +mlogm

% Z Z min(U, sin(7

1<a<A 0<n<m

and, if |b| < %, we have an even sharper bound

1 Z Z min(U,|sin(r[

A 1<a<A 0<n<m

b -1
ann: )‘ )

byl
i U) i - 1 >
< T(m)mm( |s1n(nm)‘ )+m ogm
where T(m) denotes the number of divisors of m.
Proof See [6]. [ |
5.2 Gauss Sums

In the proof of the main theorem, we will meet quadratic exponential sums. We first
consider Gauss sums G(a, b; m) that are defined by

m-1

G(a,b;m) = Z e(

an® + bn)
n=0

In this section, we recall one classic result on Gauss sums:

Yo e(MT+lm)| <\/2mged(a, m)

Theorem 5.3 Forall (a,b,m) € Z* withm > 1,
holds.

Proof This form was obtained from (12} Proposition 2]. [ |

Consequently we obtain the following result for incomplete quadratic Gauss sums.

Lemma 5.4 Forall (a,b,m,N,ng) € Z*> withm >1and N > 0, we have

notN - an? 4 bn N 2. 2m
|n=%+le( T) | < ( - +1+ ;log 7) \/2mged(a, m).
Proof This is Lemma 9 of [6]. u

5.3 Carry Lemmas

As mentioned before, we want to find a quantitative statement on how rare carry prop-
agation along several digits is.

Lemma 5.5 Let (v,A,p) € N° such that v+ p < A < 2v. For any integer r with
0 < r < q°, the number of integers n < q” for which there exists an integer j > A with
ei((n+1)?) # ej(n?) is < q***P~*. Hence, we find for any block-additive function b
that the number of integers n < q* with

br-mir((n+1)%) = bacmaa () £ b((n+71)?) = b(n?)
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is also < g?'*P7A,

Proof A proof for the Thue-Morse sequence can be found in 6] and it is easy to
adapt it for this more general case. ]

The next lemma helps us replace quadratic exponential sums depending only on a
few digits.

Lemma 5.6 Let (A, y,v,p’) e N* suchthat0 < p<v< A2 <pu<v-p',and
A—v<2(u—p'), andset u' = u—p'. Forintegersn < q",s > Land1<r < gA=")/2 we
set

A+m—1) )L+m—1—;4+p’)
bl bl

nzzulq"’+w1 (mod ¢ (0£w1<q",,0£u1<q

/1+m—1) /1+m—1—;4+p')’

(n+r)25u2q”,+w2 (mod ¢ , (0£w2<q"',0§u2<q
2n=u3q" +ws (mod g 1), (0<ws<g”, 0<us<q" ),
25" 'n=v (mod g*#mY), (0 <v < ghprmhy,

where the integers u; = uy(n), uy = up(n), us = us(n), v = v(n), wy = wi(n),
wy = wp(n), and ws = wi(n) satisfy the above conditions. Then for any integer € > 1
the number of integers n < q” for which one of the following conditions

bua((n+ 0)*) # bor p—prpr (U1 + €us),
bur((n+€+ sq"tm ) 4 b A—prpr (11 + Cus + qu’ + 2€sqm_lq"'),
bur((n+r+ €)2) # bpra—pspr (g + Cus),
bur((n+r+e+ sq’”m’l)z) # ot r—pspr (Ui + LUz + vq"' +2(€+ r)squlqpr),

U
is satisfied is << q"7F .

Proof A proof for the sum of digits function in base 2 can be found in [6] and it is
straight forward to adapt it to fit this more general case. [ |

5.4 Van der Corput’s Inequality

Lemma 5.7 ([12]) For all complex numbers zi,...,zx and all integers Q > 1 and
R > 1, we have

N-1 N+OR-O N1 R-1 N-Qr-1 B
Zzn|zg¥(2|zn|2+22(l—£) Z %(z,HQrzn)),
n=1 n=1 r=1 n=1

where R(z) denotes the real part of z € C.

5.5 Vaaler’s Method

The following theorem, developed by Vaaler [21], gives a classical method for detect-
ing real numbers in an interval modulo 1 by means of exponential sums. For & € R
with 0 < a < 1, we denote by x, the characteristic function of the interval [0, a)
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modulo 1,
(5.2) Xa(x) =|x] - |x-«af.

The following theorem is a consequence of Vaaler [21]. The presented form was
first published by Mauduit and Rivat [13].

Theorem 5.8 Foralla € Rwith0 < « < land all integer H > 1, there exist real-valued
trigonometric polynomials A, y(x) and B g (x) such that for all x € R

Xa (%) = Ag,u (%)] € Bo,u (%)
The trigonometric polynomials are defined by

(53)  Aanu(x)= > ap(a,H)e(hx), Bou(x) = Y, by(a,H)e(hx),

|h|l<H |h|<H
with coefficients aj, (o, H) and by, (a, H) satisfying

. 1 1
ao(a, H) = a, |ap(a, H)| < mln( a, Th|)’ |by(a, H)| < Tt

Using this method we can detect points in a d-dimensional box (modulo 1).

Lemma 5.9 For(ay,...,a4) € [O,I)d and (Hy,...,Hy) € N4 withHy >1,...,H; 2
1, we have for all (xi,...,x4) € R?

d d
I T Xa; (%) = TT Agym, (x)I < 30 TT Xay (%)) TT Bay, by (%),
j=1 j=1 o#1c{1,...,d} i#] Jjel

where Ay g (-) and Bo (- ) are the real valued trigonometric polynomials defined by

G3).

Proof See [13]. [ |

Let (Uy,...,Uy) «€ N? with U; > 1,...,U; > 1 and define o; = YUy, ...,a4 =
1/U4. For j=1,...,d and x € R, we have ZOSuj<Uanj(x—%) =1. Let N € N with

N>1f{l,...,N} > R%and g: {1,...,N} - Csuchthat|g| < LIf f = (fi,..., fa)s
we can express the sum § = Y0 ¢(n) as

N [Z5] Ug
S = @ - 2)... » 4.
;g(H)OS;UIX (ﬁ(n) Ul) oswz;u,,x (fd(n) Ud)
We now define (H,,...,Hy) e N% with Hy >1,...,Hy > 1,

5oyt ¥ Awn (A1) - 5)

n=1 0<u;<U;

> Aa,,,,H,,,(fd(” _[1%)-

0<uy<Uy
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Lemma 5.10  With the notations from above, we have

d-1
~ U, - U,

(54) 1S-S[<) X

€=11<j1<<je Hjl o Hje |hj, |<Hjy [Uj, hjp|<Hj, /Uj,

| Z::le(hjl Ujlfjl(n) Tt hje Ujefje(”))| .

Proof See [13]. [ |
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