
J. Aust. Math. Soc. 99 (2015), 415–427
doi:10.1017/S1446788715000208

SOME CLASSIFICATIONS OF LORENTZIAN SURFACES
WITH FINITE TYPE GAUSS MAP IN THE

MINKOWSKI 4-SPACE

NURETTIN CENK TURGAY

(Received 15 January 2015; accepted 2 June 2015; first published online 13 August 2015)

Communicated by M. Murray

Abstract

In this paper we study the Lorentzian surfaces with finite type Gauss map in the four-dimensional
Minkowski space. First, we obtain the complete classification of minimal surfaces with pointwise 1-type
Gauss map. Then, we get a classification of Lorentzian surfaces with nonzero constant mean curvature
and of finite type Gauss map. We also give some explicit examples.
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1. Introductions

After the problem ‘To what extent does the type of the Gauss map of a submanifold of
Em

r determine the submanifold?’ was introduced by Chen and Piccini in [6], the study
of submanifolds with finite type Gauss map became a very active research subject.
Many affirmative partial solutions to this problem have appeared so far [3, 4, 6, 8, 17].

Let M be a semi-Riemannian submanifold in a semi-Euclidean space Em
r . A smooth

mapping ψ : M→ EN
S into another semi-Euclidean space is said to be of k-type if it can

be expressed as a sum of eigenvectors corresponding to k distinct eigenvalues of the
Laplace operator ∆ of M. If such a k exists, then ψ is said to be of finite type. Many
important results about finite type mappings have been obtained [1, 5, 13, 15, 16].

From the definition above, one can see that M has 1-type Gauss map if and only if
the equation

∆ν = λ(ν + C) (1.1)

is satisfied for a constant vector C and λ ∈ R, where ν is the Gauss map of M. Similarly,
a submanifold M is said to have pointwise 1-type Gauss map if the Laplacian of its
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Gauss map takes the form

∆ν = f (ν + C) (1.2)

for a smooth function f and a constant vector C. The study of submanifolds with
pointwise 1-type Gauss map or finite type Gauss map is nowadays a very active
research subject (see for example [3, 9, 10, 17]). For example, in [17], the author
obtained some classifications of quasi-minimal surfaces with finite type Gauss map in
the Minkowski space–time E4

1 and in the de Sitter space–time S4
1(1). Very recently,

Dursun and Bektaş have studied the flat Lorentzian rotational surfaces in E4
1 with

pointwise 1-type Gauss map [10].
In this paper we focus on Lorentzian surfaces with constant mean curvature in the

Minkowski space–time E4
1 in terms of the finite type of their Gauss map. In Section 2,

after we have described the notation that we will use in this paper, we give basic facts
and definitions on the theory of submanifolds of semi-Euclidean spaces. In Section 3
we obtain the complete classification of Lorentzian minimal surfaces with pointwise
1-type Gauss map. In Section 4 we study Lorentzian surfaces with constant mean
curvature in terms of the type of their Gauss map.

2. Preliminaries

2.1. Basic notation, formulas and definitions. Let Em
t denote the semi-Euclidean

m-space with the canonical semi-Euclidean metric tensor of index t given by

g = −

t∑
i=1

dx2
i +

m∑
j=t+1

dx2
j ,

where x1, x2, . . . , xm are rectangular coordinates of the points of Em
t . We put

Sm−1
t (r2) = {x ∈ Em

t : 〈x, x〉 = r−2},

Hm−1
t−1 (−r2) = {x ∈ Em

t : 〈x, x〉 = −r−2},

where 〈 , 〉 is the indefinite inner product of Em
t .

A nonzero vector v in Em
t is called space-like, time-like or light-like if 〈v, v〉 > 0,

〈v, v〉 < 0 or 〈v, v〉 = 0, respectively. We will use the following well-known lemmas
later [14].

Lemma 2.1. Let U be a real vector space with a nondegenerate inner product 〈 , 〉
with index 1. Then two light-like vectors v1, v2 are linearly dependent if and only if
〈v1, v2〉 = 0.

Lemma 2.2. Let V be a subspace of a real vector space U and 〈 , 〉 a nondegenerate
inner product defined in U. Then 〈 , 〉|V is nondegenerate if and only if V ∩ V⊥ = {0}.
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[3] Lorentzian surfaces and their Gauss map 417

Let M be an n-dimensional semi-Riemannian submanifold of the semi-Euclidean
space Em

s . We denote the Levi-Civita connections of Em
s and M by ∇̃ and ∇,

respectively. The Gauss and Weingarten formulas are given, respectively, by

∇̃XY = ∇XY + h(X,Y), (2.1)
∇̃Xξ = −Aξ(X) + DXξ (2.2)

for any tangent vector field X, Y and any normal vector field ξ on M, where h, D and
A are the second fundamental form, the normal connection and the shape operator of
M, respectively. On the other hand, the shape operator A and the second fundamental
form h of M are related by

〈AξX,Y〉 = 〈h(X,Y), ξ〉. (2.3)

The Gauss, Codazzi and Ricci equations are given, respectively, by

R(X,Y,Z,W) = 〈h(Y,Z), h(X,W)〉 − 〈h(X,Z), h(Y,W)〉, (2.4a)
(∇̄Xh)(Y,Z) = (∇̄Yh)(X,Z), (2.4b)
〈RD(X,Y)ξ, η〉 = 〈[Aξ, Aη]X,Y〉, (2.4c)

where R, RD are the curvature tensors associated with the connections ∇ and D,
respectively, and

(∇̄Xh)(Y,Z) = DXh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ).

Now let M be a Lorentzian surface in E4
1, {e1, e2; e3, e4} a local orthonormal frame

field on M such that 〈e1, e1〉 = −1 and { f1, f2} the pseudo-orthonormal base field of the
tangent bundle of M given by f1 = (e1 − e2)/

√
2 and f2 = (e1 + e2)/

√
2. Then

H = −h( f1, f2), (2.5a)
K = R( f1, f2, f2, f1) = R(e1, e2, e2, e1), (2.5b)

KD = RD( f1, f2; e3, e4) = RD(e1, e2; e3, e4), (2.5c)

where H is the mean curvature vector and K and KD stand for the Gaussian and normal
curvatures of M, respectively. On the other hand, the Laplace operator of M is given
by

∆ = f1 f2 + f2 f1 − ∇ f1 f2 − ∇ f2 f1. (2.6)

The relative null space at p of M is defined by

Np(M) = {X ∈ TpM|h(X,Y) = 0∀Y ∈ TpM}.

A Lorentzian surface M in E4
1 is said to have positive relative nullity if the dimension

of Np(M) is positive for all p ∈ M [7]. We say that M has a degenerate relative null
bundle if (Np(M), 〈 , 〉) is a degenerate inner product space for all p ∈ M.

We would like to state the following lemma obtained in [2] (see also [12,
Proposition 2.1]).
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Lemma 2.3 [2]. Let M be a Lorentzian surface in a semi-Euclidean space Eq
r . Then

there exist local coordinates (s, t) such that the induced metric is of the form

g = −m2(ds dt + dt ds), s ∈ I1, t ∈ I2,

where m = m(s, t) is a nonvanishing function and I1, I2 are some open intervals.
Moreover, the Levi-Civita connection of M is given by

∇∂s∂s =
2ms

m
∂s, ∇∂s∂t = 0, ∇∂t∂t =

2mt

m
∂t. (2.7)

2.2. Gauss map. Let G(n,m) denote the Grassmannian manifold consisting of all
oriented n-planes through the origin of Em

r which is canonically imbedded in the vector
space Λn(Em

r ) of n-vectors of Em
r . We note that there exists a linear isometry between

Λm,n and EN
S , where Λm,n denotes the inner product space (Λn(Em

r ), 〈 , 〉) given by

〈X1 ∧ X2 ∧ · · · ∧ Xn,Y1 ∧ Y2 ∧ · · · ∧ Yn〉 = det(〈Xi,Yj〉);

N and S are the dimension and index of Λm,n, respectively. Therefore, one can define
the (tangent) Gauss map of a submanifold of a semi-Euclidean space as a EN

S -valued
mapping. In fact, the (tangent) Gauss map of M is defined by

ν : M → RN−1
S (ε) ⊂ EN

S
p 7→ ν(p) = (e1 ∧ e2 ∧ · · · ∧ en)(p) (2.8)

for ε ∈ {−1, +1}, where RN−1
S (ε) denotes the complete semi-Riemannian manifolds,

with constant sectional curvatures ε, and {e1, e2, . . . , en} is a local orthonormal base
field of the tangent bundle of M. For a geometric interpretation of the Gauss map of
M, see [6, 8, 10].

A submanifold M is said to have pointwise 1-type Gauss map if its Gauss map
satisfies (1.2) for a smooth function f and a constant vector C. More precisely, a
pointwise 1-type Gauss map is called of the first kind if (1.2) is satisfied for C = 0, and
of the second kind if C , 0. Moreover, if (1.2) is satisfied for a nonconstant function
f , then M is said to have proper pointwise 1-type Gauss map.

Now let M be a Lorentzian surface in the Minkowski space E4
1 with a pseudo-

orthonormal frame field { f1, f2; e3, e4}. Then the tangent Gauss map of M given by
(2.8) becomes

ν : M → H5
3(−1) ⊂ E6

3
p 7→ ν(p) = ( f1 ∧ f2)(p). (2.9)

On the other hand, one may define the normal Gauss map of M by

µ : M → S5(1) ⊂ E6

p 7→ ν(p) = (e3 ∧ e4)(p). (2.10)

We obtain the Laplacian of the Gauss map ν as follows (see [8, Lemma 3.2]).

Lemma 2.4. Let M be a Lorentzian surface. Then ν and µ satisfy

∆ν = (2K + 4〈H,H〉)ν + 2KDµ − 2D f1 H ∧ f2 − 2 f1 ∧ D f2 H. (2.11)
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[5] Lorentzian surfaces and their Gauss map 419

3. Minimal Lorentzian surfaces and their Gauss map

In this section we focus on the minimal Lorentzian surfaces in E4
1.

If M is minimal, that is, H ≡ 0 on M, then (2.11) becomes

∆ν = 2Kν + 2KDµ. (3.1)

First, we want to give the following proposition.

Proposition 3.1. There exist two families of Lorentzian minimal surfaces in the
Minkowski space E4

1 with pointwise 1-type Gauss map of the first kind:

(i) a minimal surface lying in a Lorentzian hyperplane of E4
1;

(ii) a surface with degenerate relative null bundle.

Conversely, every Lorentzian minimal surface with pointwise 1-type Gauss map of the
first kind in the Minkowski space E4

1 is congruent to an open portion of a surface
obtained from these types of surfaces.

Proof. A direct computation shows that the surfaces given in the proposition have
pointwise 1-type Gauss map. Thus, we want to prove its converse.

Let M be a Lorentzian surface in E4
1 and s, t be the local coordinates mentioned in

Lemma 2.3. Consider the pseudo-orthonormal basis { f1, f2} given by

f1 =
1
m
∂s and f2 =

1
m
∂t.

If we suppose that M is minimal, that is, H ≡ 0, then (2.5a) implies that h( f1, f2) = 0.
On the other hand, the Gauss map ν = f1 ∧ f2 of M satisfies (3.1).

Now we assume that M has pointwise 1-type Gauss map of the first kind. Then (1.2)
is satisfied for C = 0. From (1.2) and (3.1), we obtain 2KDe3 ∧ e4 = 0, from which we
get h( f1, f1) ∧ h( f2, f2) = 0. Thus, h(∂s, ∂s) and h(∂t, ∂t) are linearly dependent.

Let I1, I2 be some open intervals and x : I1 × I2 → E
4
1 an isometric immersion.

Consider the functions

ψ1 : I1 × I2 → R
(s0, t0) 7→ 〈h(∂s, ∂s), h(∂s, ∂s)〉|x(s0,t0)

and
ψ2 : I1 × I2 → R

(s0, t0) 7→ 〈h(∂t, ∂t), h(∂t, ∂t)〉|x(s0,t0).

Case 1: ψ1 ≡ 0 or ψ2 ≡ 0. In this case M has degenerate relative null bundle and we
have the case (ii) of the proposition.

Case 2: ψ1 , 0 and ψ2 , 0. In this case the initial value problems

φ′1 = ψ1(φ2)−1/4, φ1(0) = s0

and
φ′2 = ψ1(φ2)−1/4, φ2(0) = t0
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admit unique solutions, say φ1 and φ2, respectively, where s0 ∈ I1 and t0 ∈ I2. Let
S , T be local coordinates given by S = φ1(s) and T = φ2(t). Then we have g =

−m̂2(S , T )(dS dT + dTdS ), where m̂(S , T ) = m(φ1(s), φ2(t)). Moreover, the normal
vector fields h(∂S , ∂S ) and h(∂T , ∂T ) are linearly dependent and have unit length. Thus,

h(∂S , ∂S ) = ±h(∂T , ∂T ). (3.2)

Now let {e3, e4} be an orthonormal base field of the normal bundle of M with e3 =

h(∂S , ∂S ). From the Codazzi equation (2.4b), we obtain D∂T h(∂S , ∂S ) = D∂S h(∂T , ∂T ) =

0. Therefore, (3.2) implies that De3 = 0, that is, e3 is parallel. As M has codimension
two, e4 is also parallel. Moreover, by combining (2.3) and (3.2), we obtain A4 = Ae4 =

0. Thus, we have ∇̃e4 = 0, that is, e4 is constant. Hence, M is contained in a hyperplane
Π whose normal is e4. Since e4 is space-like, Π is Lorentzian. �

Next we obtain the following proposition.

Proposition 3.2. Let M be a Lorentzian minimal surface in E4
1. If M has pointwise

1-type Gauss map, then it is of the first kind.

Proof. If M is a Lorentzian minimal surface, then (2.5a) implies that h( f1, f2) = 0,
from which and (2.3) we have 〈A3 f1, f2〉 = 〈A4 f1, f2〉 = 0 for any pseudo-orthonormal
frame field { f1, f2, e3, e4}. In addition, the Gauss map ν = f1 ∧ f2 of M satisfies (3.1).

Now we assume that the Gauss map ν of M satisfies (1.2) for C , 0. From (1.2) and
(3.1),

C = C12 f1 ∧ f2 + C34e3 ∧ e4 (3.3)

for some smooth functions C12 and C34. Next we take into account that C is a constant
vector and apply f1 and f2 separately to (3.3), to obtain

f1(C12) f1 ∧ f2 + f1(C34)e3 ∧ e4 + C12h( f1, f1) ∧ f2
+ C34(−A3 f1 ∧ e4 + A4 f1 ∧ e3) = 0, (3.4a)

f2(C12) f1 ∧ f2 + f2(C34)e3 ∧ e4 + C12 f1 ∧ h( f2, f2)
+ C34(−A3 f2 ∧ e4 + A4 f2 ∧ e3) = 0, (3.4b)

from which we see that C12,C34 are constant. From (3.4), we also have

C2
12〈h( f1, f1) ∧ f2, f1 ∧ h( f2, f2)〉
= C2

34〈−A3 f1 ∧ e4 + A4 f1 ∧ e3,−A3 f2 ∧ e4 + A4 f2 ∧ e3〉. (3.5)

By a direct computation, we get

〈h( f1, f1) ∧ f2, f1 ∧ h( f2, f2)〉 = 〈h( f1, f1), h( f2, f2)〉, (3.6a)
〈A3 f1 ∧ e4, A4 f2 ∧ e3〉 = 0, (3.6b)
〈A4 f1 ∧ e3, A3 f2 ∧ e4 = 0, (3.6c)

〈A3 f1 ∧ e4, A3 f2 ∧ e4〉 = −〈h( f1, f1), e3〉〈h( f2, f2), e3〉, (3.6d)
〈A4 f1 ∧ e3, A4 f2 ∧ e3〉 = −〈h( f1, f1), e4〉〈h( f2, f2), e4〉. (3.6e)
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[7] Lorentzian surfaces and their Gauss map 421

By combining (3.5)–(3.6), we obtain

(C2
12 + C2

34)〈h( f1, f1), h( f2, f2)〉 = 0.

Since C , 0 by the assumption, the above equation implies that h( f1, f1) and h( f2, f2)
are orthogonal.

Consider the open subset U = {p ∈ M|h( f1, f1) , 0 and h( f2, f2) , 0} of M and
let {e3, e4} be a local orthonormal base field of the normal bundle of M such that
h( f1, f1) = α3e3 and h( f2, f2) = α4e4 onU, where α3 and α4 are some functions. From
(3.4),

C12α3 f2 ∧ e3 = −C34(−A3 f1 ∧ e4 + A4 f1 ∧ e3),
C12α4 f1 ∧ e4 = −C34(−A3 f2 ∧ e4 + A4 f2 ∧ e3)

onU. From these equations, we have A3 f1 = A4 f2 = 0 onU, which imply that h|U = 0,
because of (2.3). However, this is a contradiction ifU is not empty.

Therefore, we have h( f1, f1) = 0 or h( f2, f2) = 0, which yields that M has degenerate
relative null bundle. Thus, Proposition 3.1 implies that M has pointwise 1-type Gauss
map of the first kind, which yields a contradiction. �

Lemma 3.3. Let M be a Lorentzian surface in E4
1. Then M has degenerate relative null

bundle if and only if it is congruent to the surface given by

x(s, t) = sη0 + β(t), (3.7)

where η0 is a constant light-like vector and β is a null curve in E4
1 with 〈η0, β(t)〉 , 0.

Proof. Let M be a Lorentzian surface in E4
1, x its position vector and s, t the local

coordinates mentioned in Lemma 2.3 satisfying (2.7). Consider the tangent vector
fields f1 = (1/m)∂s and f2 = (1/m)∂t.

Now assume that Np(M) is degenerate for all p ∈ M. Because of Lemma 2.2, we
may assume thatNp(M) = span{ f1}, which implies that h( f1, f1) = h( f1, f2) = 0. From
these equations and (2.7), we have ∇̃∂s∂s = ∇∂s∂s and ∇̃∂s∂t = 0, from which we obtain
xss = 2(ms/m)xs and xst = 0. By integrating these equations and re-defining s suitably,
we obtain that M is congruent to the surface given by (3.7). �

By combining all the results given in this section, we state the following result.

Theorem 3.4. Let M be a Lorentzian minimal surface in E4
1. Also, suppose that no

open part of M is contained in a hyperplane of E4
1. Then, the following conditions are

equivalent:

(i) M has pointwise 1-type Gauss map;
(ii) M has pointwise 1-type Gauss map of the first kind;
(iii) M has degenerate relative null bundle;
(iv) M is congruent to the surface given by (3.7) for a constant light-like vector

η0 ∈ E
4
1 and a null curve β in E4

1 satisfying 〈η0, β(t)〉 , 0.
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We also want to state the following corollary of this theorem.

Corollary 3.5. A Lorentzian minimal surface in E4
1 has proper pointwise 1-type Gauss

map if and only if it lies in an Lorentzian hyperplane of E4
1 and it has nonconstant

Gaussian curvature.

4. Lorentzian surfaces with constant mean curvature

In this section we focus on Lorentzian surfaces with nonzero constant mean
curvature in the four-dimensional Minkowski space E4

1.

4.1. Pointwise 1-type Gauss map of the first kind. By using (2.11), one can obtain
the following theorem and its corollary, which are similar to the characterization of
surfaces in the Euclidean space E4 in terms of their Gauss map [6, 9].

Theorem 4.1. Let M be a nonminimal Lorentzian surface in E4
1. Then M has pointwise

1-type Gauss map if and only if its mean curvature vector is parallel. In that case,
(1.2) is satisfied for f = 2K + 4〈H,H〉 and C = 0.

Note that if H is parallel, then 〈H,H〉 is constant. Therefore, we have the following
result.

Corollary 4.2. Let M be a nonminimal Lorentzian surface in E4
1. Then M has (global)

1-type Gauss map if and only if it has parallel mean curvature vector and constant
Gaussian curvature.

Remark 4.3. See [11] for a complete classification of Lorentzian surfaces with parallel
mean curvature vector field.

4.2. Pointwise 1-type Gauss map of the second kind. In this subsection we obtain
a classification of Lorentzian surfaces with constant mean curvature in terms of the
type of their Gauss map.

Remark 4.4. In the previous subsection we obtained the classification of Lorentzian
surfaces with parallel mean curvature vector in terms of the type of their Gauss map.
Therefore, throughout this subsection we assume that DH does not vanish on any point
of M.

Lemma 4.5. Let M be a nonminimal Lorentzian surface in E4
1 with flat normal bundle

and constant mean curvature. If M has pointwise 1-type Gauss map of the second
kind, then its shape operators can be diagonalized simultaneously. Moreover, there
exists an orthonormal frame field {e1, e2; e3, e4} such that

∇̃e1 e1 = ∇̃e1 e2 = 0, ∇̃e1 e3 = ∇̃e1 e4 = 0, (4.1a)

∇̃e2 e1 = 0, ∇̃e2 e2 = κe3, (4.1b)

∇̃e2 e3 = εκe2 + τe4, ∇̃e2 e4 = −τe3 (4.1c)

for some constants κ, τ, where ε = 〈e1, e1〉.

https://doi.org/10.1017/S1446788715000208 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000208


[9] Lorentzian surfaces and their Gauss map 423

Proof. Let { f1, f2; e3, e4} be a local orthonormal frame field such that H = −h( f1, f2) =

ce3 for a constant c , 0. Then

A3 f1 = c f1 − h3
1 f2, A3 f2 = −h3

2 f1 + c f2, A4 f1 = −h4
1 f2, A4 f2 = −h4

2 f1, (4.2)

where hβi = 〈h( fi, fi), eβ〉. In addition, since KD = 0, the Ricci equation (2.4c) implies
that

h3
1h4

2 − h3
2h4

1 = 0. (4.3)

On the other hand, from (2.11),

∆ν = (2K + 4c2)ν + 2cω34( f1) f2 ∧ e4 − 2cω34( f2) f1 ∧ e4, (4.4)

where ω34 is the connection form defined by ω34(X) = 〈DXe3, e4〉.
Now suppose that M has pointwise 1-type Gauss map of the second kind, that is,

(1.2) is satisfied for a smooth function f and a nonzero constant vector C. From (1.2)
and (4.4),

〈C, f1 ∧ e3〉 = 〈C, f2 ∧ e3〉 = 〈C, µ〉 = 0 (4.5)

and

f (1 −C12) = 2K + 4c2, (4.6a)
fC14 = −2cω34( f1), (4.6b)
fC24 = 2cω34( f2), (4.6c)

where we put C14 = 〈C, f1 ∧ e4〉, C24 = 〈C, f2 ∧ e4〉 and C12 = 〈C, ν〉.
By applying f1 and f2 to each equation in (4.5) and using (4.5) again,

−cC14 + h3
1C24 = 0, h3

2C14 − cC24 = 0, (4.7a)
h3

1C12 + ω34( f1)C14 = 0, −cC12 + ω34( f2)C14 = 0, (4.7b)
cC12 + ω34( f1)C24 = 0, −h3

2C12 + ω34( f2)C24 = 0. (4.7c)

Since c , 0, if C14C24 = 0 at a point p ∈ M, then (4.7a) implies that C14 = C24 = 0
at p. In this case, from (4.6), we have DH|p = 0. However, this is a contradiction.
Therefore, we see that C14C24 does not vanish on M. Thus, (4.7) implies that

h3
1h3

2 − c2 = 0, (4.8a)
h3

2ω34( f1) + cω34( f2) = 0. (4.8b)

Note that the Gauss equations (2.4a) and (4.8a) imply that K = det A4.

Now we consider the pair of two orthogonal tangent vector fields of M given by
X1 = h3

2 f1 + c f2 and X2 = h3
2 f1 − c f2. By a direct calculation using (4.8),

h(X1, X2) = 0 and ω34(X1) = 〈h(X1, X1), e3〉 = 0.
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Thus, the matrix representation of the shape operators A3 = Ae3 , A4 = Ae4 with respect
to the orthonormal base field {e1, e2} of the tangent bundle of M becomes

A3 = diag(0, 2c), A4 = diag(εζ,−εζ) (4.9)

for a smooth function ζ, where ei = Xi/|〈Xi,Xi〉|
1/2, i = 1, 2, and ε = 〈e1, e1〉, that is, the

shape operators can be diagonalized simultaneously. Moreover, the connection form
ω34 satisfies ω34(e1) = 0. Therefore, (4.4) becomes

∆ν = (2ζ2 + 4c2)ν − 2εcω34(e2)e1 ∧ e4. (4.10)

In addition, by using (4.7b) and (4.7c), we obtain 2cC12 = ω34(e2)〈C, e1 ∧ e4〉. By
combining this equation and (1.2),

φC = ω34(e2)ν − 2εce1 ∧ e4, (4.11a)
f = ω34(e2)2 + 2ζ2 + 4c2, (4.11b)

where φ is the smooth function given by

φ =
f

ω34(e2)
. (4.11c)

On the other hand, from (4.10), we have 〈C, e2 ∧ e4〉 = 0. By applying e2 to
this equation, we get ω12(e2) = 0, where ω12 is the connection form defined by
ω12(X) = 〈∇Xe3, e4〉.

By combining this equation with (4.9),

∇̃e1 e1 = −εω12(e1)e2 + ζe4, ∇̃e1 e2 = −εω12(e1)e1, (4.12a)

∇̃e2 e1 = 0, ∇̃e2 e2 = −2εce3 + ζe4, (4.12b)

∇̃e1 e3 = 0, ∇̃e2 e3 = −2ce2 + ω34(e2)e4, (4.12c)

∇̃e1 e4 = −εζe1, ∇̃e2 e4 = εζe2 − ω34(e2)e3. (4.12d)

Moreover, from the Gauss equation (2.4a), for X = W = e1, Y = Z = e2, and the
Codazzi equation (2.46b), for X = e1,Y = Z = e2,

e2(ω12(e1)) = εω12(e1)2 + ζ2, (4.13a)
e2(ζ) = 2εζω12(e1), (4.13b)
ζω34(e2) = 2cω12(e1). (4.13c)

Now we want to show that ζ ≡ 0 on M. Consider the open subsetM = {p|ζ(p) , 0}
and assume that it is not empty. By applying e2 to (4.13c) and using (4.13),

e2(ω34(e2)) = 2cζ − εω12(e1)ω34(e2) (4.13d)

onM.
By applying e2 to (4.11a) and using (4.12b), (4.12c), (4.13c) and (4.13d), we obtain

e2(φ)C = −εω12(e1)C, which implies that

e2(φ) = −εω12
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onM. Next we compute the left-hand side of this equation by using (4.13) to get

(2ε + 1)ω34(e2)2 + 12εω12(e1)2 = 2ζ2 + 4c2 (4.14)

onM, which implies that ε = 1. Next we apply e2 to (4.14) and use (4.13) to obtain

ω12(e2)(−3ω34(e2)2 + 12ω12(e1)2 + 8ζ2 + 12c2) = 0 (4.15)

on M. However, (4.13c), (4.14) and (4.15) imply that ζ = 0 on M, which is a
contradiction. Therefore, we have proved that ζ ≡ 0 on M. In addition, (4.13c) implies
that ω12 = 0 and, from the Ricci equation (2.4c) and (4.13d), we get ω34(e2) = τ for
a constant τ. By combining all results of this subsection, we see that the frame field
{e1, e2; e3, e4} satisfies (4.1) for the constant κ = −2εc. �

Next, by considering the surfaces satisfying the conditions obtained in Lemma 4.5,
we get the following classification theorem.

Theorem 4.6 (The classification theorem). Let M be a nonminimal Lorentzian surface
in E4

1 with normal flat bundle and constant mean curvature. Then M has pointwise 1-
type Gauss map of the second kind if and only if it is congruent to one of the following
surfaces:

(i) a surface given by x(s, t) = (s, (a/λ) cos λt, (a/λ) sin λt,
√

1 − a2t), 0 < a < 1;
(ii) a surface given by x(s, t) = ((a2/3)t3 + t,

√
2at, (a2/3)t3, s);

(iii) a surface given by x(s, t) = ((
√

a2 − 1/λ) cosh λt, (
√

a2 − 1/λ) sinh λt, at, s),
a > 1;

(iv) a surface given by x(s, t) = ((
√

a2 + 1/λ) sinh λt, (
√

a2 + 1/λ) cosh λt, at, s);
(v) a surface given by x(s, t) = (

√
1 + a2t, (a/λ) cos λt, (a/λ) sin λt, s)

for a nonzero constant λ.

Proof. Let {e1, e2; e3, e4} be the orthonormal frame field given in Lemma 4.5 and
ε = 〈e1, e1〉. Since∇ei ej = 0, i, j = 1,2, there exist local coordinates (s, t) on M such that
the induced metric is g = ε(ds2 − dt2) and e1 = ∂s, e2 = ∂t. Moreover, the first equation
in (4.1b) gives xst = 0, where x : M → E4 is an isometric immersion. Therefore,

x(s, t) = α(s) + β(t) (4.16)

for some curves α and β satisfying

〈α′(s), α′(s)〉 = ε, 〈α′(s), β′(t)〉 = 0, 〈β′(t), β′(t)〉 = −ε. (4.17)

Obviously, all integral curves of the vector fields e1 and e2 are congruent to the curves
α(s) and β(t), respectively.

On the other hand, since ∇̃ei e1 = 0, i = 1, 2, e1 is a constant vector. Thus, up to
isometries of E4

1, we may assume that either e1 = (1, 0, 0, 0) or e1 = (0, 0, 0, 1) subject
to ε = −1 or ε = 1, respectively.

Case 1: ε = −1. In this case, we have e1 = ∂s = (1, 0, 0, 0). Thus, up to translations,
we may assume that α(s) = (s, 0, 0, 0). Because of (4.17), β(t) is a curve lying in the
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Euclidean hyperplane Π whose normal is e1. In addition, from (4.1b) and (4.1c), we
see that β has constant curvature κ and constant torsion τ, that is, it is the position
vector of a right circular helix. Hence, we have the case (i) of the theorem.

Case 2: ε = 1. In this case, we have e1 = ∂s = (0, 0, 0, 1). Thus, up to translations,
we may assume that α(s) = (0, 0, 0, s). Because of (4.17), β(t) is a Lorentzian curve
lying in the Lorentzian hyperplane Π2 whose normal is e1. In addition, from (4.1b)
and (4.1c), we see that β is the position vector of a helix with constant curvature κ and
constant torsion τ. Thus, e2 = β′(t) satisfies e′′′2 = (κ2 − τ2)e′2.

Case 2a: κ = τ. In this case, up to congruency, we can assume that

β(t) =

(a2

3
t3 + t,

√
2at,

a2

3
t3, 0

)
.

Hence, we get the case (ii) of the theorem.

Case 2b: κ > τ. In this case,

β(t) =

( √a2 − 1
λ

cosh λt,

√
a2 − 1
λ

sinh λt, at, 0
)
, a > 1

or

β(t) =

( √a2 + 1
λ

sinh λt,

√
a2 + 1
λ

cosh λt, at, 0
)

for a nonzero constant λ. Hence, we have the case (iii) or (iv) of the theorem,
respectively.

Case 2c: κ < τ. Similarly,

β(t) =

(√
1 + a2t,

a
λ

cos λt,
a
λ

sin λt, 0
)
,

which gives the case (v) of the theorem.
The converse follows from a direct computation. �

Since a surface with positive relative nullity satisfies the conditions of Theorem 4.6,
we have the following result.

Corollary 4.7. Let M be a nonminimal Lorentzian surface in E4
1 with positive relative

nullity. Then M has pointwise 1-type Gauss map of the second kind if and only if it is
congruent to one of the surfaces given in Theorem 4.6.
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39 (1998), 169–179.
[5] B.-Y. Chen, J. M. Morvan and T. Nore, ‘Energy, tension and finite type maps’, Kodai Math. J. 9

(1986), 406–418.
[6] B.-Y. Chen and P. Piccini, ‘Submanifolds with finite type Gauss map’, Bull. Aust. Math. Soc. 35

(1987), 161–186.
[7] B.-Y. Chen and J. van der Veken, ‘Marginally trapped surfaces in Lorentzian space forms with

positive relative nullity’, Classical Quantum Gravity 24 (2007), 551–563.
[8] M. Choi, U. H. Ki and Y. J. Suh, ‘Classification of rotation surfaces in pseudo-Euclidean space’,

J. Korean Math. Soc. 35 (1998), 315–330.
[9] U. Dursun and G. Arsan, ‘Surfaces in the Euclidean space E4 with pointwise 1-type Gauss map’,

Hacet. J. Math. Stat. 40 (2011), 617–625.
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