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The Rudin–Shapiro Sequence and Similar
Sequences Are Normal Along Squares

Clemens Müllner

Abstract. We prove that digital sequences modulo m along squares are normal, which covers some
prominent sequences, such as the sum of digits in base q modulo m, the Rudin–Shapiro sequence,
and some generalizations. _is gives, for any base, a class of explicit normal numbers that can be
eõciently generated.

1 Introduction

_is paper dealswith digital sequencesmodulo m. Such sequences are “simple” in the
sense that they are deterministic and uniformly recurrent sequences. We show that
the situation changes completely when we consider the subsequence along squares,
i.e.,we show that this subsequence is normal. _us,we describe a new class of normal
numbers that can be eõciently generated, i.e., the ûrst n digits of the normal number
can be generated by using O(n log(n)) elementary operations.

In this paperwe letN denote the set of positive integers andwe let P denote the set
of prime numbers. We let U denote the set of complex numbers ofmodulus 1 and we
use the abbreviation e(x) = exp(2πix) for any real number x. For two functions, f
and g that take only strictly positive real values, we write f = O(g) or f ≪ g if f /g is
bounded. We let ⌊x⌋ denote the �oor function and {x} denote the fractional part of x.
Furthermore,we let χα(x) denote the indicator function for {x} in [0, α). Moreover,
we let τ(n) denote the number of divisors of n, ω(n) denote the number of distinct
prime factors of n, and φ(n) denote the number of positive integers smaller than n
that are co-prime to n. Furthermore, let ε(q)j (n) ∈ {0, . . . , q − 1} denote the j-th digit
in the base q expansion of a non-negative integer n, i.e., n = ∑

r
j=0 ε

(q)
j (n)q j , where

r = ⌊logq(n)⌋. We usually omit the superscript, as we work with arbitrary but ûxed
base q ≥ 2.

1.1 Digital Sequences

_emain topic of this paper isdigital sequencesmodulom′. Weuse a slightlydiòerent
deûnition of digital function than the one found in [1].
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_e Rudin–Shapiro Sequence Is Normal Along Squares 1097

Deûnition 1.1 We call a function b∶N → N a strongly block-additive q-ary func-
tion or digital function if there exist m ∈ N>0 and F∶{0, . . . , q − 1}m → N such
that F(0, . . . , 0) = 0 and b(n) = ∑ j∈Z F(ε

(q)
j+m−1(n), . . . , ε

(q)
j (n)), where we deûne

ε− j(n) = 0 for all j ≥ 1.

_e diòerence from the usual deûnition is the range of the sum (N0 or Z) which
does not matter for all appearing examples.

Remark 1.2 _e name strongly block-additive q-ary function was inspired by
(strongly) q-additive functions. Bellman and Shapiro [3] and Gelfond [9] denoted a
function f to be q-additive if f (aqr +b) = f (aqr)+ f (b) holds for all r ≥ 1, 1 ≤ a < q,
and 0 ≤ b < qr . Mendès France [14] denoted a function f to be strongly q-additive if
f (aqr + b) = f (a) + f (b) holds for all r ≥ 1, 1 ≤ a < q, and 0 ≤ b < qr . _us, for a
strongly q-additive function f , we can write f (n) = ∑ j∈Z f (ε

(q)
j (n)).

A quite prominent example of a strongly block-additive function is the sum of
digits function sq(n) in base q. _is is a strongly block-additive function with m = 1
and F(x) = x. In particular, (s2(n) mod 2)n∈N gives the well-known _ue–Morse
sequence.
Another prominent example is the Rudin–Shapiro sequence r = (rn)n≥0 which is

given by the parity of the number of blocks of the form “11” in the digital expansion in
base 2. Let b be the digital sequence corresponding to q = 2,m = 2 and F(x , y) = x ⋅ y.
_en we ûnd rn = (b(n) mod 2). _is can be generalized to functions that are given
by the parity of blocks of the form “111 ⋅ ⋅ ⋅ 11” for ûxed length of the block [13].
Digital sequences are regular sequences [5]. Consequently we ûnd that digital se-

quencesmodulom′ are automatic sequences [1, Corollary 16.1.6],which implies some
interesting properties. For a detailed treatment of automatic sequences, see [1].

We deûne the subword complexity of a sequence a that takes only ûnitely many
diòerent values to be

pa(n) = #{(a i , . . . , a i+n−1) ∶ i ≥ 0}.

It iswell known that the subword complexity of automatic sequences is sub-linear (see
[1, Corollary 10.3.2]), i.e., for every automatic sequence a we have pa(n) = O(n). For
a random sequence u ∈ {0, 1}N, one ûnds that pu(n) = 2n with probability one. _us,
automatic sequences are far from being random.

1.2 Main Result

It iswell known that these properties are preservedwhen considering arithmetic sub-
sequences of automatic sequences and, therefore, digital sequencesmodulom′. How-
ever, the situation changes completely when one considers the subsequence along
squares.

Deûnition 1.3 A sequence u ∈ {0, . . . ,m′ − 1}N is normal if, for any k ∈ N and any
(c0 , . . . , ck−1) ∈ {0, . . . ,m′ − 1}k , we have

lim
N→∞

1
N

#{i < N ∶ u(i) = c0 , . . . , u(i + k − 1) = ck−1} = (m′)−k .
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1098 C. Müllner

Drmota,Mauduit andRivat showed a ûrst example for that phenomenon [6]. _ey
considered the classical _ue–Morse sequence (tn)n≥0 and showed, not only that

p(tn2 )n≥0(k) = 2k ,

but also that (tn2)n≥0 is normal. _e fact that p(tn2 )n≥0(k) = 2k had already been
proved by Moshe [15], who was able to give exponentially growing lower bounds for
extractions of the _ue–Morse sequence along polynomials of degree at least 2. In
this paperwe go one step further thanDrmota,Mauduit andRivat and show a similar
result for general digital sequences.

_eorem 1.4 Let b be a digital function and m′ ∈ N with gcd(q − 1,m′) = 1 and
gcd(m′ , gcd({b(n) ∶ n ∈ N})) = 1. _en (b(n2) mod m′)n∈N is normal.

_ere are only few known explicit constructions of normal numbers in a given base
[4, Chapters 4 and 5]. _is result provides us with a whole class of normal sequences
for any given base that can be generated eõciently, i.e., it takes O(n log n) elementary
operations to produce the ûrst n elements.

_e easiest construction for normal sequences is the Champernowne construc-
tion, which is given by concatenating the base b expansion of successive integers.
For example, for base 10 this gives 123456789101112131415 ⋅ ⋅ ⋅ . Using the ûrst n′
integers takes O(n′ log(n′)) elementary operations and gives a sequence of length
Θ(n′ log(n′)).

Scheerer [17] analyzed the runtime of some algorithms that produce absolutely
normal numbers, i.e., real numbers in [0, 1] whose expansion in base b is normal for
every base b. Algorithms by Sierpinski [19] and Turing [20] use double exponentially
many operations and algorithms by Levin [11] and Schmidt [18] use exponentially
many operations. Moreover, Becher, Heiber and Slaman [2] gave an algorithm that
takes just above n2 operations to produce the ûrst n digits.
Digital sequences modulo m′ have interesting (dynamical) properties. First, they

are primitive and, therefore, uniformly recurrent [1,_eorem 10.9.5] , i.e., every block
that occurs in the sequence at least once, occurs inûnitely o�en with bounded gaps.

_ere is a natural way to associate a dynamical system (the symbolic dynamical
system) with a sequence that takes only ûnitely many values.

Deûnition 1.5 _e symbolic dynamical system associated with a sequence u ∈
{0, . . . ,m′ − 1}N is the system (X(u), T), where T is the shi� on {0, . . . ,m′ − 1}N

and X(u) the closure of the orbit of u under the action of T for the product topology
of {0, . . . ,m′ − 1}N.

Some of the mentioned properties of automatic sequences also imply important
properties for the associated symbolic dynamical system.

_e fact that every digital sequencemodulo m′, denoted by u, is uniformly recur-
rent implies that the associated symbolic dynamical system is minimal, i.e., the only
closed T invariant sets in X(u) are ∅ and X(u) [8, 16].
Furthermore, the entropy of the symbolic dynamical system associated with se-

quence u, which takes only ûnitely many values, is equal to limn→∞ log(pu(n))/n
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([10] or [7]). Consequently, we know that the entropy of the symbolic dynamical
system associated with a digital sequencemodulo m′ equals 0, and therefore, the dy-
namical system is deterministic.

1.3 Outline of the Proof

In order to prove our main result, we will work with exponential sums. We present
here themain theorem on exponential sums and further show its connection to _e-
orem 1.4.

_eorem 1.6 For any integer k ≥ 1 and (α0 , . . . , αk−1) ∈ { 0
m′ , . . . , m′

−1
m′ }k such that

(α0 , . . . , αk−1) /= (0, . . . , 0), there exists η > 0 such that

S0 = ∑
n<N

e(
k−1

∑
ℓ=0
αℓb((n + ℓ)2)) ≪ N 1−η .(1.1)

Lemma 1.7 _eorem 1.6 implies _eorem 1.4.

Proof Let (c0 , . . . , ck−1) ∈ {0, . . . ,m′− 1}k be an arbitrary sequence of length k. We
count the number of occurrences of this sequence in (b(n2) mod m′)n≤N . Assuming
that (1.1) holds, we obtain, by using the well-known identity ∑m′

−1
n=0 e( n

m′ ℓ) = m′ for
ℓ ≡ 0 mod m′ and 0 otherwise,

∣ {n < N ∶ (b(n2) mod m′ , . . . , b((n + k − 1)2) mod m′) = (c0 , . . . , ck−1)}∣

= ∑
n<N

1[b(n2)≡c0 mod m′] ⋅ ⋅ ⋅ 1[b((n+k−1)2)≡ck−1 mod m′]

= ∑
n<N

k−1

∏
ℓ=0

1
m′

m′
−1

∑
α′ℓ=0

e(
α′ℓ
m′

(b((n + ℓ)2) − cℓ))

=
1

(m′)k ∑
(α′0 , . . . ,α

′

k−1)

∈{0, . . . ,m′
−1}k

e(−
α′0c0 + ⋅ ⋅ ⋅ + α′k−1ck−1

m′
) ∑

n<N
e(

k−1

∑
ℓ=0

α′ℓ
m′

°
=∶αℓ

b((n + ℓ)2))

=
N

(m′)k +O(N 1−η)

with the same η > 0 as in _eorem 1.6. To obtain the last equality we separate the
term with (α′0 , . . . , α′k−1) = (0, . . . , 0).

_e structure of the rest of the paper is presented next. In Section 2 we discuss
some properties of digital sequences. _ese properties will be very important for the
estimates of the Fourier terms. In Section 3, we derive the main ingredients of the
proof of_eorem 1.6, which are upper bounds on the Fourier terms

H I
λ(h, d) =

1
qλ ∑

0≤u<qλ
e (

k−1

∑
ℓ=0
αℓbλ(u + ℓd + iℓ) − hq−λ) ,

where I = (i0 , . . . , ik−1) ∈ Nk with some special properties deûned in Section 3.2 and
bλ is a truncated version of b which is properly deûned in Deûnition 2.1.
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_emain results of Section 3: Proposition 3.7 yields a bound on averages of Fourier
transforms and Proposition 3.8 yields a uniform bound on Fourier transforms.

In Section 4, we discuss how Proposition 3.7 and Proposition 3.8 are used to prove
_eorem 1.6. _e approach is very similar to [6] and we will mainly describe how
it must be adapted. We use Van derCorput-like inequalities in order to reduce our
problem to sums depending only on few digits of n2 , (n + 1)2 , . . . , (n + k − 1)2. By
detecting these few digits, we are able to remove the quadratic terms, which allows
a proper Fourier analytic treatment. A�er the Fourier analysis, the remaining sum
is split into two sums. _e ûrst sum involves quadratic exponential sums which are
dealt with using the results from Section 5.2.

_e Fourier terms H I
λ(h, d) appear in the second sum and Propositions 3.7 and

3.8 provide the necessary bounds.
Wemust distinguish the cases K = α0 + ⋅ ⋅ ⋅ + αk−1 ∈ Z and K ∉ Z. Sections 4.1 and

4.2 each tackle one of these cases. In Section 4.1, we prove that, if K ∈ Z, we deduce
_eorem 1.6 from Proposition 3.7. For K ∉ Z, Section 4.2 shows that we can deduce
_eorem 1.6 from Proposition 3.8.

In Section 5, we present some auxiliary results also used in [6].

2 Digital Functions

In this section we discuss some important properties of digital functions. We start
with some basic deûnitions.

Deûnition 2.1 We deûne for 0 ≤ µ ≤ λ the truncated function bλ and the two-fold
restricted function bµ ,λ by

bλ(n) =∑
j<λ
F(ε j+m−1(n), . . . , ε j(n)) and bµ ,λ(n) = bλ(n) − bµ(n).

We see directly that bλ( ⋅ )∶N → N is a qλ+m−1 periodic function and we extend it
to a (qλ+m−1 periodic) function Z→ N that we also denote by bλ( ⋅ )∶Z→ N.
For any n ∈ N, we deûne F(n) ∶= F(εm−1(n), . . . , ε0(n)). Since F(0) = 0, we can

rewrite b(n) and bλ(n) for λ ≥ 1 as follows

b(n) =∑
j≥0
F(⌊ qm−1n

q j ⌋) , bλ(n) =
λ+m−2

∑
j=0

F(⌊ qm−1n
q j ⌋) .

We show that for any block-additive function, we can choose F without loss of gen-
erality such that it fulûlls a nice property.

Lemma 2.2 Let b∶N → N be a strongly block-additive function corresponding to F′.
_en there exists another function F such that b also corresponds to F and

(2.1)
m−1

∑
j=1
F(nq j) = 0

holds for all n ∈ N.

Proof We start by deûning a new function G(n) ∶= ∑
m−1
j=1 F′(nq j). _is already

allows us to deûne the function F: F(n) ∶= F′(n) +G(n) −G(⌊n/q⌋).
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We ûnd directly that G(0) = F(0) = 0. It remains to show that b corresponds to F
and that (2.1) holds, which are simple computations,

∑
j≥0
F(⌊ qm−1n

q j ⌋) =∑
j≥0
F′(⌊ qm−1n

q j ⌋) +∑
j≥0

G(⌊
qm−1n

q j ⌋) −∑
j≥0

G(⌊
qm−1n
q j+1 ⌋)

= b(n) +G(0) = b(n).

Furthermore, we ûnd
m−1

∑
j=1
F(nq j) =

m−1

∑
j=1
F′(nq j) +

m−1

∑
j=1

G(nq j) −
m−1

∑
j=1

G(nq j−1)

=
m−1

∑
j=1
F′(nq j) +G(nqm−1) −G(n)

=
m−1

∑
j=1
F′(nq j) + 0 −

m−1

∑
j=1
F′(nq j) = 0.

Henceforth, we assume that (2.1) holds for any strongly block-additive function b.
_is allows us to ûnd an easier expression for b.

Corollary 2.3 Let b(n) be a digital function fulûlling (2.1). _en

b(n) =∑
j≥0
F(⌊ n

q j ⌋) , bλ(n) =
λ−1

∑
j=0
F(⌊ n

q j ⌋)

holds for all n, λ ∈ N.

We easily ûnd the following recursion.

Lemma 2.4 Let α ∈ N, n1 ∈ N, and 0 ≤ n2 < qα . _en
(2.2) bλ(n1qα + n2) = bλ−α(n1) + bα(n1qα + n2)

holds for all λ > α and b(n1qα + n2) = b(n1) + bα(n1qα + n2).

Proof We compute bλ(n1qα + n2):

bλ(n1qα + n2) =
λ−1

∑
j=0
F(⌊ n1qα + n2

q j ⌋)

=
λ−1

∑
j=α
F(⌊ n1qα + n2

q j ⌋) +
α−1

∑
j=0
F(⌊ n1qα + n2

q j ⌋)

=
λ−α−1

∑
j=0

F(⌊ n1

q j ⌋) +
α−1

∑
j=0
F(⌊ n1qα + n2

q j ⌋)

= bλ−α(n1) + bα(n1qα + n2).

_e second case can be treated analogously.

As we are dealing with the distribution of digital functions along a special subse-
quence, we will start discussing some distributional results for digital functions.
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Lemma 2.5 Let b be a strongly block-additive function andm′ > 1. _en the following
three statements are equivalent.
(i) _ere exists n ∈ N such that m′ ∤ b(n).
(ii) _ere exists n < qm such that m′ ∤ F(n).
(iii) _ere exists n < qm such that m′ ∤ b(n).

Proof Obviously (iii)⇒ (i).
Next we show that (i)⇒ (ii). Let n0 be the smallest natural number > 0 such that

m′ ∤ b(n0). By Lemma 2.4, b(n0) = b(⌊n0/q⌋) + F(n0) holds. By the deûnition of
n0, we have m′ ∣ b(⌊n0/q⌋), and therefore, m′ ∤ F(n0) = F(n0 mod qm).

It remains to prove that (ii)⇒ (iii). Let n0 be the smallest natural number > 0 such
that m′ ∤ F(n0). By (ii), we have n0 < qm . We compute b(n0) mod m′,

b(n0) =∑
j≥0
F(⌊ n0

q j ⌋) ≡ F(n0) /≡ 0 (mod m′)

as ⌊ n0
q j ⌋ < n0 for j ≥ 1 implies that F(⌊ n0

q j ⌋) ≡ 0 (mod m′).

Remark 2.6 _e following example shows that in Lemma 2.5, we cannot replace
m′ ∤ ⋅ by gcd(m′ , ⋅ ) = 1. Let m = 1, q = 3,m′ = 6 and F(0) = 0, F(1) = 2, F(2) = 3.
We see that gcd(m′ , F(n)) > 1 for all n < qm = 3 and also gcd(m′ , b(n)) > 1 for all
n < qm = 3. However, b(5) = F(1) + F(2) = 5 and gcd(m′ , b(5)) = 1.

Next, we show a technical result concerning block-additive functions that will be
useful later on.

Lemma 2.7 Let b be a strongly block-additive function in base q and k > 1 such that
gcd(k, q − 1) = 1 and gcd(k, gcd({b(n) ∶ n ∈ N})) = 1. _en there exist integers
e1 , e2 < q2m−1 such that
b(qm−1(e1 + 1)− 1)−b(qm−1(e1 + 1)) /≡ b(qm−1(e2 + 1)− 1)−b(qm−1(e2 + 1))(mod k)
holds.

Proof Without loss of generality we can restrict ourselves to the case p ∈ P where
p ∣ k. Let us assume on the contrary that there exists c such that

b(qm−1(e + 1) − 1) − b(qm−1(e + 1)) ≡ c(modp)
holds for all e < q2m−1. Under this assumption,we ûnd anew expression for b(n) mod
p, where n < qm :

n ⋅ qm−1c ≡ ∑
e<nqm−1

(b(qm−1(e + 1) − 1) − b(qm−1(e + 1))

≡ ∑
e<nqm−1

(b(e) + bm−1(qm−1e + qm−1 − 1) − b(e + 1))

≡ −b(nqm−1) + ∑
e<nqm−1

bm−1(qm−1e + qm−1 − 1)

≡ −b(nqm−1) + n ∑
e<qm−1

bm−1(qm−1e + qm−1 − 1).
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_e last equality holds since bm−1(qm−1e+ qm−1 − 1) is a qm−1 periodic function in e.
_is gives

b(n) = b(nqm−1) ≡ n( ∑
e<qm−1

bm−1(qm−1e + qm−1 − 1) − qm−1c)(modp).(2.3)

By comparing this expression for b(1) and b(q) (note that b(1) = b(q)), we ûnd

(q − 1)( ∑
e<qm−1

bm−1(qm−1e + qm−1 − 1) − qm−1c) ≡ 0 (mod p)

∑
e<qm−1

bm−1(qm−1e + qm−1 − 1) − qm−1c ≡ 0 (mod p)

as gcd(p, q − 1) = 1.
Together with (2.3), this implies that p ∣ b(n) for all n < qm . By Lemma 2.5, this is

a contradiction to gcd(p, gcd({b(n) ∶ n ∈ N})) = 1.

We will use this result in a diòerent form.

Corollary 2.8 Let b be a strongly block-additive function in base q and let m′ > 1
such that gcd(m′ , q − 1) = 1 and gcd(m′ , gcd({b(n) ∶ n ∈ N})) = 1. For every α ∈

{ 1
m′ , . . . , m′

−1
m′ } there exist e1 , e2 < q2m−1 and d ∈ N such that dα /∈ Z and

b(qm−1(e1 + 1) − 1) − b(qm−1(e1 + 1)) − b(qm−1(e2 + 1) − 1) + b(qm−1(e2 + 1)) = d .

Proof Let α = x/y where gcd(x , y) = 1 and 1 < y ∣ m′. We apply Lemma 2.7 for
k = y and ûnd e1 , e2 such that

b(qm−1(e1 + 1) − 1) − b(qm−1(e1 + 1)) − b(qm−1(e2 + 1) − 1) + b(qm−1(e2 + 1)) = d ,

where d /≡ 0 (mod y). _is implies dα = dx
y /≡ 0 (mod 1).

3 Bounds on Fourier Transforms

_e goal of this section is to prove Propositions 3.7 and 3.8. To ûnd the necessary
bounds we ûrst need to recall one important result on the norm of matrix products
thatwas ûrst presented byDrmota,Mauduit, andRivat [6]. _enwe dealwith Fourier
estimates and formulate Propositions 3.7 and 3.8. Sections 3.3 and 3.4 give proofs of
Propositions 3.7 and 3.8, respectively.

3.1 Auxiliary Results for the Bounds of the Fourier Transforms

In this section we state suõcient conditions under which the product ofmatrices de-
creases exponentially with respect to thematrix row-sum norm.

Lemma 3.1 Let Mℓ , ℓ ∈ N, be N × N matrices with complex entries Mℓ;i , j , for
1 ≤ i , j ≤ N , and absolute row sums ∑N

j=1 ∣Mℓ;i , j ∣ ≤ 1, for 1 ≤ i ≤ N. Furthermore,
we assume that there exist integers m0 ≥ 1 and m1 ≥ 1 and constants c0 > 0 and η > 0
such that the following hold.
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(i) Every product A = (A i , j)(i , j)∈{1, . . . ,N}2 of m0 consecutive matrices Mℓ has the
property that

(3.1) ∣A i ,1∣ ≥ c0 or
N

∑
j=1

∣A i , j ∣ ≤ 1 − η for every row i .

(ii) Every productB = (B i , j)(i , j)∈{1, . . . ,N}2 ofm1 consecutivematricesMℓ has the prop-
erty

(3.2)
N

∑
j=1

∣B1, j ∣ ≤ 1 − η.

_en there exist constants C > 0 and δ > 0 such that

∥
r+k−1
∏
ℓ=r

Mℓ∥∞ ≤ Cq−δk

uniformly for all r ≥ 0 and k ≥ 0 (where ∥ ⋅ ∥∞ denotes thematrix row-sum norm).

Proof See [6].

Lemma 3.2 Let x1 , x2 , ξ1 , ξ2 ∈ R. _en

∣ e(x1) + e(x1 + ξ1)∣ + ∣ e(x2) + e(x2 + ξ2)∣ ≤ 4 − 8( sin(
π∥ξ1 − ξ2∥

4
))

2
.

Proof _e proof is a straightforward computation and can be found at the end of
the proof of [13, Lemma 12].

3.2 Fourier Estimates

In this section,we discuss some general properties of the occurring Fourier terms. For
any k ∈ N, we denote by Ik the set of integer vectors I = (i0 , . . . , ik−1) with i0 < qm−1

and iℓ−1 ≤ iℓ ≤ iℓ−1 + qm−1 for 1 ≤ ℓ ≤ k − 1. Furthermore, we denote by I′k the
set of integer vectors I′ = (i′0 , . . . , i′k−1) with i′0 = 0 and i′ℓ−1 ≤ i′ℓ ≤ i′ℓ−1 + 1. _is
set Ik obviously consists of qm−1(qm−1 + 1)k−1 elements. For any I ∈ I′k , h ∈ Z and
(d , λ) ∈ N2, we deûne

H I
λ(h, d) =

1
qλ+m−1 ∑

0≤u<qλ+m−1
e(

k−1

∑
ℓ=0
αℓbλ(u + ℓd + iℓ) − huq−λ−m+1) ,

for ûxed coeõcients αℓ ∈ { 0
m′ , . . . , m′

−1
m′ }. _e sum H I

λ( ⋅ , d) can then be seen as the
discrete Fourier transform of the function u ↦ e(∑k−1

ℓ=0 αℓbλ(u + ℓd + iℓ)) , which is
qλ+m−1 periodic.
Furthermore, we deûne the important parameter K ∶= α0 + ⋅ ⋅ ⋅ + αk−1.
Wewould like to ûnd a simple recursion for Hλ in terms ofHλ−1. Insteadwe relate

it to a diòerent function for which the recursion is much simpler,

G I
λ(h, d) =

1
qλ ∑

u<qλ
e(

k−1

∑
ℓ=0
αℓbλ(qm−1(u + ℓd) + iℓ) − huq−λ) .
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_is sum G I
λ( . , d) can then be seen as the discrete Fourier transform of the func-

tion u ↦ e(∑k−1
ℓ=0 αℓbλ(qm−1(u+ ℓd)+ iℓ)) , which is qλ periodic. We show now how

G and H are related.

Lemma 3.3 Let I ∈ I′k , h ∈ Z, (d , λ) ∈ N2 and δ ∈ {0, . . . , qm−1 − 1}. It holds

(3.3) H I
λ(h, q

m−1d + δ) = 1
qm−1

qm−1
−1

∑
ε=0

e(−
hε

qλ+m−1 ) GJε ,δ
λ (h, d),

where Jε ,δ = Jε ,δ(I) = (iℓ + ℓδ + ε)ℓ∈{0, . . . ,k−1} ∈ Ik .

Proof One checks easily that Jε ,δ(I) ∈ Ik . We evaluate H I
λ(h, q

m−1d + δ).

H I
λ(h, q

m−1d + δ)

=
1

qλ+m−1 ∑
0≤u<qλ+m−1

e(
k−1

∑
ℓ=0
αℓbλ(u + ℓ(qm−1d + δ) + iℓ) − huq−λ−m+1)

=
1

qλ+m−1 ∑
ε<qm−1

∑
0≤u<qλ

e(−
h(qm−1u)
qλ+m−1 ) e(−

hε
qλ+m−1 )

× e(
k−1

∑
ℓ=0
αℓbλ(qm−1u + ε + ℓ(qm−1d + δ) + iℓ))

=
1

qλ+m−1 ∑
ε<qm−1

∑
u<qλ

e(−
hu
qλ ) e(−

hε
qλ+m−1 )

× e(
k−1

∑
ℓ=0
αℓbλ((u + ℓd)qm−1 + (ℓδ + iℓ + ε)))

=
1

qm−1 ∑
ε<qm−1

e(−
hε

qλ+m−1 ) GJε ,δ
λ (h, d).

Next we deûne a transformation on Ik and a weight function v.

Deûnition 3.4 Let j ≥ 1 and ε, δ ∈ {0, . . . , q j − 1}. _en we deûne for I ∈ Ik

T j
ε ,δ(I) ∶= (⌊

iℓ + qm−1(ε + ℓδ)
q j ⌋)

ℓ∈{0, . . . ,k−1}

v j(I, ε, δ) ∶= e(∑
ℓ<k
αℓ ⋅ b j( iℓ + qm−1(ε + ℓδ))) .

We see immediately that ∣v j(I, ε, δ)∣ = 1 for all possible values of j, I, ε and δ. Fur-
thermore, we extend the deûnition of T j for arbitrary ε, δ by

T j
ε ,δ(I) ∶= T j

ε mod q j ,δ mod q j(I).

_e next lemma shows some basic properties of these functions.
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Lemma 3.5 Let λ, j, j1 , j2 ∈ N, ε, δ ∈ {0, . . . , q j − 1}, and ε i , δ i ∈ {0, . . . , q j i − 1}.
_en the following facts hold.
(i) T j

ε ,δ(I) ∈ Ik .
(ii) T j2

ε2 ,δ2 ○ T j1
ε1 ,δ1 = T j1+ j2

ε2q j1+ε1 ,δ2q j1+δ1
.

(iii) G I
λ(h, d) =

1
qλ ∑u<qλ vλ(I, u, d) e(−huq−λ).

Proof (i) and (ii) are direct consequences of basic properties of the �oor function
and (iii) is just a reformulation of the deûnition of G in terms of v.

Now we can ûnd a nice recursion for the Fourier transform G.

Lemma 3.6 Let I ∈ Ik , h ∈ Z, d , λ ∈ N and 1 ≤ j ≤ λ, δ ∈ {0, . . . , q j − 1}. We have

G I
λ(h, q

jd + δ) = 1
q j ∑

ε<q j
e(−hεq−λ)v j(I, ε, δ) ⋅G

T j
ε ,δ(I)

λ− j (h, d).

Proof We evaluate G I
λ(h, q

jd + δ) and use (2.2):

G I
λ(h, q

jd + δ) = 1
qλ ∑

u<qλ
e(

k−1

∑
ℓ=0
αℓbλ(qm−1(u + ℓ(q jd + δ)) + iℓ) − huq−λ)

=
1
q j ∑

ε<q j

1
qλ− j ∑

u<qλ− j
e(

k−1

∑
ℓ=0
αℓbλ(qm−1+ j(u + ℓd) + qm−1(ε + ℓδ) + iℓ))

× e(−h(uq j + ε)q−λ)

=
1
q j ∑

ε<q j
e(

k−1

∑
ℓ=0
αℓb j(qm−1(ε + ℓδ) + iℓ)) e(−hεq−λ)

1
qλ− j

× ∑
u<qλ− j

e(
k−1

∑
ℓ=0
αℓbλ− j(qm−1(u + ℓd) + ⌊

εqm−1 + ℓδqm−1 + iℓ
q j ⌋) − huq−λ+ j)

=
1
q j ∑

ε<q j
v j(I, ε, δ) e(−hεq−λ) ⋅G

T j
ε ,δ(I)

λ− j (h, d).

_e following propositions are crucial for our proof of_eorem 1.6.

Proposition 3.7 If K ≡ 0 (mod 1) and 1
2 λ ≤ λ′ ≤ λ, then there exists η > 0 such that

for any I ∈ I′k
1

qλ′ ∑0≤d<qλ′ ∣H I
λ(h, d)∣

2 ≪ q−ηλ holds uniformly for all integers h.

Proposition 3.8 If K /≡ 0 (mod 1), then there exists η > 0 such that for any I ∈ I′k

∣H I
λ(h, d)∣ ≪ q−ηL max

J∈Ik
∣G J

λ−L(h, ⌊d/q
L⌋)∣

holds uniformly for all non-negative integers h, d and L.
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3.3 Proof of Proposition 3.7

We start by reducing the problem fromH I
λ(h, d) toG I

λ(h, d) forwhichwe have found
a nice recursion.

Proposition 3.9 For K ∈ Z and 1
2 λ ≤ λ′ ≤ λ, we ûnd η > 0 such that for any I ∈ Ik

1
qλ′ ∑

0≤d<qλ′
∣G I

λ(h, d)∣
2 ≪ q−ηλ

holds uniformly for all integers h.

Lemma 3.10 Proposition 3.9 implies Proposition 3.7.

Proof We see by (3.3) that

∣H I
λ(h, d)∣

2 ≤ max
J∈Ik

∣G J
λ(h, ⌊d/q

m−1⌋)∣2 ≤ ∑
J∈Ik

∣G J
λ(h, ⌊d/q

m−1⌋)∣2 .

_us we ûnd
1

qλ′ ∑
0≤d<qλ′

∣H I
λ(h, d)∣

2 ≤ ∑
J∈Ik

1
qλ′ ∑

0≤d<qλ′
∣G J

λ(h, ⌊d/q
m−1⌋)∣2 ≪ q−ηλ .

Using Lemma 3.6, it is easy to establish a recursion for

ΦI ,I′
λ ,λ′(h) =

1
qλ′ ∑

0≤d<qλ′
GI

λ(h, d)G
I′
λ (h, d),

where h ∈ Z, (λ, λ′) ∈ N2 and (I, I′) ∈ I2k . For λ, λ′ ≥ 1 and 1 ≤ j ≤ min(λ, λ′) it yields
for ΦI ,I′

λ ,λ′(h) the following expression:

1
q3 j ∑

δ<q j
∑
ε1<q j

∑
ε2<q j

e(−
(ε1 − ε2)h

qλ )v j(I, ε1 , δ)v j(I, ε2 , δ)Φ
T j
ε1 ,δ

(I),T j
ε2 ,δ

(I′)
λ− j,λ′− j (h).

To ûnd this recursion, one has to split the sum over 0 ≤ d < qλ′ into the
equivalence classes modulo q j . _is identity gives rise to a vector recursion for
Ψλ ,λ′(h) = (ΦI ,I′

λ ,λ′(h))(I ,I′)∈I2k . We use the recursion for j = 1. We have Ψλ ,λ′(h) =
M(h/qλ) ⋅ Ψλ−1,λ′−1(h), where the (qm−1(qm−1 + 1))2 × (qm−1(qm−1 + 1))2 matrix
M(β) = (M(I ,I′),(J , J′)(β))((I ,I′),(J , J′))∈I2k×I2k is independent of λ and λ′. By construc-
tion, all absolute row sums ofM(β) are bounded by 1.

It is useful to interpret thesematrices asweighted directed graphs. _e vertices are
the pairs (I, I′) ∈ I2k and, starting from each vertex, there are q3 directed edges to the
vertices (Tε1 ,δ(I),Tε2 ,δ(I′)), where (δ, ε1 , ε2) ∈ {0, . . . , q − 1}3, with corresponding
weights

1
q3 e(−

(ε1 − ε2)h
qλ )v1(I, ε1 , δ)v1(I′ , ε2 , δ).

Products of j such matrices correspond to oriented paths of length j in these graphs,
which are weighted with the corresponding products. _e entries at position

((I, I′), (J , J′))
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of such product matrices correspond to the sum of weights along paths from (I, I′)
to (J , J′). Lemma 3.6 allows us to describe this product ofmatrices directly.

Lemma 3.11 _e entry ((I, I′), (J , J′)) of M(h/qλ)M(h/qλ−1) ⋅ ⋅ ⋅M(h/qλ− j+1) is
equal to

1
q3 j ∑

δ<q j
∑

ε1 ,ε2<q j
1
[T j

ε1 ,δ
(I)=J] 1[T j

ε2 ,δ
(I′)=J′] v

j(I, ε1 , δ)v j(I′ , ε2 , δ) e(−
(ε1 − ε2)h

qλ ) .

Proof _is follows directly by Lemma 3.6.

_is product of matrices corresponds to oriented paths of length j. _ese can
be encoded by the triples (ε1 , ε2 , δ), and they correspond to a path from (I, I′) to
(T j

ε1 ,δ(I), T
j
ε2 ,δ(I

′)) with unimodular weight v j(I, ε1 , δ)v j(I′ , ε2 , δ) e(− (ε1−ε2)h
qλ ) .

To simplify further computations we deûne

n( j)
(I ,I′),(J , J′) ∶= ∑

δ<q j
∑

ε1 ,ε2<q j
1
[T j

ε1 ,δ
(I)=J] 1[T j

ε2 ,δ
(I′)=J′]

and ûnd directly that ∑(J , J′)∈I2k
n( j)
(I ,I′),(J , J′) = q3 j and the absolute value of the entry

((I, I′), (J , J′)) of
M(h/qλ)M(h/qλ−1) ⋅ ⋅ ⋅M(h/qλ− j+1)

is bounded by n( j)
(I ,I′),(J , J′)q

−3 j .
In order to prove Proposition 3.7,wewill use Lemma 3.1 uniformly for h withMl =

M(h/q l). _erefore, we need to check (3.1) and (3.2). Note that, since 1
2 λ ≤ λ′ ≤ λ,

we have Ψλ ,λ′(h) =M(h/qλ) ⋅ ⋅ ⋅M(h/qλ−λ′+1)Ψλ−λ′ ,0(h).

Lemma 3.12 _ematrices M l deûned above fulûll (3.1) of Lemma 3.1.

Proof We need to show that there exists an integer m0 ≥ 1 such that every product

A = (A(I ,I′),(J , J′))((I ,I′),(J , J′))∈I2k×I
2
k

of m0 consecutive matrices Ml = M(h/q l) veriûes (3.1) of Lemma 3.1. We deûne
m0 = m− 1+ ⌈logq(k + 1)⌉. It follows directly from the deûnition that Tm0

0,0 (I) = 0 for
all I ∈ Ik . In the graph interpretation this means that for every vertex (I, I′) there is a
path of length m0 from (I, I′) to (0, 0). Fix a row indexed by (I, I′) in thematrix A.
We already showed that the entryA(I ,I′),(0,0) is the sumof at least one termof absolute
value q−3m0 , i.e., n(m0)

(I ,I′),(0,0) ≥ 1.
_ere are two possible cases. If the absolute row sum is at most ≤ 1 − η with η ≤

q−3m0 then we are done.
In case the absolute row sum is strictly greater than 1 − η, we show that

∣A(I ,I′),(0,0)∣ ≥ q−3m0/2.

_e inequality ∣A(I ,I′),(0,0)∣ < q−3m0/2 implies that A(I ,I′),(0,0) is the sum of at least
two terms of absolute value q−3m0 , i.e., n(m0)

(I ,I′),(0,0) ≥ 2. _us, we can use the triangle
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inequality to bound the absolute row sum by

∑
(J , J′)

∣A(I ,I′),(J , J′)∣ ≤ ∣A(I ,I′),(0,0)∣ + q−3m0 ∑
(J , J′)/=(0,0)

n(m0)

(I ,I′),(J , J′) .

Since∑(J , J′) n
(m0)

(I ,I′),(J , J′) = q3m0 , we ûnd

∑
(J , J′)

∣A(I ,I′),(J , J′)∣ ≤ ∣A(I ,I′),(0,0)∣ + 1 − q−3m0n(m0)

(I ,I′),(0,0)

≤ q−3m0/2 + 1 − 2q−3m0 < 1 − q−3m0 .

_is contradicts the assumption that the absolute row sum is strictly greater than
1 − η ≥ 1 − q−3m0 . Consequently, we ûnd ∣A(I ,I′),(0,0)∣ ≥ c0 for c0 = q−3m0/2.

Lemma 3.13 _ematrices M l fulûll (3.2) of Lemma 3.1.

Proof Weneed to show that there exists an integerm1 ≥ 1 such that for every product

B = (B(I ,I′),(J , J′))((I ,I′),(J , J′))∈I2k×I
2
k

of m1 consecutive matrices Ml = M(h/q l), the absolute row-sum of the ûrst row
is bounded by 1 − η. We concentrate on the entry B(0,0),(0,0); that is, we consider all
possible paths from (0, 0) to (0, 0) of lengthm1 in the corresponding graph and show
that a positive saving for the absolute row sum is just due to the structure of this entry.

SinceT
m+⌊logq(k)⌋
00 (0) = T

m+⌊logq(k)⌋
10 (0) = 0,wehave at least two paths from (0, 0)

to (0, 0) and it follows that the entry B(0,0),(0,0) is certainly a sumof k0 = k0(m1) ≥ 2
terms of absolute value q−3m1 , for every m1 ≥ m + ⌊logq(k)⌋. _is means that there
are k0 ≥ 2 paths from (0, 0) to (0, 0) of length m1 in the corresponding graph, or in
other words, nm1

(0,0),(0,0) = k0(m1) ≥ 2.
Our goal is to construct two paths (ε i1 , ε i2 , δ i) from (0, 0) to (0, 0) such that

∣
2

∑
i=1

vm1(0, ε i1 , δ i)vm1(0, ε i2 , δ i) e(−
(ε i1 − ε i2)h

qλ ) ∣ ≤ 2 − η

holds for all h ∈ Z.
We construct a path from 0 to (qm−1 − 1, . . . , qm−1 − 1, qm−1 , . . . , qm−1) =∶ I0 ∈ Ik

with exactly n0 + 1 times qm−1 − 1, where n0 = min{n ∈ N ∶ αn /= 0}. We set n1 =
⌊logq(k)⌋ +m and have the following lemma.

Lemma 3.14 Let n0, n1, and I0 be as above. _en Tn1
qn1−n0−1,1(0) = I0.

Proof _is follows directly by the deûnitions and simple computations.

Applying Lemma 3.14, we obtain a transformation from 0 to I0. Applying this
transformation component-wise gives a path from (0, 0) to (I0 , I0). We concatenate
this path with another path (e1 , e2 , 0) of length n2 = 3m − 1 where ei < q2m−1. _e
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weight of the concatenation of these two paths equals

vn1(0, qn1 − n0 − 1, 1)vn2(I0 , e1 , 0)

× vn1(0, qn1 − n0 − 1, 1)vn2(I0 , e2 , 0) e(−
(e1 − e2)h

qλ−n1
)

= vn2(I0 , e1 , 0)vn2(I0 , e2 , 0) e(−
(e1 − e2)h

qλ−n1
) .

We denote by I0∣ℓ the ℓ-th coordinate of I0 and see that

T3m−1
ei ,0 (I0) = (⌊

I0∣ℓ + qm−1ei
q3m−1 ⌋)

ℓ∈{0⋅⋅⋅k−1}
≤ (⌊

qm−1 + qm−1(q2m−1 − 1)
q3m−1 ⌋)

ℓ∈{0⋅⋅⋅k−1}

= (⌊
qm−1 ⋅ q2m−1

q3m−1 ⌋)
ℓ∈{0⋅⋅⋅k−1}

= 0

_us, we have found a path from (0, 0) to (0, 0) for each e2 < q2m−1.
We can use the special structure of I0 tomake theweight of this pathmore explicit.

First, we note that ∑n0
ℓ=0 αℓ = αn0 by the deûnition of n0. Furthermore, we use the

condition K = ∑ℓ αℓ ∈ Z to ûnd∑k−1
ℓ=n0+1 αℓ ≡ −αn0 (mod 1).

We ûnd by the deûnition of v that for each e < q2m−1,

v3m−1(I0 , e, 0) = e(
k−1

∑
ℓ=0
αℓb3m−1(qm−1e + I0∣ℓ))

= e(αn0(b3m−1(qm−1e + qm−1 − 1) − b3m−1(qm−1e + qm−1)))

= e(αn0(b(q
m−1e + qm−1 − 1) − b(qm−1(e + 1)))) .

We ûnd by Corollary 2.8 that there exist e1 , e2 < q2m−1 such that

b(qm−1(e1 + 1) − 1) − b(qm−1(e1 + 1))

− b(qm−1(e2 + 1) − 1) + b(qm−1(e2 + 1)) = d

and αn0d /∈ Z.
We now compare the following two paths from (0, 0) to (0, 0) of length m1 =

n1 + n2 = ⌊logq(k)⌋ + 4m − 1.

● (e1qn1 + qn1 − n0 − 1, e2qn1 + qn1 − n0 − 1, 1): we split up this path into the path of
length n1 from (0, 0) to (I0 , I0) and the path of length n2 from (I0 , I0) to (0, 0).
_e ûrst path can be described by the triple (qn1 − n0 − 1, qn1 − n0 − 1, 1), and its
weight is obviously 1. _e second path, i.e., the path from (I0 , I0) to (0, 0), can be
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described by the triple (e1 , e2 , 0) and its weight equals

vn2(I0 , e1 , 0)vn2(I0 , e2 , 0) e(−
(e1 − e2)h

qλ−n1
)

= e(αn0(b(q
m−1(e1 + 1) − 1) − b(qm−1(e1 + 1))))

e(αn0(b(qm−1(e2 + 1) − 1) − b(qm−1(e2 + 1)))) e(−
(e1 − e2)h

qλ−n1
)

= e(αn0d) e(−
(e1 − e2)h

qλ−n1
) .

_us, the overall weight of the path from (0, 0) to (0, 0) equals

e(αn0d) e(−
(e1 − e2)h

qλ−n1
) .

● (e1qn1 , e2qn1 , 0): we compute directly the weight of this path.

vm1(0, e1qn1 , 0)vm1(0, e2qn1 , 0) e(−
(e1 − e2)h

qλ−n1
)

= e(
k−1

∑
ℓ=0
αℓbm1(e1q

n1) −
k−1

∑
ℓ=0
αℓbm1(e2q

n1)) e(−
(e1 − e2)h

qλ−n1
)

= e(K(bm1(e1q
n1) − bm1(e2q

n1))) e(−
(e1 − e2)h

qλ−n1
)

= e(−
(e1 − e2)h

qλ−n1
) .

We recall brie�y that αℓ ∈ { 0
m′ , . . . , m′

−1
m′ } for all ℓ ∈ {0, . . . , k − 1} and, therefore,

also αn0 ∈ { 0
m′ , . . . , m′

−1
m′ }. We ûnally see that

∣B(0,0),(0,0)∣ ≤ ( k0 − 2 + ∣e(αn0d) e(−
(e1 − e2)h

qλ−n1
) + e(−

(e1 − e2)h
qλ−n1

) ∣)q−3m1

= (k0 − 2 + ∣1 + e(αn0d)∣)q
−3m1

= (k0 − 2 + 2∣ cos(παn0d)∣)q
−3m1

= ( k0 − 2 + 2∣ 1 − 2( sin(
παn0d

2
))

2
∣)q−3m1

≤ ( k0 − 4( sin(
π

2m′
))

2
)q−3m1 .

_us we have

∑
(J , J′)

∣B(0,0),(J , J′)∣ ≤ ( k0 − 4( sin(
π

2m′
))

2
)q−3m1 + (1 − k0q−3m1)

≤ 1 − 4( sin(
π

2m′
))

2
⋅ q−3m1 .

_erefore, condition (3.2) of Lemma 3.1 is veriûed, with m1 = ⌊logq(k)⌋+ 4m − 1 and

η = 4( sin( π
2m′

))
2q−3m1 ≥ 4( sin( π

2m′
))

2k−3q−12m+3 > 0.
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To conclude this section, we want to recall the important steps of the proof of
Proposition 3.7. At ûrst we observe that

1
qλ′ ∑

0≤d<qλ′
∣G I

λ(h, d)∣
2 = ΦI ,I

λ ,λ′(h).

_us Proposition 3.7 is equivalent toΦI ,I
λ ,λ′(h) ≪ q−ηλ . Nextwe considered the vector

Ψλ ,λ′(h) = (ΦI ,I′
λ ,λ′(h))(I ,I′)∈I2k and found the recursion

Ψλ ,λ′(h) =M(h/qλ) ⋅ ⋅ ⋅M(h/qλ−λ′+1)Ψλ−λ′ ,0(h).

_enwe deûnedMℓ ∶=M(h/qℓ) and showed thatwe can apply Lemma 3.1. _erefore
we know that, since ∣ΦI ,I′

λ−λ′+1,0(h)∣ ≤ 1,

∣ΦI ,I′
λ ,λ′(h)∣ ≤ ∥Mλ ⋅ ⋅ ⋅Mλ−λ′+1∥∞ ≤ Cq−δλ

′

≤ Cq−δλ/2

with C and δ obtained by Lemma 3.1. _us we know that ΦI ,I′
λ ,λ′(h) ≪ q−ηλ with

η = δ/2 uniformly for all h. _is concludes the proof of Proposition 3.7.

3.4 Proof of Proposition 3.8

We again start by reducing the problem from H I′
λ′(h, d) to G I

λ(h, d) for possibly dif-
ferent values of λ, λ′ and I, I′.

Proposition 3.15 For K /≡ 0 (mod 1) there exists η > 0 such that for any I ∈ Ik
∣G I

λ(h, d)∣ ≪ q−ηL max
J∈Ik

∣G J
λ−L(h, ⌊d/q

L⌋)∣

holds uniformly for all non-negative integers h, d and L.

Lemma 3.16 Proposition 3.15 implies Proposition 3.8.

Proof _is follows directly by (3.3).

Henceforth, we assume that K ∉ Z holds. We formulate Lemma 3.6 as a matrix
vector multiplication.

Gλ(h, q jd + δ) = 1
q j M

j
δ(e(−

h
qλ ))Gλ− j(h, d),

where for any δ ∈ {0, . . . , q j − 1} and z ∈ U we have

M j
δ(z) =

q j
−1

∑
ε=0

( 1
[J=T j

ε ,δ(I)]
v j(I, ε, δ)zε)

(I , J)∈I2k
.

Proposition 3.15 is a consequence of the following claim:

Claim 3.17 _ere exist m1 ∈ N, η′ ∈ R+ such that ∥Mm1
δ (z)∥∞ ≤ qm1 − η′ for all

δ < qm1 , z ∈ U.

Lemma 3.18 Claim 3.17 implies Proposition 3.15.
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Proof We ûrst note that ∥M j
δ(z)∥∞ ≤ q j holds for all z ∈ U, j ∈ N, and δ < q j by

deûnition. Next we split the digital expansion of d mod qL (read from le� to right)
into ⌊L/m1⌋ parts of length m1 and possibly one part of length L mod m1. We denote
the ûrst parts by δ1 , . . . , δ⌊L/m1⌋ and the last part by δ0, i.e.,

d = qL mod m1(
⌊L/m1⌋

∑
j=1

δ j ⋅ q⌊L/m1⌋− j) + δ0 .

_us we ûnd

max
I∈Ik

∣G I
λ(h, d)∣ = ∥Gλ(h, d)∥∞

≤
1
qL max

z∈U
∥ML

d(z)∥∞ ⋅ ∥Gλ−L(h, ⌊d/qL⌋)∥∞

≤
1
qL

⌊L/m1⌋

∏
j=1

max
z∈U

∥Mm1
δ j (zq

m1( j−1))∥∞ ⋅ q(L mod m1) ⋅ ∥Gλ−L(h, ⌊d/qL⌋)∥∞

≤
1
qL (q

m1 − η′)⌊L/m1⌋q(L mod m1) ⋅ ∥Gλ−L(h, ⌊d/qL⌋)∥∞

≪ q−Lη ⋅ ∥Gλ−L(h, ⌊d/qL⌋)∥∞ ,

where η = η′

qm1 log(qm1 )
> 0.

_e rest of this section is devoted to proving Claim 3.17. Observe that

∥Mm′

1
δ (z)∥∞ = max

I∈Ik
max
z∈U

∑
J∈Ik

∣ ∑
ε<qm′1

1
[T

m′1
ε ,δ (I)=J]

zεvm′

1(I, ε, δ)∣ .

Assume thatwe can ûnd, for each I ∈ Ik and δ < qm1 , a pair (ε1 , ε2) andm′
1 ≤ m1 such

that for all z ∈ U we have

(3.4)
Tm′

1
ε i ,δ(I) = Tm′

1
ε i+1,δ(I) and

∣vm′

1(I, ε1 , δ) + zvm′

1(I, ε1 + 1, δ)∣ + ∣vm′

1(I, ε2 , δ) + zvm′

1(I, ε2 + 1, δ)∣ ≤ 4 − η′ .

_is gives

max
z∈U

∑
J∈Ik

∣ ∑
ε<qm′1

1
[T

m′1
ε ,δ (I)=J]

zεvm′

1(I, ε, δ)∣

≤ (qm′

1 − 4) +
2

∑
i=1

∣
1

∑
j=0

zε i+ jvm′

1(I, ε i + j, δ)∣

≤ qm′

1 − η′ .

We conclude that in total ∥Mm1
δ (z)∥∞ ≤ qm1−m′

1(qm′

1−η′) ≤ qm1−η′,which establishes
Claim 3.17.

So it remains to ûnd ε1 , ε2 ,m′
1 satisfying (3.4), and this turns out to be a rather

tricky task.

https://doi.org/10.4153/CJM-2017-053-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-053-1


1114 C. Müllner

We now ûx some arbitrary I ∈ Ik and d ∈ N. We start by deûning, for 0 ≤ x ≤
(4m − 2)k and c ∈ N,

Mx ,c = Mx ,(c mod qx) ∶= { ℓ < k ∶ ⌊iℓ/qm−1⌋ + dℓ ≡ c (mod qx)}
and show some basic properties of Mx ,c .

Lemma 3.19 For every x < q(4m−2)k there exists c0 such that∑ℓ∈Mx ,c0
αℓ /∈ Z.

Proof One ûnds easily that {0, . . . , k − 1} = ⋃c<qx Mx ,c , which means that

{Mx ,c ∶ c < qx}
is a partition of {0, . . . , k − 1} for each x. _us, we ûnd, for every x,

∑
c
∑

ℓ∈Mx ,c

αℓ =∑
ℓ<k
αℓ = K /∈ Z,

and the proof follows easily.

Lemma 3.20 Let d < q(4m−2)k and I ∈ Ik . _en there exists 0 ≤ x0 ≤ (4m−2)(k−1)
such that for each c < qx0 there exists c+ < qx0+(4m−2) such that Mx0 ,c = Mx0+(4m−2),c+ .

Remark 3.21 _is is equivalent to the statement that

⌊iℓ1/q
m−1⌋ + dℓ1 ≡ ⌊iℓ2/q

m−1⌋ + dℓ2 (mod qx0)
implies

⌊iℓ1/q
m−1⌋ + dℓ1 ≡ ⌊iℓ2/q

m−1⌋ + dℓ2 (mod qx0+4m−2)

Proof We have already seen that {Mx ,c ∶ c < qx} is a partition of {0, . . . , k − 1}.
Furthermore, we ûnd for 0 ≤ x ≤ (4m − 2)k and c < qx that

Mx ,c = ⋃
c′<q4m−2

Mx+(4m−2),c+qx c′ .

_is implies that {Mx+4m−2,c ∶ c < qx+4m−2} is a reûnement of {Mx ,c ∶ c < qx} and
we ûnd

{M(4m−2)⋅0,c ∶ c < 1} ≥ {M(4m−2)⋅1,c ∶ c < q4m−2}

≥ ⋅ ⋅ ⋅ ≥ {M(4m−2)k ,c ∶ c < q(4m−2)k}.

It is well known that k is the maximal length of a chain in the set of partitions of
{0, . . . , k − 1}. _is means that there exists x′0 such that

{M(4m−2)x′0 ,c ∶ c < q(4m−2)x′0} = {M(4m−2)(x′0+1),c′ ∶ c′ < q(4m−2)(x′0+1)}.

Next, we deûne βx ,c ∶= ∑ℓ∈Mx ,c αℓ .
We can now choose m1 ∶= (4m − 2)k, m′

1 ∶= x0 + (4m − 2), where x0 is given by
Lemma 3.20. We consider c0 < qx0 and c+0 provided by Lemmas 3.19 and 3.20, andwe
know that βx0 ,c0 ∉ Z. _erefore we apply Corollary 2.8 and ûnd e1 , e2 < q2m−1 such
that

b(qm−1(e1 + 1) − 1) − b(qm−1(e1 + 1)) − b(qm−1(e2 + 1) − 1) + b(qm−1(e2 + 1)) = d ,
and dβx0 ,c0 ∉ Z.
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We are now able to deûne

ε1 = (qx0+m−1(e1 + 1) − c+0 − 1) mod qx0+4m−2

ε2 = (qx0+m−1(e2 + 1) − c+0 − 1) mod qx0+4m−2 .

It only remains to check (3.4), which we split up into the following two lemmata.

Lemma 3.22 Let x0 , ε i be deûned as above. _en Tx0+4m−2
ε i ,d (I) = Tx0+4m−2

ε i+1,d (I).

Proof We need to show that

⌊
iℓ + qm−1(ℓd + ε i)

qx0+4m−2 ⌋ = ⌊
iℓ + qm−1(ℓd + ε i + 1)

qx0+4m−2 ⌋(3.5)

holds for all ℓ < k and i = 1, 2. We know that ℓ belongs to Mx0+4m−2,c+ for some
c < qx0 . _us, we ûnd for j = 0, 1

⌊
iℓ + qm−1(ℓd + ε i + j)

qx0+4m−2 ⌋ = ⌊
(iℓ mod qm−1) + qm−1(c+ + ε i + j)

qx0+4m−2 ⌋

= ⌊
c+ + ε i + j
qx0+3m−1 ⌋ .

_erefore, (3.5) does hold, unless c+ + ε i + 1 ≡ 0 (mod qx0+3m−1). We ûnd that

c+ + ε i + 1 ≡ c+ + qx0+m−1(ei + 1) − c+0 (mod qx0+3m−1).

We ûrst consider the case c /= c0: c+ + ε i + 1 ≡ c − c0 /≡ 0 (mod qx0). For c = c0,

c+0 + ε i + 1 ≡ qx0+m−1(ei + 1) (mod qx0+3m−1).

However ei + 1 /≡ 0 (mod q2m) as ei < q2m−1. _us, (3.5) holds.

Lemma 3.23 _ere exists η′ > 0, depending only on m′, such that for x0 and ε i ,
deûned as above,

(3.6)
2

∑
i=1

∣vx0+4m−2(I, ε i , δ) + z ⋅ vx0+4m−2(I, ε i + 1, δ)∣ ≤ 4 − η′

holds for all z ∈ U.

Proof We start by computing the weights vx0+4m−2(I, ε i + j, δ). For arbitrary ε <
qλ0+4m−2, we ûnd

vx0+4m−2(I, ε, d)

= ∏
ℓ<k

e(αℓbx0+4m−2(iℓ + qm−1(ε + ℓd)))

= ∏
ℓ<k

e(αℓbm−1(iℓ + qm−1(ε + ℓd))) e(αℓbx0+3m−1(⌊iℓ/qm−1⌋ + ε + ℓd))

= e(g(ε))∏
ℓ<k

e(αℓbx0+3m−1(⌊iℓ/qm−1⌋ + ε + ℓd)),

where g(ε) ∶= ∑ℓ<k αℓbm−1(iℓ + qm−1(ε + ℓd)). Note that g(ε) only depends on
ε mod qm−1.
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We can describe this product by using the weights β deûned above.

vx0+4m−2(I, ε, d) = e(g(ε)) ∏
c′<qx0+4m−2

e(βx0+4m−2,c′bx0+3m−1(c′ + ε)).

Furthermore, we can rewrite every c′ < qx0+4m−2 for which βx0+4m−2,c′ /= 0 as
some c+ where c < qx0 . _is gives then

vx0+4m−2(I, ε, d) = e(g(ε)) ⋅ ∏
c<qx0

e(βx0 ,c ⋅ bx0+3m−1(c+ + ε))

= e(g(ε)) ⋅ ∏
c<qx0

e(βx0 ,c ⋅ bx0(c
+ + ε)) ⋅ ∏

c<qx0
e(βx0 ,c ⋅ b3m−1(⌊

c+ + ε
qx0

⌋))

_us we ûnd for ε = ε i + j that

vx0+4m−2(I, ε i + j, d)
= e(g(ε i + j)) ⋅ ∏

c<qx0
e(βx0 ,c ⋅ bx0(c

+ + ε i + j))

× ∏
c<qx0

e(βx0 ,c ⋅ b3m−1(⌊
c+ + ε i + j

qx0
⌋))

= e(g(−c+0 − 1 + j)) ⋅ ∏
c<qx0

e(βx0 ,c ⋅ bx0(c
+ − c+0 − 1 + j))

× ∏
c<qx0

e(βx0 ,c ⋅ b3m−1(qm−1(ei + 1) + ⌊
c+ − c+0 − 1 + j

qx0
⌋))

= e(g(−c+0 − 1 + j)) ⋅ ∏
c<qx0

e(βx0 ,c ⋅ bx0(c
+ − c+0 − 1 + j))

× ∏
c<qx0

c/=c0

e(βx0 ,c ⋅ b3m−1(qm−1(ei + 1) + ⌊
c+ − c+0 − 1 + j

qx0
⌋))

× e(βx0 ,c0 ⋅ b3m−1(qm−1(ei + 1) − 1 + j)).

For c /= c0, we ûnd ⌊
c+−c+0 −1

qx0 ⌋ = ⌊
c+−c+0
qx0 ⌋ as c+ ≡ c /≡ c0 ≡ c+0 mod qx0 .

Consequently, we ûnd

vx0+4m−2(I, ε i , d) = e(x i), vx0+4m−2(I, ε i + 1, d) = e(x i + ξ i),

where

x i = g(−c+0 − 1) + ∑
c<qx0

βx0 ,c ⋅ bx0(c
+ − c+0 − 1)

+ ∑
c<qx0

c/=c0

βx0 ,c ⋅ b3m−1(qm−1(ei + 1) + ⌊
c+ − c+0
qx0

⌋)

+ βx0 ,c0 ⋅ b3m−1(qm−1(ei + 1) − 1)
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and

ξ i = g(−c+0 ) + ∑
c<qx0

βx0 ,c ⋅ bx0(c
+ − c+0 ) + βx0 ,c0 ⋅ b3m−1(qm−1(ei + 1))

− g(−c+0 − 1) − ∑
c<qx0

βx0 ,c ⋅ bx0(c
+ − c+0 − 1) − βx0 ,c0 ⋅ b3m−1(qm−1(ei + 1) − 1).

Also, we ûnd ξ1 − ξ2 = βx0 ,c0d ∉ Z, where

b(qm−1(e1 + 1)) − b(qm−1(e1 + 1) − 1) − b(qm−1(e2 + 1)) + b(qm−1(e2 + 1) − 1) = d .
_is implies ∥ξ1 − ξ2∥ ≥ 1

m′ .
It remains to apply Lemma 3.2 to ûnd that (3.6) holds with η′ = 8(sin( π

4m′ ))
2.

To ûnish of this section, we recall the important steps of the proof of Proposi-
tion 3.15. We began by rewriting our recursion for G I

λ as a matrix vector multipli-
cation, Gλ(h, qLd + δ) = 1

qL ML
δ (e(−

h
qλ ))Gλ−L(h, d). We then split up this matrix

ML
δ ( ⋅ ) into a product of many matrices Mm1

δ j ( ⋅ ), where m1 = (4m − 2)k. _en we
showed that ∥Mm1

δ j ( ⋅ )∥ ≤ qm1 − η, where η = 8(sin( π
4m′ ))

2. _is then implies Propo-
sition 3.15. To show that ∥Mm1

δ j ∥ ≤ qm1 − η, we found two diòerent ε i such that

Tm′

1
ε i ,δ(I) = Tm′

1
ε i+1,δ(I) and

∣vm′

1(I, ε1 , δ) + zvm′

1(I, ε1 + 1, δ)∣ + ∣vm′

1(I, ε2 , δ) + zvm′

1(I, ε2 + 1, δ)∣ ≤ 4 − η′

holds for all z ∈ U.

4 Proof of the Main Theorem

In this section,we complete the proof of_eorem1.6 following the ideas and structure
of [6]. As the proof is very similar, we only outline it brie�y and comment on the
important changes.

_e structure of the proof is similar for both cases. First we want to substitute the
function b by bµ ,λ . _is can be done by applying Lemmas 5.5 and 5.7 in the caseK ∈ Z.
For the case K ∉ Z wemust use Lemma 5.7 ûrst.

_erea�er, we apply Lemma 5.6 to detect the digits between µ and λ. Next, we
use characteristic functions to detect suitable values for u1(n), u2(n), u3(n). Lem-
ma 5.9 allows us to replace the characteristic functions by exponential sums. We split
the remaining exponential sum into a quadratic and a linear part and ûnd that the
quadratic part is negligibly small. For the remaining sum, we apply either Proposi-
tion 3.7 or Proposition 3.8, depending on whether K ∈ Z.

_e case K ∉ Z needs more eòort to deal with.

4.1 The Case K ∈ Z

In this section, we show that if K = α0 + ⋅ ⋅ ⋅ + αk−1 ∈ Z, Proposition 3.7 provides an
upper bound for the sum

S0 = ∑
n<N

e(
k−1

∑
ℓ=0
αℓb((n + ℓ)2)) .
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Let ν be the unique integer such that qν−1 < N ≤ qν , and we choose all appearing
exponents, i.e., λ, µ, ρ, as in [6].
By using Lemma 5.5 and the same arguments as in [6], we ûnd that

S0 = S1 +O(qν−(λ−ν)),

where

S1 = ∑
n<N

e(
k−1

∑
ℓ=0
αℓbλ((n + ℓ)2)) .

Now we use Lemma 5.7, with Q = qµ+m−1 and S = qν−µ , to relate S1 to a sum in
terms of bµ ,λ : ∣S1∣

2 ≪ N2

S + N
S R(S2), where S2 = ∑1≤s<S( 1 −

s
S )S

′
2(s) and

S′2(s) = ∑
n∈I(N ,s)

e(
k−1

∑
ℓ=0
αℓ(bµ ,λ((n + ℓ)2) − bµ ,λ((n + ℓ + sqµ+m−1)2))) ,

where I(N , s) is an interval included in [0,N − 1] (which we do not specify).
Next we use Lemma 5.6 to detect the digits of (n + ℓ)2 and (n + ℓ + sqm−1qµ)2

between µ and λ + m − 1, with a negligible error term. _erefore, we must take the
digits between µ′ = µ − ρ′ and µ into account, where ρ′ > 0 will be chosen later.

We choose the integers u1 = u1(n), u3 = u3(n), v = v(n), w1 = w1(n), and
w3 = w3(n) to satisfy the conditions of Lemma 5.6 and detect them by character-
istic functions. _us, we ûnd S′2(s) = S′3(s) +O(qν−ρ′), where

S′3(s) = ∑
0≤u1<U1

∑
0≤u3<U3

∑
n∈I(N ,s)

( χqµ′−λ−m+1(
n2

qλ+m−1 −
u1

U1
) χqµ′−ν−1(

2n
qν+1 −

u3

U3
)

× e(
k−1

∑
ℓ=0
αℓ(bρ′ ,λ−µ+ρ′(u1 + ℓu3) − bρ′ ,λ−µ+ρ′(u1 + ℓu3 + v(n)qρ′ + 2ℓsqm−1qρ′))) ,

where χα is deûned by (5.2) andU1 = qλ+m−1−µ′ ,U3 = qν−µ′+1. Lemma 5.9 allows us to
replace the characteristic functions χ by trigonometric polynomials. More precisely,
using (5.4) with H1 = U1qρ′′ and H3 = U3qρ′′ for some suitable ρ′′ > 0 (which is a
fraction of ν chosen later), we have S′3(s) = S4(s) +O(E1) +O(E3) +O(E1,3), where
E1, E3, and E1,3 are the error terms speciûed in (5.4) and

S4(s) = ∑
0≤u1<U1

∑
0≤u3<U3

∑
0≤v<qλ−µ+m−1

∑
n∈I(N ,s)

(AU−1
1 ,H1(

n2

qλ+m−1 −
u1

U1
)AU−1

3 ,H3(
2n
qν+1 −

u3

U3
)

× e(
k−1

∑
ℓ=0
αℓ(bρ′ ,λ−µ+ρ′(u1 + ℓu3) − bρ′ ,λ−µ+ρ′(u1 + ℓu3 + vqρ′ + 2ℓsqm−1qρ′)))

×
1

qλ−µ+m−1 ∑
0≤h<qλ−µ+m−1

e(h 2sqm−1n − v
qλ−µ+m−1 )) ,

where we use the last sum to detect the correct value of v = v(n).
_e error terms E1, E3, E1,3 can easily be estimated with the help of Lemma 5.4,

just as in [6].
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By using the representations of AU−1
1 ,H1 and AU−1

3 ,H3 , we obtain

S4(s) =
1

qλ−µ+m−1 ∑
∣h1 ∣≤H1

∑
∣h3 ∣≤H3

∑
0≤h<qλ−µ+m−1

ah1(U
−1
1 ,H1) ah3(U

−1
3 ,H3)

∑
0≤u1<U1

∑
0≤u3<U3

∑
0≤v<qλ−µ+m−1

e(−
h1u1

U1
−

h3u3

U3
−

hv
qλ−µ+m−1 )

e(
k−1

∑
ℓ=0
αℓ(bρ′ ,λ−µ+ρ′(u1 + ℓu3) − bρ′ ,λ−µ+ρ′(u1 + ℓu3 + vqρ′ + 2ℓsqm−1qρ′)))

⋅∑
n
e(

h1n2

qλ+m−1 +
h3n
qν +

2hsn
qλ−µ ) .

We now distinguish the cases h1 = 0 and h1 /= 0. For h1 /= 0, we can estimate the
exponential sum by using Lemma 5.4 and the estimate

∑
1≤h1≤H1

√
gcd(h1 , qλ) ≪q H1 .

_us, we ûnd

∑
0<∣h1 ∣≤H1

∑
∣h3 ∣≤H3

qλ−µ+m−1
−1

∑
h=0

∣∑
n
e(

h1n2

qλ+m−1 +
h3n
qν +

2hsn
qλ−µ ) ∣ ≪ λH1H3qλ/2+λ−µ .

_is then gives S4(s) = S5(s)+O(λq3λ/4),where S5(s) denotes the part of S4(s)with
h1 = 0.

We set u1 = u′′1 + qρ′u′1 and u3 = u′′3 + qρ′u′3, where 0 ≤ u′′1 , u′′3 < qρ′ . Furthermore,
we deûne iℓ = ⌊(u′′1 + ℓu′′3 )/qρ′⌋. As I = (iℓ)0≤ℓ<k = (⌊(u′′1 + ℓu′′3 )/qρ′⌋)0≤ℓ<k is
contained in I′k , we have, by the same arguments as in [6],

S5(s) ≤ ∑
∣h3 ∣≤H3

∑
0≤h<qλ−µ+m−1

1
qν+1−µ

× ∑
0≤u′3<qν−µ+1

∑
I∈Ik

∣H I
λ−µ(h, u

′
3)H I

λ−µ(h, u
′
3 + 2sqm−1)∣

×min(N , ∣ sin(π( h3

qν +
2hs
qλ−µ )) ∣

−1
) .

Using the estimate ∣H I
λ−µ(h, u

′
3 + 2sqm−1)∣ ≤ 1 and the Cauchy–Schwarz inequality

yields

∑
0≤u′3<qν−µ+1

∣H I
λ−µ(h, u

′
3)H I

λ−µ(h, u
′
3 + 2sqm−1)∣

≤ q(ν−µ+1)/2( ∑
0≤u′3<qν−µ+1

∣H I
λ−µ(h, u

′
3)∣

2
)

1/2
.

We now replace λ by λ − µ +m − 1, λ′ by ν − µ + 1 and apply Proposition 3.7:

S5(s) ≪ q−η(λ−µ)/2
∑

∣h3 ∣≤H3

qλ−µ+m−1
−1

∑
h=0

min(N , ∣ sin(π( h3

qν +
2hs

qλ−µ+m−1 )) ∣
−1
) .
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Next we average over s and h, as in [6], by applying Lemma 5.2. _us we have a
factor τ(qλ−µ) ≪q (λ − µ)ω(q) compared to τ(2λ−µ) = λ − µ + 1. Combining all the
estimates as in [6] then gives

∣S0∣ ≪ qν−(λ−ν) + ν(ω(q)+1)/2qνq−η(λ−ν)/2 + qν−ρ′/2 + qν−ρ′′/2 + λ1/2qν/2+3λ/8 ,

provided that the following conditions hold:

2ρ′ ≤ µ ≤ ν − ρ′ , ρ′′ < µ′/2, µ′ ≪ 2ν−µ′ , 2µ′ ≥ λ,
(ν − µ) + 2(λ − µ) + 2(ρ′ + ρ′′) ≤ λ/4, ν − µ′ + ρ′′ + λ − µ ≤ ν.

For example, the choice λ = ν + ⌊ ν
20 ⌋ and ρ′ = ρ′′ = ⌊ ν

200 ⌋ ensures that the above
conditions are satisûed.

Summing upwe proved that for η′ < min(1/200, η/40),where η is given by Propo-
sition 3.7, S0 ≪ qν(1−η′) ≪ N 1−η′ holds, which is precisely the statement of _eo-
rem 1.6.

4.2 The Case K ∉ Z

In this section we show that, for K = α0 + ⋅ ⋅ ⋅ + αk−1 /∈ Z, Proposition 3.8 provides an
upper bound for the sum S0 = ∑n<N e(∑

k−1
ℓ=0 αℓb((n + ℓ)2)).

Let µ, λ, ρ, and ρ1 be integers satisfying

(4.1) 0 ≤ ρ1 < ρ < µ = ν − 2ρ < ν < λ = ν + 2ρ < 2ν,
to be chosen later, just as in [6]. Since K /∈ Z we cannot use Lemma 5.5 directly.
_erefore, we apply Lemma 5.7 with Q = 1 and R = qρ . Summing trivially for 1 ≤ r ≤
R1 = qρ1 yields ∣S0∣2 ≪ N2R1

R + N
R ∑R1<r<R( 1 −

r
R )R(S1(r)), where

S1(r) = ∑
n∈I1(r)

e(
k−1

∑
ℓ=0
αℓ(b((n + ℓ)2) − b((n + r + ℓ)2)))

and I1(r) is an interval included in [0,N − 1]. By Lemma 5.5 we conclude that

bλ ,∞((n + ℓ)2) = bλ ,∞((n + r + ℓ)2)

for all but O(Nq−(λ−ν−ρ)) values of n. _erefore, we see that

S1(r) = S′1(r) +O(qν−(λ−ν−ρ)),

with S′1(r) = ∑n∈I1(r) e(∑
k−1
ℓ=0 αℓ(bλ((n + ℓ)2) − bλ((n + r + ℓ)2))) . _is leads to

∣S0∣2 ≪ q2ν−ρ+ρ1 + q3ν+ρ−λ +
qν

R ∑
R1<r<R

∣S′1(r)∣,

and the Cauchy–Schwarz inequality gives

∣S0∣4 ≪ q4ν−2ρ+2ρ1 + q6ν+2ρ−2λ +
q2ν

R ∑
R1<r<R

∣S′1(r)∣2 .

For ∣S′1(r)∣2 we can use Lemma 5.7 again: let ρ′ ∈ N, to be chosen later, be such that
1 ≤ ρ′ ≤ ρ. A�er applying Lemma 5.7 with Q = qµ+m−1 and

S = q2ρ′ ≤ qν−µ ,(4.2)
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we observe that for any ñ ∈ N we have

bλ((ñ + sqµ+m−1)2) − bλ(ñ2) = bµ ,λ((ñ + sqµ+m−1)2) − bµ ,λ(ñ2),

and thus

(4.3) ∣S0∣4 ≪ q4ν−2ρ+2ρ1 + q6ν+2ρ−2λ +
q4ν

S
+

q3ν

RS ∑
R1<r<R

∑
1≤s<S

∣S2(r, s)∣,

with

S2(r, s) = ∑
n∈I2(r ,s)

e
⎛

⎝

k−1

∑
ℓ=0
αℓ(bµ ,λ((n + ℓ)2) − bµ ,λ((n + r + ℓ)2)

− bµ ,λ((n + sqµ+m−1 + ℓ)2) + bµ ,λ((n + sqµ+m−1 + r + ℓ)2))
⎞

⎠
,

where I2(r, s) is an interval included in [0,N − 1].
We now apply a Fourier analysis similar to the case K ≡ 0 (mod 1) [6]. We set

U = qλ+m−1−µ′ ,U3 = qν−µ′+1, and V = qλ−µ+m−1. We apply Lemma 5.6 and detect the
correct values of u1, u2, u3 by characteristic functions. _is gives

S2(r, s) = ∑
0≤u1<U

∑
0≤u2<U

∑
0≤u3<U3

∑
n∈I2(r ,s)

e
⎛

⎝

k−1

∑
ℓ=0
αℓ(bρ′ ,λ−µ+ρ′(u1 + ℓu3) − bρ′ ,λ−µ+ρ′(u2 + ℓu3)

− bρ′ ,λ−µ+ρ′(u1 + ℓu3 + v(n)qρ′ + 2ℓsqm−1qρ′)

+ bρ′ ,λ−µ+ρ′(u2 + ℓu3 + v(n)qρ′ + 2(ℓ + r)sqm−1qρ′))
⎞

⎠

× χU−1(
n2

qλ+m−1 −
u1

U
) χU−1(

(n + r)2

qλ+m−1 −
u2

U
) χU−1

3
(
2n
qν −

u3

U3
)

+O(qν−ρ′).

Furthermore, we use Lemma 5.9 to replace the characteristic functions χ by trigono-
metric polynomials. Using (5.4)withU1 = U2 = U ,H1 = H2 = Uqρ2 , andH3 = U3qρ3 ,
and integers ρ2, ρ3 satisfying ρ2 ≤ µ − ρ′ , ρ3 ≤ µ − ρ′, we obtain

S2(r, s) = S3(r, s) +O(qν−ρ′) +O(E30(r)) +O(E31(0)) +O(E31(r))
+O(E32(0)) +O(E32(r)) +O(E33(r)) +O(E34(r)),

for the error terms obtained by (5.4) and S3(r, s) obtained by replacing the charac-
teristic function by trigonometric polynomials. We now reformulate S3(r, s) by ex-
panding the trigonometric polynomials, detecting the correct value of v = v(n), and
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restructuring the sums:

S3(r, s) =
1

qλ−µ+m−1 ∑
0≤h<qλ−µ+m−1

∑
∣h1 ∣≤H1

ah1(U
−1 ,H1)

∑
∣h2 ∣≤H2

ah2(U
−1 ,H2) ∑

∣h3 ∣≤H3

ah3(U
−1
3 ,H3)

∑
0≤u1<U

∑
0≤u2<U

∑
0≤u3<U3

∑
0≤v<V

e(−
h1u1 + h2u2

U
−

h3u3

U3
−

hv
qλ−µ+m−1 )

× e(
k−1

∑
ℓ=0
αℓ(bρ′ ,λ−µ+ρ′(u1 + ℓu3) − bρ′ ,λ−µ+ρ′(u2 + ℓu3)

− bρ′ ,λ−µ+ρ′(u1 + ℓu3 + vqρ′ + 2ℓsqm−1qρ′)

+ bρ′ ,λ−µ+ρ′(u2 + ℓu3 + vqρ′ + 2(ℓ + r)sqm−1qρ′)))

× ∑
n∈I2(r ,s)

e(
h1n2 + h2(n + r)2

qλ+m−1 +
2h3n
qν +

2hsn
qλ−µ ) .

One can estimate the error terms just as in [6] and ûnd that they are bounded by
either qν−ρ3 or qν−ρ2 . In conclusion, we deduce that

(4.4) S2(r, s) = S3(r, s) +O(qν−ρ′) +O(qν−ρ2) +O(qν−ρ3).

We now split the sum S3(r, s) into two parts

S3(r, s) = S4(r, s) + S′4(r, s),(4.5)

where S4(r, s) denotes the contribution of the terms for which h1 + h2 = 0, while
S′4(r, s) denotes the contribution of the terms for which h1 + h2 /= 0. We can estimate
S′4(r, s) as in [6] and ûnd S′4(r, s) ≪ ν4qν+ 1

2 (8λ−9µ+7ρ′+ρ2), and it remains to consider
S4(r, s). Setting u1 = u′′1 + qρ′u′1, u2 = u′′2 + qρ′u′2, and u3 = u′′3 + qρ′u′3, where
0 ≤ u′′1 , u′′2 , u′′3 < qρ′ , we can replace the two-fold restricted block-additive function
by a truncated block-additive function:

bρ′ ,λ−µ+ρ′(u1 + ℓu3) = bλ−µ(u′1 + ℓu′3 + ⌊(u′′1 + ℓu′′3 )/qρ′⌋) ,

bρ′ ,λ−µ+ρ′(u2 + ℓu3) = bλ−µ(u′2 + ℓu′3 + ⌊(u′′2 + ℓu′′3 )/qρ′⌋) ,

bρ′ ,λ−µ+ρ′(u1 + ℓu3 + vqρ′ + 2ℓsqm−1qρ′) =

bλ−µ(u′1 + v + ℓ(u′3 + 2sqm−1) + ⌊(u′′1 + ℓu′′3 )/qρ′⌋) ,

bρ′ ,λ−µ+ρ′(u2 + ℓu3 + vqρ′ + 2(ℓ + r)sqm−1qρ′) =

bλ−µ(u′2 + v + 2srqm−1 + ℓ(u′3 + 2sqm−1) + ⌊(u′′2 + ℓu′′3 )/qρ′⌋) .

Using the periodicity of bmodulo V ∶= qλ−µ+m−1,we replace the variable v by v1 such
that v1 ≡ u′1 + v (mod qλ−µ+m−1). Furthermore we introduce a new variable v2 such
that v2 ≡ u′2 + v + 2srqm−1 ≡ v1 + u′2 − u′1 + 2srqm−1 (mod qλ−µ+m−1). We then follow
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the arguments of [6] and ûnd

S4(r, s) ≪ q2λ−2µ
qλ−µ+m−1

−1

∑
h=0

qλ−µ+m−1
−1

∑
h′=0

∑
∣h2 ∣≤H2

min(U−2 , h−2
2 )

× ∑
∣h3 ∣≤H3

min(U−1
3 , h−1

3 ) ∑
0≤u′′1 <qρ′

∑
0≤u′′2 <qρ′

∑
0≤u′′3 <qρ′

∑
0≤u′3<U

′

3

∣H I(u′′1 ,u
′′

3 )

λ−µ (h′ − h − h2 , u′3)∣ ∣H
I(u′′2 ,u

′′

3 )

λ−µ (h′ − h2 , u′3)∣

× ∣H I(u′′1 ,u
′′

3 )

λ−µ (h′ − h, u′3 + 2sqm−1)∣ ∣H I(u′′2 ,u
′′

3 )

λ−µ (h′ , u′3 + 2sqm−1)∣

× ∣ ∑
n∈I2(r ,s)

e(
2h2rn
qλ+m−1 +

2h3n
qν +

2hsn
qλ−µ ) ∣ ,

with

I(u, ũ) = (⌊
u
qρ′ ⌋ , ⌊

u + ũ
qρ′ ⌋ , . . . , ⌊

u + (k − 1)ũ
qρ′ ⌋) for (u, ũ) ∈ N2 .

_e next few steps are again very similar to the corresponding ones in [6], and we
skip the details. We ûnd

S4(r, s) ≪ (λ − µ) gcd(2s, qλ−µ) q2λ−2µ

× ∑
0≤u′′1 ,u

′′

2 ,u
′′

3 <qρ′
∑

∣h2 ∣≤H2

min(U−2 , h−2
2 )S6(h2 , s, u′′1 , u′′3 )1/2S6(h2 , s, u′′2 , u′′3 )1/2

× ∑
∣h3 ∣≤H3

min(U−1
3 , h−1

3 )min(qν , ∣ sin π 2h2r + 2qλ−ν+m−1h3

qλ+m−1 ∣
−1
) ,

where

S6(h2 , s, u′′ , u′′3 ) = ∑
0≤u′3<U

′

3

∑
0≤h′<qλ−µ+m−1

∣H I(u′′ ,u′′3 )
λ−µ (h′ − h2 , u′3)∣2∣H

I(u′′ ,u′′3 )
λ−µ (h′ , u′3 + 2sqm−1)∣2 .

Here we introduce the integers H′
2 and κ such that

H′
2 = qλ−ν+mH3/R1 = qλ−µ+ρ′+ρ3−ρ1+m+1 = qκ .

_is leads to S4(r, s) ≪ S41(r, s)+ S42(r, s)+ S43(r, s), where S41(r, s), S42(r, s), and
S43(r, s) denote the contribution of the terms ∣h2∣ ≤ H′

2, H′
2 < ∣h2∣ ≤ qλ+m−1−µ , and

qλ+m−1−µ < ∣h2∣ ≤ H2, respectively.

Estimate of S41(r, s) By (5.1) we have

∑
∣h3 ∣≤H3

min(qν , ∣ sin π 2h3 + 2h2rqν−λ−m+1

qν ∣
−1
) ≪ νqν ,
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and, therefore,

S41(r, s) ≪ ν(λ − µ) gcd(2s, qλ−µ)qν+2λ−2µU−2U−1
3

∑
0≤u′′1 ,u

′′

2 ,u
′′

3 <qρ′
∑

∣h2 ∣≤H′

2

S6(h2 , s, u′′1 , u′′3 )1/2S6(h2 , s, u′′2 , u′′3 )1/2 .

By Proposition 3.8 (replacing λ by λ − µ and L by λ − µ − κ), we ûnd some 0 < η′ ≤ 1
such that

∣H I(u′′ ,u′′3 )
λ−µ (h′ − h2 , u′3)∣ ≪ q−η

′
(λ−µ−κ) max

J∈Ik
∣G J

κ(h′ − h2 , ⌊u′3/qL⌋)∣.

By Parseval’s equality and recalling that #(Ik) = qm−1(qm−1 + 1)k−1, it follows that

∑
∣h2 ∣≤H′

2

max
J∈Ik

∣H J
κ⌊(h′ − h2 , u′3/qL⌋)∣2 ≤ ∑

J∈Ik

∑
∣h2 ∣≤H′

2

∣G J
κ(h′ − h2 , ⌊u′3/qL⌋)∣2

≤ qm−1(qm−1 + 1)k−1 .

We obtain∑∣h2 ∣≤H′

2
∣H I(u′′ ,u′′3 )

λ−µ (h′ − h2 , u′3)∣2 ≪ q−η
′
(λ−µ−κ) = (

H′

2
qλ−µ )

η′
uniformly in

λ, µ, H′
2, u′3, u′′, and u′′3 .

_e remaining proof is analogous to the corresponding proof in [6]. _e only dif-
ference is again that by using Lemma 5.2 we obtain a factor (λ − µ)ω(q) instead of
(λ − µ). _is gives

(4.6)
1

RS ∑
R1<r<R

∑
1≤s<S

S41(r, s) ≪ ν(λ − µ)ω(q)+1 qν−η′(ρ1−ρ′−ρ3) ,

which concludes this part.

Estimate of S42(r, s) and S43(r, s) By following the arguments of [6] and applying
the same changes as in the estimate of S41 we ûnd

1
RS ∑

R1<r<R
∑

1≤s<S
S42(r, s) ≪ ρ(λ − µ)2+ω(q) qν−ρ+ρ1+ρ′−ρ3 ,(4.7)

1
RS ∑

R1<r<R
∑

1≤s<S
S43(r, s) ≪ ρ (λ − µ)2+ω(q) qν−ρ+3ρ′ .(4.8)

Combining the estimates for S4 It follows from (4.6), (4.7), and (4.8) that

1
RS ∑

R1<r<R
∑

1≤s<S
S4(r, s) ≪ ν3+ω(q)qν(q−2η′(ρ1−ρ′−ρ3) + q−ρ3 + q−ρ+3ρ′).

Choosing ρ1 = ρ − ρ′ and ρ2 = ρ3 = ρ′, we obtain
1

RS ∑
R1<r<R

∑
1≤s<S

S4(r, s) ≪ ν3+ω(q)qν(q−2η′(ρ−3ρ′) + q−ρ′ + q−(ρ−3ρ′)).

Since 0 < η′ < 1, we obtain using (4.5) and (4.4) that

1
RS ∑

R1<r<R
∑

1≤s<S
S2(r, s) ≪ ν3+ω(q)qν(q−η

′
(ρ−3ρ′) + q−ρ′ + q

1
2 (8λ−9µ+8ρ′)).
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We recall from (4.2) that S = q2ρ′ and from (4.1) that µ = ν − 2ρ, λ = ν + 2ρ, and we
insert the estimation from above in (4.3),

∣S0∣4 ≪ q4ν−2ρ′ + q4ν−2ρ + ν3+ω(q)q4ν(q−η
′
(ρ−3ρ′) + q−ρ′ + q−

ν
2+17ρ+4ρ′).

For ρ′ = ⌊ν/146⌋ and ρ = 4ρ′, we obtain ∣S0∣ ≪ ν(3+ω(q))/4qν− η′ ρ′
4 ≪ N 1−η1 , for all

η1 < η′/584. _erefore we have seen that Proposition 3.8 implies the case K /≡ 0
(mod 1) of_eorem 1.6.

5 Auxiliary Results

In this last section,we present some auxiliary results that areused in Section 4 to prove
themain theorem. For this proof, it is crucial to approximate characteristic functions
of the intervals [0, α) mod 1 where 0 ≤ α < 1 by trigonometric polynomials. _is is
done by using Vaaler’s method (see Section 5.5). As we deal with exponential sums,
we also use a generalization of Van derCorput’s inequality that we will see in Section
5.4. In Section 5.1, we acquire some results dealingwith sums of geometric series that
we use to bound linear exponential sums. Section 5.2 is dedicated to one classic result
on Gauss sums and allows us to ûnd appropriate bounds on the occurring quadratic
exponential sums in Section 4. _e last part of this section deals with carry propa-
gation. We ûnd a quantitative statement that carry propagation along several digits
is rare, i.e., exponentially decreasing. We would like to note that all these auxiliary
results have already been presented in [6].

5.1 Sums of Geometric Series

We will o�en make use of the following upper bound for geometric series with ratio
e(ξ), ξ ∈ R and L1 , L2 ∈ Z, L1 ≤ L2

∣ ∑
L1<ℓ≤L2

e(ℓξ)∣ ≤ min(L2 − L1 , ∣ sin πξ∣−1),

that is obtained from the formula for ûnite geometric series.
_e following results allow us to ûnd useful estimates for special double and triple

sums involving geometric series.

Lemma 5.1 Let (a,m) ∈ Z2 with m ≥ 1, δ = gcd(a,m), and b ∈ R. For any real
number U > 0, we have

(5.1) ∑
0≤n<m

min(U , ∣ sin(π an + b
m

) ∣
−1
)

≤ δmin(U , ∣ sin(π δ ∥b/δ∥m ) ∣
−1
) +

2m
π

log(2m).

Proof _is is [6, Lemma 6].
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Lemma 5.2 Let m ≥ 1 and A ≥ 1 be integers, and b ∈ R. For any real number U > 0,
we have

1
A ∑

1≤a≤A
∑

0≤n<m
min(U , ∣ sin(π an + b

m
)∣
−1
) ≪ τ(m) U +m logm

and, if ∣b∣ ≤ 1
2 , we have an even sharper bound

1
A ∑

1≤a≤A
∑

0≤n<m
min(U , ∣ sin(π an + b

m
)∣
−1
)

≪ τ(m)min(U , ∣ sin(π b
m

) ∣
−1
) +m logm,

where τ(m) denotes the number of divisors of m.

Proof See [6].

5.2 Gauss Sums

In the proof of themain theorem, we will meet quadratic exponential sums. We ûrst
consider Gauss sums G(a, b;m) that are deûned by

G(a, b;m) ∶=
m−1

∑
n=0

e(
an2 + bn

m
) .

In this section, we recall one classic result on Gauss sums:

_eorem 5.3 For all (a, b,m) ∈ Z3 withm ≥ 1, ∣∑m−1
n=0 e(

an2
+bn
m )∣ ≤

√
2m gcd(a,m)

holds.

Proof _is form was obtained from [12, Proposition 2].

Consequently we obtain the following result for incomplete quadraticGauss sums.

Lemma 5.4 For all (a, b,m,N , n0) ∈ Z5 with m ≥ 1 and N ≥ 0, we have

∣
n0+N

∑
n=n0+1

e(
an2 + bn

m
) ∣ ≤ (

N
m
+ 1 +

2
π

log
2m
π

)
√

2m gcd(a,m).

Proof _is is Lemma 9 of [6].

5.3 Carry Lemmas

Asmentioned before,wewant toûnd a quantitative statement onhow rare carry prop-
agation along several digits is.

Lemma 5.5 Let (ν, λ, ρ) ∈ N3 such that ν + ρ ≤ λ ≤ 2ν. For any integer r with
0 ≤ r ≤ qρ , the number of integers n < qν for which there exists an integer j ≥ λ with
ε j((n + r)2) /= ε j(n2) is ≪ q2ν+ρ−λ . Hence, we ûnd for any block-additive function b
that the number of integers n < qν with

bλ−m+1((n + r)2) − bλ−m+1(n2) /= b((n + r)2) − b(n2)
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is also≪ q2ν+ρ−λ .

Proof A proof for the _ue–Morse sequence can be found in [6] and it is easy to
adapt it for this more general case.

_e next lemma helps us replace quadratic exponential sums depending only on a
few digits.

Lemma 5.6 Let (λ, µ, ν, ρ′) ∈ N4 such that 0 < µ < ν < λ, 2ρ′ ≤ µ ≤ ν − ρ′, and
λ− ν ≤ 2(µ − ρ′), and set µ′ = µ − ρ′. For integers n < qν , s ≥ 1 and 1 ≤ r ≤ q(λ−ν)/2 we
set

n2 ≡ u1qµ′ +w1 (mod qλ+m−1), (0 ≤ w1 < qµ′ , 0 ≤ u1 < qλ+m−1−µ+ρ′),

(n + r)2 ≡ u2qµ′ +w2 (mod qλ+m−1), (0 ≤ w2 < qµ′ , 0 ≤ u2 < qλ+m−1−µ+ρ′),

2n ≡ u3qµ′ +w3 (mod qλ+m−1), (0 ≤ w3 < qµ′ , 0 ≤ u3 < qν+1−µ+ρ′),

2sqm−1n ≡ v (mod qλ−µ+m−1), (0 ≤ v < qλ−µ+m−1),

where the integers u1 = u1(n), u2 = u2(n), u3 = u3(n), v = v(n), w1 = w1(n),
w2 = w2(n), and w3 = w3(n) satisfy the above conditions. _en for any integer ℓ ≥ 1
the number of integers n < qν for which one of the following conditions

bµ ,λ((n + ℓ)2) /= bρ′ ,λ−µ+ρ′(u1 + ℓu3),

bµ ,λ((n + ℓ + sqµ+m−1)2) /= bρ′ ,λ−µ+ρ′(u1 + ℓu3 + vqρ′ + 2ℓsqm−1qρ′),

bµ ,λ((n + r + ℓ)2) /= bρ′ ,λ−µ+ρ′(u2 + ℓu3),

bµ ,λ((n + r + ℓ + sqµ+m−1)2) /= bρ′ ,λ−µ+ρ′(u2 + ℓu3 + vqρ′ + 2(ℓ + r)sqm−1qρ′),

is satisûed is≪ qν−ρ′ .

Proof A proof for the sum of digits function in base 2 can be found in [6] and it is
straight forward to adapt it to ût this more general case.

5.4 Van der Corput’s Inequality

Lemma 5.7 ([12]) For all complex numbers z1 , . . . , zN and all integers Q ≥ 1 and
R ≥ 1, we have

∣
N−1

∑
n=1

zn ∣
2
≤

N + QR − Q
R

(
N−1

∑
n=1

∣zn ∣2 + 2
R−1

∑
r=1

( 1 −
r
R
)

N−Qr−1

∑
n=1

R(zn+Qrzn)) ,

whereR(z) denotes the real part of z ∈ C.

5.5 Vaaler’s Method

_e following theorem, developed by Vaaler [21], gives a classical method for detect-
ing real numbers in an interval modulo 1 by means of exponential sums. For α ∈ R
with 0 ≤ α < 1, we denote by χα the characteristic function of the interval [0, α)

https://doi.org/10.4153/CJM-2017-053-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-053-1


1128 C. Müllner

modulo 1,

(5.2) χα(x) = ⌊x⌋ − ⌊x − α⌋ .

_e following theorem is a consequence of Vaaler [21]. _e presented form was
ûrst published by Mauduit and Rivat [13].

_eorem 5.8 For all α ∈ Rwith 0 ≤ α < 1 and all integerH ≥ 1, there exist real-valued
trigonometric polynomials Aα ,H(x) and Bα ,H(x) such that for all x ∈ R

∣χα(x) − Aα ,H(x)∣ ≤ Bα ,H(x).

_e trigonometric polynomials are deûned by

Aα ,H(x) = ∑
∣h∣≤H

ah(α,H) e(hx), Bα ,H(x) = ∑
∣h∣≤H

bh(α,H) e(hx),(5.3)

with coeõcients ah(α,H) and bh(α,H) satisfying

a0(α,H) = α, ∣ah(α,H)∣ ≤ min(α, 1
π∣h∣

) , ∣bh(α,H)∣ ≤
1

H + 1
.

Using this method we can detect points in a d-dimensional box (modulo 1).

Lemma 5.9 For (α1 , . . . , αd) ∈ [0, 1)d and (H1 , . . . ,Hd) ∈ Nd withH1 ≥ 1, . . . ,Hd ≥
1, we have for all (x1 , . . . , xd) ∈ Rd

∣
d
∏
j=1
χα j(x j) −

d
∏
j=1
Aα j ,H j(x j)∣ ≤ ∑

∅/=J⊆{1, . . . ,d}
∏
j/∈J
χα j(x j)∏

j∈J
Bα j ,H j(x j),

where Aα ,H( ⋅ ) and Bα ,H( ⋅ ) are the real valued trigonometric polynomials deûned by
(5.3).

Proof See [13].

Let (U1 , . . . ,Ud) ∈ Nd with U1 ≥ 1, . . . ,Ud ≥ 1 and deûne α1 = 1/U1 , . . . , αd =

1/Ud . For j = 1, . . . , d and x ∈ R, we have∑0≤u j<U j χα j(x −
u j
U j

) = 1. Let N ∈ N with
N ≥ 1, f ∶{1, . . . ,N}→ Rd , and g∶{1, . . . ,N}→ C such that ∣g∣ ≤ 1. If f = ( f1 , . . . , fd),
we can express the sum S = ∑N

n=1 g(n) as

S =
N

∑
n=1

g(n) ∑
0≤u1<U1

χα1( f1(n) −
u1

U1
) ⋅ ⋅ ⋅ ∑

0≤ud<Ud

χαd( fd(n) −
ud
Ud

) .

We now deûne (H1 , . . . ,Hd) ∈ Nd with H1 ≥ 1, . . . ,Hd ≥ 1,

S̃ =
N

∑
n=1

g(n) ∑
0≤u1<U1

Aα1 ,H1( f1(n) −
u1

U1
) ⋅ ⋅ ⋅ ∑

0≤ud<Ud

Aαd ,Hd( fd(n) −
ud
Ud

) .
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Lemma 5.10 With the notations from above, we have

(5.4) ∣S − S̃∣ ≤
d−1

∑
ℓ=1

∑
1≤ j1<⋅⋅⋅< jℓ

U j1 ⋅ ⋅ ⋅U jℓ

H j1 ⋅ ⋅ ⋅H jℓ
∑

∣h j1 ∣≤H j1 /U j1

⋅ ⋅ ⋅ ∑
∣h jℓ ∣≤H jℓ /U jℓ

∣
N

∑
n=1

e(h j1U j1 f j1(n) + ⋅ ⋅ ⋅ + h jℓU jℓ f jℓ(n))∣ .

Proof See [13].
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