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Abstract Let G denote a possibly discrete topological group admitting an open subgroup I which is
pro-p. If H denotes the corresponding Hecke algebra over a field k of characteristic p, then we study
the adjunction between H -modules and k -linear smooth G-representations in terms of various model
structures. If H is a Gorenstein ring, we single out a full subcategory of smooth G-representations which
is equivalent to the category of all Gorenstein projective H -modules via the functor of I -invariants.
This applies to groups of rational points of split connected reductive groups over finite and over non-
Archimedean local fields, thus generalizing a theorem of Cabanes. Moreover, we show that the Gorenstein
projective model structure on the category of H -modules admits a right transfer. On the homotopy level,
the right derived functor of I -invariants then admits a right inverse and becomes an equivalence when
restricted to a suitable subcategory.
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0. Introduction

Let p denote a prime number, and let G denote a topological group admitting an open

subgroup I which is pro-p. If k is a field of characteristic p, we let X= indGI (k) denote the
G-representation compactly induced from the trivial I -representation k. The opposite

endomorphism ring H = EndG(X)op can also be realized as the double coset algebra

H = k[I\G/I] with respect to the usual convolution product.
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We let Rep∞k (G) denote the category of k -linear G-representations which are smooth

in the sense that the stabilizer of any vector is open in G. If G is discrete, then Rep∞k (G)

is the category of all k -linear G-representations. Let Mod(H) denote the category of left
H -modules. There is an adjunction

F : Mod(H) � Rep∞k (G) : U (1)

given by FM = X⊗H M and UV = V I ∼= HomG(X,V ). The study of G-representations

in terms of this adjunction plays a prominent role in various situations. If G is the group
of rational points of a split connected reductive group over a finite field of characteristic

p, for example, and if I denotes a p-Sylow subgroup of G, then this strategy has a long

history.
Our motivating example, however, concerns the case that G is the group of rational

points of a split connected reductive group over a non-Archimedean local field of residue

characteristic p. If I denotes a pro-p Iwahori subgroup of G in the sense of Bruhat–Tits

theory, then the algebra H is known as the corresponding pro-p Iwahori–Hecke algebra.
In this situation, the category Rep∞k (G) plays a central role in the mod-p local Langlands

program. Although the category of H -modules is rather well understood, the properties of

the category Rep∞k (G) remain obscure. In fact, the behavior of the adjunction (1) is not
sufficiently clear beyond G=GL2(Qp) and a few related cases (cf. the results of Ollivier

in [27]).

Since k is of characteristic p, the functor U is generally not exact. It is therefore natural
to study the situation from a homological point of view. For reductive groups over non-

Archimedean local fields, important work in this direction has been done by Ollivier,

Schneider and Koziol (cf. [28], [29] and [23], for example). Moreover, Schneider showed

that the adjunction (1) induces an equivalence on a derived level if H is replaced by a
suitable dg-variant H• (cf. [34], Theorem 9). Unfortunately, the structure of this algebra

seems very hard to understand although some recent progress has been made by Ollivier

and Schneider (cf. [30] and [31]).
In this article, we take a different approach. Our aim is to shed some light on the nature

of the adjunction (1) using the language and methods of model categories. We stay in the

very general situation described at the beginning. For the finer results in §4 and §5, we
will assume, however, that the ring H is Gorenstein. In Example 4.1, we give a list of

important situations to which this assumption applies. Due to results of Tinberg, Ollivier

and Schneider, this includes groups of rational points of split connected reductive groups

over finite and non-Archimedean local fields.
In §1, we give a brief exposition of the general theory of model categories. Any model

category C has an associated homotopy category Ho(C) that may be thought of as a

generalized derived category. The model structures relevant for our purposes will either
be constructed using cotorsion pairs in the sense of Hovey (cf. Theorem 1.1) or via the

left/right transfer along an adjunction. We emphasize that cotorsion pairs differ from

the torsion theories advertised in [29]. In rather special situations, however, there is a
correspondence between localizing cotorsion pairs and torsion theories in the homotopy

category (cf. [33], Proposition 3.3). In Proposition 1.4, we give a criterion for the existence

of the right transfer based on path objects.
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Let Ch(H) and Ch(G) denote the categories of unbounded chain complexes over

Mod(H) and Rep∞k (G), respectively. By working termwise, there is an induced adjunction

F : Ch(H) � Ch(G) : U . In Proposition 2.13 and Proposition 2.14, we show that the
projective model structure on Ch(H) admits a right transfer to Ch(G) yielding a Quillen

equivalence. In particular, the derived adjunction

LF :D(H) � Ho(Ch(G)) :RU

is an equivalence of categories. Here, D(H) denotes the usual unbounded derived category

of the ring H. Although this result is somewhat formal, the necessary input from relative
homological algebra plays a major role in the sequel. In particular, this concerns the

notion of an I-exact sequence of G-representations. This is an object X ∈ Ch(G) such

that the complex UX ∈Ch(H) of I -invariants is exact (cf. Lemma 2.4). Moreover, pulling
back the notion of a projective H -module yields the relative notion of an I-projective

G-representation. These are characterized in Lemma 2.8. It lies at the heart of many

of our arguments that the adjunction (1) restricts to an equivalence between the full

subcategories of projective H -modules and I -projective G-representations, respectively
(cf. Corollary 2.9).

We point out that if G is compact, then the category Rep∞k (G) does not have any

nonzero projective objects unless the group G is discrete (cf. Remark 2.20). However, we
show that the injective model structure on Ch(G) admits a left transfer to Ch(H) (cf.

Proposition 2.23). A detailed analysis of the corresponding Quillen adjunction will be

given elsewhere.
In §3, we collect known results about model structures over Gorenstein rings. We start

with the notion of a Gorenstein projective object in an abelian category with enough

projectives. If S is a Gorenstein ring, then Hovey constructed a model structure on

Mod(S) for which the cofibrant objects are the Gorenstein projective S -modules and
the trivial objects are the S -modules of finite projective dimension (cf. Theorem 3.2).

This is called the Gorenstein projective model structure. If S = H comes from a split

connected reductive group over a non-Archimedean local field as in Example 4.1 (iv),
then the corresponding homotopy category seems particularly well suited to study the

supersingular H -modules (cf. Remark 4.2). Returning to the general case, there is a

Quillen equivalent model structure on Ch(S) constructed by Becker. This is called the
singular projective model structure (cf. Theorem 3.4). Its homotopy category is related

to the singularity category of S studied by Krause (cf. [24]). We emphasize that there

is an extensive literature on homological algebra over Gorenstein rings starting with the

seminal article [5] of Buchweitz.
In §4, we specialize to the case S = H assuming that the ring H is Gorenstein. In

Proposition 4.5, we show that the singular projective model structure on Ch(H) admits

a right transfer along the adjunction F : Ch(H) � Ch(G) : U and yields a Quillen
equivalence. On both sides, the loop and suspension functors are induced by the usual

shift functors (cf. Lemma 3.5 and Corollary 4.6). Moreover, the derived adjunction is an

equivalence of categories

LF :Kac(Proj(H)) � Ho(Ch(G)) :RU,
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4 N. Dupré and J. Kohlhaase

where the left-hand side denotes the category of acyclic complexes of projective H -
modules up to chain homotopy. The cofibrant objects of Ch(G) are the I -exact complexes

of I -projective G-representations (cf. Lemma 4.7), and the cofibrations are made explicit

in Corollary 4.9.
In Proposition 4.10, we construct suitable path objects to show that the Gorenstein

projective model structure on Mod(H) admits a right transfer along the adjunction (1).

The analysis of the derived adjunction

LF : Ho(Mod(H)) � Ho(Rep∞k (G)) :RU (2)

is much less formal than in the previous situations because the cofibrant H -modules

are only Gorenstein projective. Our main observation is that for a Gorenstein projective

module the unit of the adjunction (1) is a split monomorphism with an explicit cokernel
(cf. Proposition 4.3). Moreover, we can make explicit the homotopy relation on morphisms

between cofibrant objects (cf. Lemma 4.21). As a consequence, the left derived functor LF

is faithful and the right derived functor RU is essentially surjective (cf. Theorem 4.22). We
also give a detailed analysis of the cofibrations in Rep∞k (G). Although this model category

is not constructed from a cotorsion pair directly, the cofibrant and the trivial objects

satisfy a suitable orthogonality relation (cf. Lemma 4.17). Finally, in Proposition 4.24,
we give several equivalent obstructions to the derived adjunction (2) being an equivalence.

The most interesting of these is related to the fact that the right transfer need no longer

be stable. The necessary computation of the loop and suspension functors is described in

Lemma 4.23.
However, the situation can be improved significantly. As a major result, we show in

§5 that the functor U : Rep∞k (G)→Mod(H) restricts to an equivalence between suitable

full subcategories. On the one hand, we let GProj(H) denote the full subcategory of
Mod(H) consisting of all Gorenstein projective H -modules. On the other hand, we define

the relative notion of an I-Gorenstein projective G-representation (cf. Definition 5.3).

This yields a full subcategory C(G) of Rep∞k (G) such that the functor U restricts to
an equivalence C(G) ∼= GProj(H) (cf. Theorem 5.4). There is an explicit inverse functor

F whose relation to the functor F is spelled out in Lemma 5.8. If the ring H is self-

injective, then GProj(H) = Mod(H) and C(G) is the category of representations which

are both a quotient and a subobject of an I -projective G-representation. In this case, we
recover a result of Cabanes concerning the case of finite groups with a split BN -pair of

characteristic p (cf. Remark 5.6).

Endowed with the class of short I -exact sequences, the category C(G) turns out to be
a weakly idempotent complete Frobenius category (cf. Corollary 5.9). Thus, C(G) has a

canonical exact model structure and an associated homotopy category (cf. Proposition

5.1). If Rep∞k (G) is endowed with the right transfer studied in §4 and if i : C(G) →
Rep∞k (G) denotes the inclusion functor, then the composition

Ho(C(G))
Ho(i)−→ Ho(Rep∞k (G))

RU−→Ho(Mod(H))

is an equivalence of categories (cf. Theorem 5.11). In particular, RU admits a right

inverse and Ho(i) allows us to view Ho(C(G)) as a (not necessarily full) subcategory
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of Ho(Rep∞k (G)) on which RU becomes an equivalence. We hope this result amply

demonstrates the strength of our approach.

At the end of our article, we specialize to the case that H is the pro-p Iwahori–Hecke
algebra of a split connected reductive group G over a non-Archimedean local field of

residue characteristic p. If G is semisimple we consider the canonical Gorenstein projective

resolution GP•(M)→M → 0 of an H -module M constructed by Ollivier and Schneider
(cf. [28], §6.4). On the other hand, we consider the complex Cor

c (X(•),F(M)) of oriented

chains of the G-equivariant coefficient system F(M) on the Bruhat–Tits building X of G

associated with M by the second author (cf. [22], §3.2). In Proposition 5.13, we show that
there is a functorial isomorphism of complexes Cor

c (X(•),F(M))∼=FGP(M)•. In particular,

the chain complex of F(M) consists of objects of C(G). For the chain complex of a fixed

point system as studied in [28], §3.1, this is generally not true (cf. Example 5.15).

Notation and conventions. A class of objects of a category C will usually be identified
with the corresponding full subcategory. If we denote an adjunction by F : C � D : U ,

then F is always assumed to be left adjoint to U. The unit (resp. the counit) of an

adjunction will always be denoted by η (resp. ε). We say that a functor F : C → D
preserves (resp. reflects) a property (P) if F∗ (resp. ∗) has property (P) whenever ∗
(resp. F∗) does. For any unital ring S we denote by Mod(S) the category of left S -

modules. Given M,N ∈Mod(S), we write HomS(M,N) for the set of S -linear maps from
M to N.

1. Preliminaries on model categories

We largely follow the conventions of Hovey’s book [19]. A model category is a locally

small and bicomplete category C endowed with a model structure consisting of three

subcategories – whose morphisms are called the weak equivalences, cofibrations and
fibrations, respectively – and two functorial factorizations as in [19], Definition 1.1.3.

As usual, a cofibration (resp. a fibration) is called trivial if it is also a weak equivalence.

An object X ∈ C is called cofibrant (resp. fibrant) if the map from the initial object to
X (resp. from X to the terminal object) is a cofibration (resp. a fibration). We denote

by Cc (resp. Cf , resp. Ccf ) the full subcategory of C consisting of all objects which are

cofibrant (resp. fibrant, resp. cofibrant and fibrant). By

Qc : C → Cc and Qf : C → Cf
we denote the cofibrant replacement functor and the fibrant replacement functor,

respectively (cf. [19], page 5). The cofibrant replacement functor will often be abbreviated

to Qc =Q.
A path object for an object B ∈ C is an object P ∈ C such that the diagonal morphism

Δ :B →B×B admits a factorization B
i−→ P

p−→B×B, where i is a weak equivalence

and p is a fibration. We note that while path objects can be constructed via the

functorial factorizations of Δ the above definition allows any factorization with the
required properties.

If f : A → B and g : A → B are morphisms in C, then a right homotopy from f to g

is a morphism H : A → P from A into a path object B
i−→ P

p−→ B×B for B such
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that p1pH = f and p2pH = g. Here, p1,p2 : B×B → B denote the two projections. The
morphisms f and g are called right homotopic if there is a right homotopy from f to g.

There are also dual notions of cylinder objects and left homotopies as in [19], Definition

1.2.4. Morphisms which are both right and left homotopic are called homotopic. If X ∈ Cc
and Y ∈ Cf , then two morphisms f,g : X → Y are right homotopic if and only if they

are left homotopic (cf. [19], Proposition 1.2.5 (v)). Moreover, on the morphisms of Ccf
the homotopy relation ∼ is an equivalence relation compatible with composition (cf. [19],

Corollary 1.2.7). Dividing out the homotopy relation on the level of morphisms leads to
a category denoted Ccf /∼.

The homotopy category Ho(C) of a model category C is the localization of C with respect

to the class of weak equivalences (cf. [19], Definition 1.2.1). We will usually just write
C →Ho(C) for the canonical functor of C into its homotopy category. Any subcategory of

C has an induced class of weak equivalences and the corresponding homotopy category

is defined analogously. It is a fundamental result that the inclusion Ccf → C induces
equivalences of categories

Ccf /∼
∼=−→ Ho(Ccf )

∼=−→ Ho(C) (3)

(cf. [19], Theorem 1.2.10 (i)). Given two objects X,Y ∈ C, the set of morphisms from X

to Y in Ho(C) is usually denoted by [X,Y ].

Recall that a functor F : C → D (resp. U : D → C) between model categories is called
left Quillen (resp. right Quillen) if it admits a right (resp. left) adjoint and preserves

cofibrations and trivial cofibrations (resp. fibrations and trivial fibrations). If F : C �D :U

is an adjunction between model categories, then F is left Quillen if and only if U is right
Quillen (cf. [19], Lemma 1.3.4). In this case, we speak of a Quillen adjunction. A Quillen

adjunction is called a Quillen equivalence if for all cofibrant X ∈ C and all fibrant Y ∈ D
a morphism FX → Y is a weak equivalence in D if and only if the adjoint morphism
X → UY is a weak equivalence in C (cf. [19], Definition 1.3.12).

We refer to [19], Proposition 1.3.13 and Corollary 1.3.16, for various characterizations

of when a Quillen adjunction is a Quillen equivalence. At this point, we just recall how

this can be seen on the level of homotopy categories. Note that the functors

C Qc−→ Cc −→Ho(Cc) and Cc F−→D −→Ho(D)

send weak equivalences to isomorphisms. Indeed, for the left functor this follows from

the two-out-of-three property for weak equivalences. For the right functor, this follows

from [19], Lemma 1.1.12. By the universal property of localizations, there are induced
functors Ho(Qc) : Ho(C)→Ho(Cc) and Ho(F ) : Ho(Cc)→Ho(D). The left derived functor

LF : Ho(C)→Ho(D) of F is then defined to be the composite

Ho(C) Ho(Qc)�� Ho(Cc)
Ho(F ) �� Ho(D) (4)

(cf. [19], Definition 1.3.6). Similarly, one defines the right derived functor RU : Ho(D)→
Ho(C) of U as the composite

Ho(D)
Ho(Qf )�� Ho(Df )

Ho(U) �� Ho(C). (5)
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In this situation, LF is left adjoint to RU (cf. [19], Lemma 1.3.10). Moreover, F and U

form a Quillen equivalence if and only if LF and RU are inverse equivalences of categories

(cf. [19], Proposition 1.3.13).
A powerful tool to construct model structures on an abelian category A was developed

by Hovey in [21]. It is based on a fixed proper class P of short exact sequences in A
leading to relative extension groups Ext•P(X,Y ) as in [26], Chapter XII.4. An epimorphism
f :X → Y in A is called a P-epimorphism if the short exact sequence

0−→ ker(f)−→X
f−→ Y −→ 0

belongs to P. The notion of a P-monomorphism is defined dually. Given classes C and F
of objects of A consider the classes of objects

⊥F = {X ∈ A | Ext1P(X,Y ) = 0 for all Y ∈ F}

and

C⊥ = {Y ∈ A | Ext1P(X,Y ) = 0 for all X ∈ C}.

A cotorsion pair with respect to P is a pair (C,F) of classes of objects of A satisfying

C=⊥F and C⊥ =F (cf. [21], Definition 2.3). It is said to have enough functorial projectives

if for any X ∈A there is a P-epimorphism f : Y →X which is functorial in X and satisfies
Y ∈ C and ker(f) ∈ F . The existence of enough functorial injectives is defined dually.

A cotorsion pair which has both enough functorial projectives and enough functorial

injectives is called functorially complete.
For the definition of a model structure on A which is compatible with P, we refer to

[21], Definition 2.1. A subcategory of A is called P-thick if it is closed under retracts and

satisfies the two-out-of-three property with respect to short exact sequences in P. If A
is an abelian category endowed with the structure of a model category, then an object

X ∈ A is called trivial if the morphism 0→X (or equivalently the morphism X → 0) is

a weak equivalence. We denote by At the full subcategory of A consisting of all trivial

objects. The following fundamental theorem is due to Hovey (cf. [21], Theorem 2.2).

Theorem 1.1 (Hovey). Let A be a bicomplete abelian category with a fixed proper class

P of short exact sequences.

(i) If A carries a model structure which is compatible with P, then At is P-thick and
(Ac,At∩Af ) and (Ac∩At,Af ) are functorially complete cotorsion pairs.

(ii) If C, F and T are full subcategories of A such that T is P-thick and such that

(C ∩T ,F) and (C,T ∩F) are functorially complete cotorsion pairs, then there is a

unique model structure on A which is compatible with P and which satisfies C =Ac,
F =Af and T =At.

In the situation of Theorem 1.1 (ii) the definition of the corresponding cofibrations,
fibrations and weak equivalences is given explicitly in [21], Definition 5.1. If P is the

class of all short exact sequences, then a model structure (resp. a model category) as in

Theorem 1.1 is called abelian. An abelian model structure is called hereditary if the class
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of cofibrant objects is closed under taking kernels of epimorphisms and if the class of
fibrant objects is closed under taking cokernels of monomorphisms.

For simplicity, we will often assume that all objects of our categories are small (cf.

[20], Definition A.1). For example, this holds in any Grothendieck category (cf. [20],
Proposition A.2) which is the main case of interest for us. We refer to [21], Corollary 6.8,

for a manageable criterion to check whether a given cotorsion pair on a Grothendieck

category is functorially complete.

Let I be a class of morphisms in a category C. Recall that a morphism in C is called
I-injective if it satisfies the right lifting property with respect to all morphisms in I in

the sense of [19], Definition 1.1.2. The class of these morphisms is denoted by I-inj. A
morphism in C is called an I-cofibration if it satisfies the left lifting property with respect
to all morphisms in I-inj. The class of these morphisms is denoted by I-cof.
For the definition of a model category C which is cofibrantly generated, we refer to [19],

Definition 2.1.17. If every object of C is small, then this means that there are sets I and J
of morphisms of C such that the class of fibrations is equal to J -inj and the class of trivial

fibrations is equal to I-inj. The elements of the sets I and J are called the generating

cofibrations and the generating trivial cofibrations of C, respectively.
Assume that we have an adjunction F : C � D : U . If C is a model category and if D

is bicomplete, then there is a natural candidate for an associated model structure on D.

Namely, define a fibration (resp. a weak equivalence, resp. a trivial fibration) in D to be

a morphism f in D such that Uf is a fibration (resp. a weak equivalence, resp. a trivial
fibration) in C. Moreover, define a cofibration in D to be a morphism which satisfies the

left lifting property with respect to all trivial fibrations. If these three classes of morphisms

form part of a model structure on D, then this is called the right transfer and we say
that the right transfer exists. We note that the term right induction is common, as well.

In order to discuss the existence of the right transfer, we call a morphism in D anodyne

if it satisfies the left lifting property with respect to all fibrations. If the right transfer

exists, then an anodyne morphism is automatically a weak equivalence (cf. [19], Lemma
1.1.10). In certain situations, this condition is also sufficient. Indeed, we have the following

result which is a variant of [18], Theorem 11.3.2.

Theorem 1.2. Let F : C � D : U be an adjunction, where C is a cofibrantly generated

model category with generating cofibrations I and generating trivial cofibrations J .
Moreover, assume that D is bicomplete and that all objects of D are small. If every

anodyne morphism in D is a weak equivalence, then the right transfer exists. It is

cofibrantly generated with generating cofibrations FI and generating trivial cofibrations

FJ .

Proof. If f is a morphism in D, then Uf ∈ I-inj (resp. Uf ∈ J -inj) if and only if f ∈ FI-
inj (resp. f ∈ FJ -inj) by the adjunction. Therefore, the class of fibrations in D is FJ -inj,

the class of trivial fibrations is FI-inj, the class of cofibrations is FI-cof and the class of

anodyne morphisms is FJ -cof.
It now suffices to check that the conditions in [18], Theorem 11.3.1, are satisfied for FI,

FJ and the class of weak equivalences. Note first that the latter has the two-out-of-three

property and is closed under retracts because U is a functor. Conditions (1)–(3) and
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(4)(b) in [18], Theorem 11.3.1, follow from the fact that every object in D is small, that

every anodyne morphism is a weak equivalence and that the morphisms in FI-inj are
exactly the trivial fibrations.

Remark 1.3. The idea of the right transfer goes back to the original work of Quillen

(cf. [32], section II.4). There are more general versions of the above theorem replacing the
smallness assumptions on D by suitable properties of the functor F. See [18], Theorem

11.3.2, for instance.

It might still be nontrivial to check that anodyne morphisms are weak equivalences.

However, there is a simple condition under which this is true. Indeed, assume that C is

a model category and that we have an adjunction F : C � D : U , where D is bicomplete.
Since we have notions of fibrations and weak equivalences in D, we can make sense of

path objects and right homotopies in D, as well. Moreover, since U preserves products,

fibrations and weak equivalences it also preserves path objects and right homotopies. Due

to a lack of reference, we include a proof of the following variant of [16], Theorem 3.8.

Proposition 1.4. Assume that C is a model category and that we have an adjunction

F : C � D : U , where D is bicomplete. If every object in C is fibrant and if every object of
D admits a path object, then every anodyne morphism in D is a weak equivalence.

Proof. First, note that every object in D is fibrant because U preserves the terminal
object ∗. Let j : A → B be an anodyne morphism in D. By applying the left lifting

property to the square

A A

B ∗,

idA

j

we get a morphism u :B →A such that uj = idA. Consider f = ju :B →B, and let P be
a path object for B with factorization Δ = pi into a fibration p and a weak equivalence

i. Since uj = idA, we have fj = j. Therefore, the outer square in the diagram

A P

B B×B

ij

j p

idB×f

H

commutes. The left lifting property implies the existence of H : B → P making the two
triangles commute. By construction, H is a right homotopy from idB to f. Since U

preserves right homotopies, idUB is right homotopic to Uf = UjUu in C. Since right

homotopic morphisms are identified in Ho(C) (cf. [19], Theorem 1.2.10 (iii)) Uu is right
inverse to Uj in Ho(C). Of course, it is also left inverse because this already holds in C.
Consequently, Uj becomes an isomorphism in Ho(C), hence is a weak equivalence in C by

[19], Theorem 1.2.10 (iv). Thus, j is a weak equivalence in D.
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Remark 1.5. The result in Proposition 1.4 is again implicit in the work of Quillen [32]

who works in the simplicial setting. The condition that every object is fibrant can be

replaced by the more general condition that D admits a functorial fibrant replacement
and functorial path objects (cf. [16], Theorem 3.8). The above proof is a rewording of its

simplicial version in [15], Lemma II.6.1.

Lemma 1.6. Suppose that we have an adjunction F : C � D : U , where D is bicomplete

and C is a model category whose right transfer exists. Then F and U form a Quillen

adjunction. This is a Quillen equivalence if and only if the unit ηX :X →UFX is a weak

equivalence for all cofibrant X in C.

Proof. It follows immediately from the definition of the right transfer that the functor

U is right Quillen. Now, assume that ηX is a weak equivalence for all cofibrant X in C.
Consider a morphism f : FX → Y , where X ∈ C is cofibrant and Y ∈ D is fibrant. By

definition of the right transfer, f : FX → Y is a weak equivalence if and only if so is Uf .

By the two-out-of-three property this is true if and only if UfηX is a weak equivalence.

However, the latter is the adjoint of f. Thus, we have a Quillen equivalence.
Conversely, if we have a Quillen equivalence and if X is cofibrant in C consider the

fibrant replacement f : FX → QfFX of FX in D. Since this is a weak equivalence, so

are Uf and the adjoint morphism UfηX . The two-out-of-three property implies that also
ηX is a weak equivalence.

A bicomplete category is called pointed if the morphism from the initial to the terminal

object is an isomorphism. The homotopy category of any pointed model category C admits

two endofunctors Σ and Ω called the suspension functor and the loop functor, respectively.

Given X ∈ C fibrant and P a path object for X, the loop ΩX of X is defined to be the
pullback of the diagram

P
p−→X×X ←− ∗,

where ∗ denotes the initial/terminal object of C. Given X ∈ C cofibrant, its suspension

ΣX is defined dually using a cylinder object (cf. [1], Definition 3.1.2). The suspension

functor Σ is left adjoint to the loop functor Ω (cf. [1], Proposition 3.1.7). If they are

equivalences of categories, then the model category C is called stable. If F : C � D : U
is a Quillen adjunction, then LF commutes with Σ and RU commutes with Ω (cf. [1],

Corollary 3.1.4). If both model categories are stable, then also RU commutes with Σ and

LF commutes with Ω (cf. [1], Corollary 3.2.10).
To compute the suspension of an object X in an abelian model category A choose a

trivial fibration Y →X with Y cofibrant. If 0→ Y → Y ′ → Y ′′ → 0 is an exact sequence

with Y ′ trivially fibrant and Y ′′ cofibrant, then ΣX ∼= Y ′′ in Ho(A). For the loop functor,
one chooses a trivial cofibration X → Y with Y fibrant. If 0→ Y ′′ → Y ′ → Y → 0 is an

exact sequence in C with Y ′ trivially cofibrant and Y ′′ fibrant, then ΩX ∼= Y ′′ in Ho(A).

If an abelian model structure is hereditary, then it is also stable (cf. [3], Corollary 1.1.15).
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Finally, we give two standard examples of a model category that will play a role in the
following. Given an abelian category A, we denote by Ch(A) the category of unbounded

chain complexes

X =X• = (X•,d•) = (. . .
d2−→A1

d1−→A0
d0−→A−1

d−1−→ . . .)

over A. Let ι0 :A→ Ch(A) denote the functor obtained by viewing an object of A as a

complex concentrated in degree zero. We will often use it to view A as a full subcategory
of Ch(A) and suppress it from the notation. Recall that ι0 admits both a left adjoint Q0

and a right adjoint Z0 given by

Q0X = coker(d1) and Z0X = ker(d0). (6)

For any integer n, we denote by X 	→ BnX = im(dn+1) the n-th boundary functor, by

X 	→ ZnX = ker(dn) the n-th cycle functor and by X 	→ HnX = ZnX/BnX the n-th
homology functor Ch(A) → A. Let [1] denote the shift functor on Ch(A) defined by

(X•,d•)[1] = (Y•,e•) with Yn = Xn+1 and en = −dn+1 for all n ∈ Z. We denote by [−1]

the two-sided inverse of [1].
Note that together with A also the category Ch(A) is abelian. Moreover, we have the

following standard facts.

Lemma 1.7. Let A be an abelian category.

(i) If A is a Grothendieck category, then so is Ch(A).

(ii) If A has enough projectives, then so does Ch(A).

Proof. The abelian category Ch(A) is cocomplete by defining colimits termwise. Filtered

colimits are exact because kernels and cokernels are defined termwise, as well. If U is a

generator of A consider the complex DnU = [0→U
id→U → 0] in Ch(A) with U in degrees

n and n−1. Then
⊕

n∈Z
DnU is a generator of Ch(A). This shows (i).

As for (ii), let AZ denote the category of Z-graded objects of A and consider the functor
T : Ch(A)→AZ given by X• 	→

⊕
n∈Z

Xn. It has the left adjoint D sending
⊕

n∈Z
Xn to⊕

n∈Z
DnXn. In degree n, the map of complexes

DnXn ↪→DTX•
εX•−→X•

is the identity on Xn. This implies that the counit εX• :DTX• →X• is an epimorphism.

Therefore, given X• ∈ Ch(A) it suffices to construct an epimorphism f : Q• → DTX•,
where Q• ∈ Ch(A) is projective. For any n, we choose an epimorphism Yn → Xn in A,
where Yn is projective. Consider the epimorphism g :

⊕
n∈Z

Yn →
⊕

n∈Z
Xn in AZ, and

note that
⊕

n∈Z
Yn is a projective object in AZ. We claim that the induced map

f =Dg :Q• =D(
⊕

n∈Z

Yn)−→D(
⊕

n∈Z

Xn) =DTX•

in Ch(A) is as required. Indeed, f is an epimorphism because D is a left adjoint and so

preserves epimorphisms. Moreover, Q• is projective because the right adjoint T is exact

and hence D preserves projectives.
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Recall that any Grothendieck category is automatically complete and therefore
bicomplete. If A is a Grothendieck category, there is a cofibrantly generated model

structure on Ch(A) for which the cofibrations are the monomorphisms and the weak

equivalences are the quasi-isomorphisms (cf. [4], Proposition 3.13). This is called the
injective model structure on Ch(A). We write Ch(A)Inj for the corresponding model

category. Its homotopy category is equivalent to the unbounded derived category D(A)∼=
Ho(Ch(A)Inj) of A.

If A is the category of modules over a ring, then the injective model structure on Ch(A)
is also constructed in [19], §2.3. It follows as in [19], Proposition 2.3.20, that the fibrations

are precisely the termwise split surjections with fibrant kernels. Looking at the long exact

homology sequence, we see that the trivial fibrations are precisely the termwise split
surjections with trivially fibrant kernels. Consequently, the injective model structure on

Ch(A) is compatible with the class P of all short exact sequences.

By Theorem 1.1, the injective model structure is related to two functorially complete
cotorsion pairs on Ch(A) given as follows. Note that every object of Ch(A)Inj is cofibrant,

that is, we have C =Ch(A)Injc =Ch(A). Moreover, the class T =Ch(A)Injt of trivial objects

is precisely that of the acyclic complexes. If we denote by F =Ch(A)Injf the class of fibrant

objects, then we know from Theorem 1.1 that F = T ⊥. In other words, a complex Y is

fibrant if and only if Ext1Ch(A)(X,Y ) = 0 for any acyclic complex X. As in [11], Proposition
3.4, one shows that this condition is satisfied if and only if Y is a dg-injective complex,

that is, Y is termwise injective and the internal hom complex Hom(X,Y ) is acyclic for

any acyclic complex X.
Apart from the cotorsion pair (C ∩ T ,F) = (T ,T ⊥), there is also the cotorsion pair

(C,T ∩F) = (Ch(A),T ∩ T ⊥). As in [11], Proposition 3.7, the class T ∩ T ⊥ is that of

the injective complexes, that is, of the injective objects of Ch(A). Recall that these are

precisely the split acyclic complexes which are termwise injective.

Remark 1.8. There is also the notion of a K-injective complex in the sense of

Spaltenstein (cf. [35], page 124). Recall that a complex Y ∈ Ch(A) is K -injective if and
only if the complex Hom(X,Y ) is acyclic for any acyclic complex X. As mentioned above, a

complex is dg-injective if and only if it is K -injective and termwise injective. Consequently,

many of Spaltenstein’s results in [35] can be reproved using the injective model structure
on Ch(A). For example, the fibrant replacement Y →QfY of Y ∈ Ch(A) is an injective

quasi-isomorphism such that QfY is dg-injective.

Under suitable assumptions on A, there is a projective version of the above results.
For our purposes, it will be sufficient to stick to the classical case that A = Mod(S) is

the category of left modules over a ring S. In this case, we write Ch(S) = Ch(Mod(S)).

According to [19], Theorem 2.3.11, there is a cofibrantly generated model structure on
Ch(S) for which the fibrations are the surjections and the weak equivalences are the quasi-

isomorphisms. This is called the projective model structure on Ch(S). We write Ch(S)Proj

for the corresponding model category. Its homotopy category is again equivalent to the
unbounded derived category D(S)∼=Ho(Ch(S)Proj) of Mod(S).

By [19], Proposition 2.3.9, the cofibrations are precisely the termwise split monomor-

phisms with cofibrant cokernel. It follows that the projective model structure on Ch(S) is
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compatible with the class P of all short exact sequences. By Theorem 1.1 it is related to
two functorially complete cotorsion pairs on Ch(S). Note that every object of Ch(S)Proj

is fibrant, that is, we have F =Ch(S)Proj
f =Ch(S). Moreover, the class T =Ch(S)Proj

t of

trivial objects is precisely that of the acyclic complexes. If we denote by C = Ch(S)Proj
c

the class of cofibrant objects, then we know from Theorem 1.1 that C = ⊥T . In other

words, a complex X is cofibrant if and only if Ext1Ch(S)(X,Y ) = 0 for any acyclic complex

Y. As in [11], Proposition 3.5, one shows that this condition is satisfied if and only if X
is a dg-projective complex, that is, X is termwise projective and the complex Hom(X,Y )

is acyclic for any acyclic complex Y.

Apart from the cotorsion pair (C,T ∩F) = (⊥T ,T ), there is also the cotorsion pair
(C ∩ T ,F) = (⊥T ∩ T ,Ch(S)). As in [11], Proposition 3.7, the class ⊥T ∩ T is that of

the projective complexes, that is, of the projective objects of Ch(S). Recall that these

are precisely the split acyclic complexes which are termwise projective. In Spaltenstein’s

terminology a complex is dg-projective if and only if it is K -projective and termwise
projective.

Finally, it is clear from the above that id : Ch(S)Proj � Ch(S)Inj : id is a Quillen

adjunction. Of course, it is even a Quillen equivalence because the classes of weak
equivalences coincide. For both the projective and the injective model structure on Ch(S),

the suspension Σ = L[−1] is the left derived functor of the shift functor [−1]. Likewise,

the loop functor Ω=R[1] is the right derived functor of the shift [1]. In a different setting,
an anologous result will be proven in Lemma 3.5 below.

2. Derived categories and relative homological algebra

Recall the following notions from relative homological algebra (cf. [8], §1). We continue

to denote by A an abelian category and fix a class P of objects of A. Given any object

P of A, we say that a morphism f : A → B in A is P-epic or a P-epimorphism if the
induced map

HomA(P,A)→HomA(P,B)

is surjective. Furthermore, we say that f is P-epic if it is P -epic for all P ∈P. A sequence

A
f−→ B

g−→ C is called P-exact if gf = 0 and if the induced sequence HomA(P,A) →
HomA(P,B)→HomA(P,C) of abelian groups is exact. The sequence A→B→C is called
P-exact if it is P -exact for all P ∈ P.

Definition 2.1. A projective class on A is a pair (P,E), where P is a class of objects

of A and E is a class of morphisms in A such that the following three conditions are

satisfied.

(i) E is the class of all P-epimorphisms.

(ii) P is the class of all objects P of A such that every morphism in E is P -epic.

(iii) For each object B in A, there is a morphism f : P →B in A with P ∈P and f ∈ E .
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Example 2.2. For any ring S, let P be the class of all projective S -modules and let E
be the class of all surjective S -linear maps. Then the pair (P,E) is a projective class on

A=Mod(S) called the standard projective class.

A P-resolution of an object B ∈ A is a P-exact sequence P• → B → 0 in A such that
Pn ∈ P for all n ≥ 0. Given another object C ∈ A the group of relative extensions of C

and B are defined by

ExtnP(B,C) =HnHomA(P•,C) for all n≥ 0. (7)

Up to isomorphism, they are independent of the chosen P-resolution of B and any short
P-exact sequence 0 → B′ → B → B′′ → 0 gives rise to a long exact sequence between

relative extension groups, as usual.

Remark 2.3. In spite of the notational similarities, the relative extension groups in (7)
are not to be confused with those defining cotorsion pairs. In fact, we shall see in examples

below that short P-exact sequences are generally not exact in the usual sense and hence

do not belong to any proper class of short exact sequences in A.

Suppose now that we have an adjunction F : B � A : U between abelian categories.

Moreover, assume that (P ′,E ′) is a projective class on B. Recall that a retract of an

object B ∈ A is an object A ∈ A admitting a right invertible morphism B → A. Since A
is abelian, this is equivalent to A being isomorphic to a direct summand of B. We define
the pullback of the pair (P ′,E ′) along U to be the pair (P,E), where

• P = {retracts of FP | P ∈ P ′} and
• E = {f :B → C | Uf ∈ E ′}.

The proof of the following result is straightforward and left to the reader.

Lemma 2.4. With the above notation, the pullback (P,E) is a projective class on A.

Moreover, a sequence A→B → C in A is P-exact if and only if it is a complex and the

sequence UA→ UB → UC in B is P ′-exact. �

For the rest of this article, we fix a field k of positive characteristic p and denote by G a

topological group admitting an open subgroup I which is pro-p. Let Rep∞k (G) denote the

category of smooth k -linear representations of G, that is, of k -vector spaces endowed with

a k -linear action of G such that the stabilizer of any vector is open in G. Its morphisms are
the k -linear and G-equivariant maps. Given V ,W ∈Rep∞k (G), we will write HomG(V ,W )

for the set of morphisms from V to W in Rep∞k (G). We explicitly allow G to be discrete.

In this case, the category Rep∞k (G) = Mod(k[G]) is that of all k -linear representations
of G.

Given V ∈ Rep∞k (I), we denote by indGI (V ) ∈ Rep∞k (G) the compact induction of V

from I to G, that is, the k -vector space of all compactly supported maps f : G → V
satisfying f(gi) = i−1f(g) for all i ∈ I and g ∈ G. The G-action on indGI (V ) is given by

(gf)(g′) = f(g−1g′) for all g,g′ ∈ G. We endow k with the trivial action of I and set

X= indGI (k) ∈ Rep∞k (G).
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Setting H = EndG(X)op, Frobenius reciprocity shows that we have adjoint functors

F : Mod(H) � Rep∞k (G) : U (8)

given by FM = X⊗H M and UV = V I ∼= HomG(X,V ). Since k has characteristic p, the

functor U has the property that UV �= 0 for all 0 �= V ∈Rep∞k (G) (cf. [34], Lemma 1 (v)).
Since U is also left exact, it reflects monomorphisms.

For V ∈ Rep∞k (G), the counit of the adjunction (8) is the G-equivariant map

εV : FUV = X⊗H V I → V , 1gI ⊗v 	→ gv, (9)

where 1gI denotes the characteristic function of the coset gI. Moreover, given M ∈
Mod(H), the unit ηM is the H -linear map

ηM :M → UFM = (X⊗H M)I, m 	→ 1I ⊗m. (10)

Lemma 2.5. For any projective H-module P the unit ηP is an isomorphism.

Proof. It is immediate that ηH is an isomorphism. Since U and F are additive functors

and preserve arbitrary direct sums, ηP is an isomorphism for any projective H -module P.

As seen in Example 2.2, we have the standard projective class (P ′,E ′) on Mod(H),
where P ′ is the class of all projective H -modules and E ′ is the class of all surjective

H -linear maps.

Definition 2.6. We define the I-projective class on Rep∞k (G) to be the pullback (P,E)
of the standard projective class (P ′,E ′) along U. Explicitly,

(i) V ∈P if and only if there is a split surjection FP → V for some projective H -module

P and

(ii) f : V →W is in E if and only if Uf : UV → UW is surjective.

We say that V ∈Rep∞k (G) is I-projective if V ∈P and that aG-equivariant map f :V →W
is an I-epimorphism if f ∈ E . Furthermore, we say that V ∈Rep∞k (G) is I-free if V ∼= FY

for some free H -module Y. These are precisely the G-representations isomorphic to direct

sums of copies of X. A sequence V1 → V2 → V3 in Rep∞k (G) is called I-exact if it is P-exact,
that is, if it is a complex and UV1 → UV2 → UV3 is an exact sequence of H -modules (cf.

Lemma 2.4). In this context, P-resolutions will also be called I-resolutions. Finally, we say

that V ∈ Rep∞k (G) is generated by its I-invariants if V = k[G] ·V I = k[G] ·UV inside V.
Since k[G] ·UV = im(εV ), this is true if and only if the counit εV :FUV → V is surjective.

Lemma 2.7. Let V1
f→ V2

g→ V3 be an I-exact sequence in Rep∞k (G). Then im(Uf) =

U im(f) = U ker(g) = ker(Ug).

Proof. Since im(f) ⊆ ker(g) and the right adjoint U commutes with kernels, the

I -exactness gives ker(Ug) = im(Uf)⊆ U im(f)⊆ U ker(g) = ker(Ug).

We use the unit ηH to identify H
∼=−→ UFH ∼= XI as (H,H)-bimodules. Explicitly, this

map is given by h 	→ 1I ·h. The terminology in Definition 2.6 is justified by the following

result.
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16 N. Dupré and J. Kohlhaase

Lemma 2.8. For V ∈ Rep∞k (G), the following are equivalent.

(i) V is I-projective.

(ii) V is a direct summand of an I-free G-representation.

(iii) UV is a projective H-module and V is generated by its I-invariants.

Under these conditions, the counit εV : FUV → V is an isomorphism.

Proof. If V is I -projective, then by definition V is a direct summand of FP for some

projective H -module P. Since P is a direct summand of a free H -module, it follows that

FP and hence V are direct summands of an I -free representation. That (ii) implies (iii)
follows from Lemma 2.5 and because the property of being generated by I -invariants is

stable under quotients.

Finally, if UV is projective, then FUV is I -projective by definition. By Lemma 2.5,
the unit ηUV is an isomorphism. It always has the splitting UεV . Thus, we see that

the counit FUV → V induces an isomorphism on I -invariants. Since the functor U

reflects monomorphisms, it follows that FUV → V is injective with image equal to the
subrepresentation of V generated by UV . This shows that (iii) implies (i) and that in

this case the counit is an isomorphism.

Corollary 2.9. The functors F and U induce inverse equivalences of categories between

the full subcategories of projective H-modules and of I-projective G-representations,

respectively.

Proof. Let V ∈ Rep∞k (G) be I -projective, and let P ∈ Mod(H) be projective. By

definition, FP is I -projective. Moreover, UV = V I is projective by Lemma 2.8. Thus,

the two functors give a well-defined adjunction between the two full subcategories. Since
the unit ηP and the counit εV are isomorphisms by Lemma 2.5 and Lemma 2.8, the

statement follows.

Given V ∈Rep∞k (G), Lemma 2.4 guarantees the existence of an I -epimorphism W → V ,

where W is I -projective. This can be constructed in both an explicit and functorial
way by considering the H -linear surjection H ⊗k UV → UV . Applying the functor F =

X⊗H (·) and composing with the counit εV gives the functorial G-equivariant map X⊗k

UV → V . Here, the left-hand side is even I -free. Moreover, on I -invariants, we get back

the surjection H ⊗k UV → UV we started with. Thus, the map X⊗k UV → V is an I -
epimorphism. Its image is the G-subrepresentation of V generated by UV = V I . Iterating

this process with the kernel of X⊗k UV → V , we see that any representation admits a

functorial I -resolution.
Let (P,E) be a projective class on an abelian category A. As in [8], Definition 2.1, there

is a candidate for an associated model structure on the category Ch(A) of unbounded

chain complexes over A. If this model structure is well defined, we will call it the
P-projective model structure. For the I -projective class on Rep∞k (G), the definition is

as follows. For ease of notation, we set Ch(G) = Ch(Rep∞k (G)) and write HomG(V•,W•)
for the set of morphisms in this category.
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Definition 2.10. A map f : V• →W• in Ch(G) is an I-equivalence if the induced map

HomG(P,V•) → HomG(P,W•) is a quasi-isomorphism of complexes of abelian groups

for any I -projective P. Similarly, f is an I-fibration if HomG(P,V•) → HomG(P,W•) is
an epimorphism of complexes of abelian groups for any I -projective P. Finally, f is an

I-cofibration if f has the left lifting property with respect to all I -trivial fibrations, that

is, with respect to all maps that are both I -fibrations and I -equivalences.

Note that the adjunction F : Mod(H) � Rep∞k (G) : U extends to an adjunction F :

Ch(H)�Ch(G) :U between the respective categories of complexes by working termwise.

Lemma 2.11. A map f : V• →W• in Ch(G) is an I-equivalence (resp. an I-fibration) if
and only if Uf : UV• → UW• is a quasi-isomorphism (resp. an epimorphism).

Proof. Since U ∼= HomG(X,·) and since X is I -projective it follows that Uf is a

quasi-isomorphism for every I -equivalence f. Conversely, for any indexing set J , we

have an isomorphism of functors HomG(X⊕J ,·) ∼=
∏

J HomG(X,·) and taking homology
of complexes commutes with direct products. It follows that if Uf = HomG(X,f) is

a quasi-isomorphism (resp. an epimorphism), then so is HomG(V ,f) for any I -free

representation V. By taking direct summands, the same holds for any I -projective V
(cf. Lemma 2.8 (ii)).

Our first aim is to show that Definition 2.10 indeed gives a model structure on Ch(G)
whose weak equivalences (resp. cofibrations, resp. fibrations) are the I -equivalences (resp.

I -cofibrations, resp. I -fibrations). To this end, we apply the following result of Christensen

and Hovey (cf. [8], Theorem 5.1).

Theorem 2.12 (Christensen–Hovey). Let A be a bicomplete abelian category all of whose

objects are small, and let (P,E) be a projective class on A. Suppose that P is determined

by a set, that is, that there is a set S of objects of P such that E is precisely the class

of S-epimorphisms. Then the P-projective model structure on Ch(A) is well defined and
cofibrantly generated.

As an application, we obtain the following result.

Proposition 2.13. There is a cofibrantly generated model structure on Ch(G) where the
fibrations are the chain maps with surjective I-invariants and the weak equivalences are

the chain maps whose I-invariants are quasi-isomorphisms.

Proof. In view of Lemma 2.11, we just need to check that the hypotheses in Theorem
2.12 are satisfied. Note that Rep∞k (G) is a Grothendieck category by [34], Lemma 1, and

so all of its objects are small by [20], Proposition A.2. Since E is precisely the class of

morphisms which are X-epimorphisms, the projective class (P,E) is determined by the
singleton {X}.
We will call the above model structure on Ch(G) the I-projective model structure. Its

existence can also be deduced from the general results in the previous section. From

Lemma 2.11, we see that the I -projective model structure on Ch(G) is the right transfer

of the projective model structure on Ch(H). Instead of Theorem 2.12, we could thus
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have referred to Theorem 1.2 and Proposition 1.4 by constructing suitable path objects
in Ch(G).

Proposition 2.14. The adjoint functors F : Ch(H) � Ch(G) : U given by FM• =
X⊗H M• and UV• = V I

• form a Quillen equivalence with respect to the I-projective model

structure on Ch(G) and the projective model structure on Ch(H). In particular, the

derived adjunction

LF :D(H) � Ho(Ch(G)) :RU

is an equivalence between the unbounded derived category of Mod(H) and the homotopy

category of the I-projective model structure on Ch(G).

Proof. As we observed above, the I -projective model structure on Ch(G) is the right

transfer of the projective model structure on Ch(H). By Lemma 1.6, it suffices to see
that the unit ηX• is a weak equivalence at all cofibrant (i.e. dg-projective) X• ∈ Ch(H).

Since X• is cofibrant, it is termwise projective (cf. [19], Lemma 2.3.6). Thus, it follows

from Lemma 2.5 that ηX• is an isomorphism and hence a weak equivalence as required.
For the final statement, see [19], Proposition 1.3.13.

In order to compute the left derived functor LF in Proposition 2.14, let M• ∈ Ch(H)

and let Q• be any dg-projective complex of H -modules which is quasi-isomorphic to M•.
Then LFM• ∼= X⊗H Q• in Ho(Ch(G)) for the I -projective model structure on Ch(G).

To compute the right derived functor RU , let V• ∈ Ch(G). Since every object of Ch(G)
is fibrant for the I -projective model structure we have RUV• ∼= UV• in D(H).

The results in Proposition 2.14 admit important improvements. To see this, we start

with the following characterization of the I -cofibrant objects in Ch(G). Using [8],
Proposition 2.5, this gives a description of the I -cofibrations in general. Note that even

if a Quillen adjunction F : C � D : U is a Quillen equivalence the right adjoint U will

generally not preserve cofibrant objects. The adjunction id : Ch(S)Proj � Ch(S)Inj : id
gives an easy example. However, our situation is much more special.

Lemma 2.15. For an object V• of Ch(G), the following are equivalent.

(i) V• is I-cofibrant.

(ii) V• is termwise generated by its I-invariants, and the complex UV• in Ch(H) is
cofibrant in the projective model structure, that is, dg-projective.

If these conditions are satisfied, then the counit εV• : FUV• → V• is an isomorphism in

Ch(G).

Proof. Let us put Y = V• and denote by qUY : QUY → UY the cofibrant replacement

of UY = V I
• . The adjoint morphism εY FqUY : FQUY → Y is an I -equivalence by

Proposition 2.14. We claim it is a trivial I -fibration. To see this, we need to check that
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we get a trivial fibration in Ch(H) if we apply the functor U. Consider the commutative

diagram

UFQUY
UFqUY �� UFUY

UεY �� UY.

QUY

ηQUY

��

qUY

�� UY

ηUY

��

idUY

��������������
.

As seen in the proof of Proposition 2.14, the left vertical arrow is an isomorphism because

QUY is cofibrant. Since qUY is a trivial fibration, the claim follows.

Assuming that Y is I -cofibrant it follows that the map FQUY → Y splits. Thus, Y is a

direct summand of FQUY and UY is a direct summand of UFQUY ∼=QUY . This implies
that UY is a cofibrant object of Ch(H), that is, is dg-projective. Moreover, Lemma 2.8

shows that FQUY is termwise I -projective. The same is then true of its direct summand

Y. In particular, Y is termwise generated by its I -invariants.
Conversely, assume that Y satisfies the conditions in (ii). Then UY is dg-projective and

hence is termwise projective. It follows from Lemma 2.8 that Y is termwise I -projective

and that the counit εY : FUY → Y is an isomorphism. Since FUY is I -cofibrant by
definition of a left Quillen functor it follows that Y ∼= FUY is I -cofibrant.

We obtain the following significant strengthening of Proposition 2.14. It says that the
functors F and U restrict to equivalences between the cofibrant-fibrant objects even

before dividing out the homotopy relation. Note that in the situation of Proposition 2.14

all objects are fibrant. We may therefore work with the respective classes of cofibrant
objects.

Corollary 2.16. Endow Ch(H) with the projective model structure and Ch(G) with the

I-projective model structure of Proposition 2.13. The functors U = (·)I and F = X⊗H (·)
restrict to inverse equivalences of categories Ch(G)c � Ch(H)c.

Proof. If Y ∈ Ch(G) is I -cofibrant, then UY is cofibrant in Ch(H) by Lemma 2.15. If

Z ∈Ch(H) is cofibrant then FZ is I -cofibrant by definition of a left Quillen functor. The
counit εY : FUY → Y is an isomorphism by Lemma 2.15, and the unit ηZ : Z → UFZ is

an isomorphism by the proof of Proposition 2.14.

For complexes concentrated in degree zero, this reflects the fact that F and U restrict

to inverse equivalences between the category of projective H -modules and the category of

I -projective G-representations, respectively (cf. Corollary 2.9). Given V ,W ∈ Rep∞k (G),
we denote by ExtnG,I(V ,W ) the relative extension groups defined in (7) formed with

respect to the I -projective class in Definition 2.6. The following result is a formal

consequence of Proposition 2.14.

Corollary 2.17. If V ,W ∈Rep∞k (G), then there are functorial bijections ExtnG,I(V ,W )∼=
ExtnH(UV ,UW ) for all n≥ 0.
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Proof. Denote by D = Ho(Ch(G)) the homotopy category of Ch(G) endowed with the

I -projective model structure. By Proposition 2.14 and [8], Corollary 2.14, we have

ExtnG,I(V ,W )∼=HomD(V ,W [−n])∼=HomD(H)(UV ,UW [−n])

∼= ExtnH(UV ,UW )

functorially in V and W for all n≥ 0.

The existence of the I -cofibrant replacement shows that if V• ∈ Ch(G), then there is a

trivial I -fibration f :Q• → V• where Q• is I -cofibrant. By Lemma 2.11 and Lemma 2.15,
this means that Uf :UQ• →UV• is a surjective quasi-isomorphism where UQ• ∈Ch(H) is

dg-projective. It will be useful to have the following slight variant of this fact generalizing

the existence of enough I -projectives in Rep∞k (G) discussed earlier.

Lemma 2.18. For any V• ∈Ch(G), there is an I-fibration f :Q• → V• such that UQ• ∈
Ch(H) is a projective complex.

Proof. By Lemma 1.7 (ii), there is a surjection g :P• →UV• in Ch(H) where P• ∈Ch(H)
is projective. Setting Q• = FP• ∈ Ch(G), the unit of the adjunction ηP• : P• → UQ• =

UFP• is an isomorphism by Lemma 2.5. Therefore, UQ• ∈Ch(H) is projective. Moreover,

the map

f :Q• = FP•
Fg−→ FUV•

εV•−→ V•

is an I -fibration by Lemma 2.11 because UfηP• = UεV•UFgηP• = g is surjective.

Remark 2.19. The above result can also be deduced from the axioms of a model category
directly. Indeed, for any V• ∈ Ch(G), we can factorize the map 0 → V• into a trivial

I -cofibration followed by an I -fibration, that is, there is an I -fibration f :Q• → V•, where
Q• ∈Ch(G) is trivially cofibrant. By Lemma 2.15, this implies that UQ• ∈Ch(H) is both
cofibrant (i.e. dg-projective) and trivial (i.e. exact) hence is projective.

For the sake of completeness, we note that it is also possible to start with a model

structure on Ch(G) and apply a left transfer construction to get a model structure on

Ch(H). However, in general it does not make sense to talk about a projective model

structure on Ch(G) unless G is discrete.

Remark 2.20. Let G be a nondiscrete profinite group admitting an open subgroup which
is pro-p. If k is a field of characteristic p, then the only projective object of Rep∞k (G) is

the zero object.

Proof. Let U ′′ � U ′ be open pro-p subgroups of G such that U ′′ is normal in U ′. Note

first that the space of U ′-invariants of indU
′

U ′′(k) = k[U ′/U ′′] is spanned by
∑

u∈U ′/U ′′ u.

This maps to zero in indU
′

U ′′(k)U ′ because p divides (U ′ : U ′′) and k has characteristic

p. It follows that the canonical map indU
′

U ′′(W )U
′ → indU

′

U ′′(W )U ′ is zero for any trivial
U ′′-representation W.

Now, assume that P ∈ Rep∞k (G) is a projective object and that U ′ is an open pro-p

subgroup of G. The restriction functor Rep∞k (G)→Rep∞k (U ′) preserves projective objects
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because it admits the exact right adjoint IndGU ′ = indGU ′ . Since G is nondiscrete there is

an open normal subgroup U ′′ � U ′. Consider the surjection indU
′

U ′′(PU ′)→ PU ′ . Since P

is projective, the canonical map P → PU ′ lifts to a map P → indU
′

U ′′(PU ′). Therefore, the

canonical map PU ′ → PU ′ factors through indU
′

U ′′(PU ′)U
′ → indU

′

U ′′(PU ′)U ′ → PU ′ , hence

is zero as seen above. This also applies to U ′′ ⊆ U ′ so that the map PU ′′ → PU ′′ → PU ′

is zero. Letting U ′′ ⊆ U ′ vary, we obtain that the canonical map P =
⋃

U ′′ PU ′′ → PU ′ is

zero.

Now, fix an open pro-p subgroup U of G. Letting U ′′ run through the open normal

subgroups of U the canonical surjection V =
⊕

U ′′ PU ′′ → P splits. For any open normal
subgroup U ′ ⊆ U and any W ∈ Rep∞k (U), we let W (U ′) = ker(W →WU ′). Since U ′ acts
trivially on PU ′

, we have (PU ′
)(U ′) = 0. Thus, V (U ′) =

⊕
U ′′(PU ′′

)(U ′)⊆
⊕

U ′′ �=U ′ PU ′′
.

As seen above, we have P = P (U ′) for any open normal subgroup U ′ of U and hence
P ⊆

⋂
U ′ V (U ′) = 0.

Instead, we consider the injective model structure on Ch(G) introduced in §1 and show

that it admits a left transfer to Ch(H) in the following sense.

Proposition 2.21. There is a model structure on Ch(H) where the cofibrations are the

maps g such that Fg is a monomorphism and the weak equivalences are the maps g such
that Fg is a quasi-isomorphism. The fibrations are the maps satisfying the right lifting

property with respect to all trivial cofibrations.

In analogy to the right transfer, the left transfer has an apparent ambiguity concerning

the notion of a trivial fibration. This could either be a morphism satisfying the right lifting
property with respect to all cofibrations or it could be a fibration which is also a weak

equivalence. We need to see that these two classes of morphisms coincide. To distinguish

them, we call a map f in Ch(H) coanodyne if it satisfies the right lifting property with

respect to all cofibrations in the sense of Proposition 2.21.

Remark 2.22. Note that any coanodyne map f :X→Y in Ch(H) is a split epimorphism.
Indeed, the map 0→ Y is a cofibration for the left transfer. By applying the right lifting

property to

0 X

Y Y ,

f

id

we obtain the desired splitting.

If the left transfer is a model structure, then the coanodyne morphisms are precisely the

fibrations which are also weak equivalences. Moreover, one needs to show that functorial

factorizations exist. In general, this involves serious set-theoretic issues. However, the
following result shows that under certain assumptions on the categories these problems

are easy to solve (cf. [2], Theorem 2.23).

Theorem 2.23. Suppose we have an adjunction F : C �D :U between locally presentable

categories where D carries a cofibrantly generated model structure. Then the left transfer
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to C exists if and only if Ff is a weak equivalence in D for every coanodyne morphism f
in C.

We note that together with Mod(H) and Rep∞k (G) also the categories Ch(H) and

Ch(G) are Grothendieck categories (cf. Lemma 1.7) and hence are locally presentable (cf.
[4], Proposition 3.10).

Proposition 2.24. If f• : P• → Q• is a coanodyne map in Ch(H), then the complexes

K• = ker(f•) and FK• = X⊗H K• are contractible.

Proof. Let T• be the mapping cone of idK• defined by Tn =Kn⊕Kn−1 with differential

d(x,y) = (dx+ y,− dy). Consider the canonical map ι• :K• → T• given by ι(x) = (x,0).

Since this is a termwise split injection so is Fι•. In particular, Fι• is a cofibration and
so is ι• by definition of the left transfer. Since f• is coanodyne, we may apply the right

lifting property to the square

K• P•

T• Q•

ι• f•

0

g•

and obtain a map g• : T• → P• making the two triangles commute. This implies f•g• = 0

whence g• has image in K•. We may therefore view g• as a map T• → K• with the

property that g•ι• = idK• . For any n ∈ Z, this allows us to write gn(x,y) = x+ sny for

some H -linear map sn :Kn−1 →Kn. Let x ∈Kn+1 and y ∈Kn. Since g• is a chain map,
we have

dn+1x+y−sndny = gn(dn+1x+y,−dny)

= gndn+1(x,y)

= dngn+1(x,y)

= dn+1x+dnsn+1y

and hence y= sndny+dnsn+1y. Thus, s• defines a chain homotopy between the zero map

and the identity map on K•. By functoriality, Fs• is then a chain homotopy between the

zero map and the identity on FK•.

Remark 2.25. We note that the proof of Proposition 2.24 implies that coanodyne maps

in Ch(H) are quasi-isomorphisms.

Proof of Proposition 2.21. By Theorem 2.23, we just need to check that if f• :P• →Q•
is a coanodyne map in Ch(H), then Ff• is a quasi-isomorphism in Ch(G). To see this,

let K• = ker(f•). By Remark 2.22 the map f• is a split epimorphism. Therefore, also Ff•
is a split epimorphism and we have ker(Ff•) = F ker(f•) = FK•. Since FK• is acyclic

(cf. Proposition 2.24), the long exact homology sequence shows that Ff• is a quasi-
isomorphism.

The model structure on Ch(H) constructed in Proposition 2.21 will be called the G-

injective model structure. It makes F : Ch(H)�Ch(G) :U a Quillen adjunction. We hope

to give an in-depth study of this adjunction elsewhere.
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3. Gorenstein projective model structures

Let A be an abelian category with enough projectives. An object A ∈ A is called
Gorenstein projective if there is an acyclic complex

Y = · · · −→ Y1
d1−→ Y0

d0−→ Y−1 −→ ·· ·

of projective objects of A for which A = Z0Y = B0Y and which remains exact upon

applying HomA(·,P ) for any projective object P of A.

A ring S is called Gorenstein if it is both left and right noetherian and if it has finite

injective dimension both as a left and as a right S -module. In this case, the left and
right selfinjective dimensions of S coincide (cf. [9], Proposition 9.1.8). If n denotes their

common value, then S is called an n-Gorenstein ring.

If S is an n-Gorenstein ring, then an S -module M has finite projective dimension if
and only if it has finite injective dimension. In this case, both dimensions are bounded

above by n (cf. [9], Theorem 9.1.10). Moreover, M is Gorenstein projective as an object

of Mod(S) if and only if ExtiS(M,P ) = 0 for all i ≥ 1 and all projective S -modules P
(cf. [9], Corollary 11.5.3). This is true if and only if ExtiS(M,P ) = 0 for all i≥ 1 and all

modules P of finite projective dimension.

Remark 3.1. If S is an n-Gorenstein ring, then an S -module M is Gorenstein projective
if and only if M = Z0Y for an acyclic complex Y ∈ Ch(S) of projective S -modules.

Indeed, for any projective S -module P we then have ExtiS(M,P ) = ExtiS(Z0Y ,P ) =

Exti+n
S (Z−nY ,P ) = 0 for any i > 0 because P has injective dimension at most n. The

same argument shows that all cycles of Y are Gorenstein projective. That the complex

Y remains acyclic upon applying HomS(·,P ) is then automatic. To see this, one simply

applies HomS(·,P ) to the short exact sequences 0 → ZjY → Yj → Zj−1Y → 0 for any

j ∈ Z.

The following fundamental theorem is due to Hovey (cf. [21], Theorem 8.6).

Theorem 3.2 (Hovey). Let S be a Gorenstein ring. On Mod(S), there is a cofibrantly
generated model structure for which

• The cofibrations are the monomorphisms with Gorenstein projective cokernel,
• The fibrations are the epimorphisms,
• The trivial objects are the modules of finite projective dimension.

We call this the Gorenstein projective model structure on Mod(S). The class C (resp. F ,

resp. T ) of cofibrant (resp. fibrant, resp. trivial) objects is that of Gorenstein projective

modules (resp. all modules, resp. modules of finite projective dimension). By [21],
Corollary 8.5, the class C ∩ T is that of projective S -modules. The subcategory T of

Mod(S) is thick and both (C ∩T ,F) and (C,F ∩T ) are functorially complete cotorsion

pairs. Letting P denote the class of all short exact sequences in Mod(S) the Gorenstein
projective model structure on Mod(S) is obtained from these data as in Theorem 1.1 (ii).

Since all objects are fibrant and since the class of Gorenstein projective modules is closed

under kernels of epimorphisms, the Gorenstein projective model structure on Mod(S) is
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abelian and hereditary. In particular, it is stable which is also proven directly in [21],

Theorem 9.3.

Assume that S is Gorenstein. Given an S -module M the cofibrant replacement functor
Q for the Gorenstein projective model structure on Mod(S) gives a functorial exact

sequence

0−→KM −→QM −→M −→ 0

in which QM is Gorenstein projective and KM has finite projective dimension. Let us

recall from [9], Theorem 11.5.1, or [39], Theorem 3.5, how to construct such an exact
sequence at least nonfunctorially.

Denote by n the self-injective dimension of S. One first chooses a projective resolution

Q• → M → 0 of M and sets G = coker(Qn+1 → Qn). Then G is Gorenstein projective
by [9], Theorem 10.2.14. By definition, G admits a complete projective resolution P• as

above. By shifting, we see that also N = im(P−n → P−n−1) = ker(P−n−1 → P−n−2) is

Gorenstein projective. Moreover, the exact sequence 0→G→ P−1 → ·· ·→ P−n →N → 0

is HomS(·,Q)-acyclic for any projective S -module Q. Therefore, we can inductively choose
S -linear maps Pi →Qn+i to obtain a commutative diagram

0 �� G �� P−1
��

��

· · · �� P−n
��

��

N ��

��

0

0 �� G �� Qn−1
�� · · · �� Q0

�� M �� 0.

The mapping cone of the vertical homomorphism yields an exact sequence 0 → P−1 →
P−2⊕Qn−1 →·· ·→P−n⊕Q1 →N⊕Q0 →M → 0. Here, N⊕Q0 is Gorenstein projective
and the kernel of the epimorphism to M has projective dimension at most n−1.

Remark 3.3. Denote by Proj(S) and GProj(S) the full subcategory of Mod(S)

consisting of all projective and all Gorenstein projective S -modules, respectively. The

results of [21], Proposition 9.1 and Proposition 9.2, show that the homotopy category
Ho(Mod(S)) can be viewed as the full subcategory GProj(S)/Proj(S) of the stable module

category Mod(S)/Proj(S) of S consisting of all Gorenstein projective modules.

We point out that Theorem 3.2 admits a variant which is based on the dual notion

of a Gorenstein injective module (cf. [21], Theorem 8.4). The corresponding homotopy
category is equivalent to the quotient GInj(S)/Inj(S) of the category GInj(S) of

Gorenstein injective modules by the category Inj(S) of injective S -modules (cf. [21],

Proposition 9.1 and Proposition 9.2). It was shown by Krause in [24], Proposition 7.13,
that the latter is equivalent to the singularity category Kac(Inj(S)) of S, that is, to the

category of acyclic complexes of injective S -modules up to chain homotopy. From the

model categorical point of view this was taken up by Becker in [3] who again treats
the projective and the injective situation simultaneously. We point out that results of

this form have their origin in the seminal but unpublished work [5] of Buchweitz. We

refer to the end of [24], §7, for a more comprehensive list of historical remarks.
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Theorem 3.4 (Becker).

(i) For any ring S, there is a cofibrantly generated model structure on Ch(S) for

which
• The cofibrations are the monomorphisms with acyclic and termwise projective

cokernel,
• The fibrations are the epimorphisms,
• The trivial objects are the complexes Y satisfying Ext1Ch(S)(X,Y ) = 0 for all

termwise projective acyclic complexes X.
Its homotopy category is equivalent to the category Kac(Proj(S)) of acyclic

complexes of projective S-modules up to chain homotopy.

(ii) If S is a Gorenstein ring, then the adjoint functors

Q0 : Ch(S) � Mod(S) : ι0

defined in (6) form a Quillen equivalence for the model structure on Ch(S) as in

(i) and the Gorenstein projective model structure on Mod(S).

Proof. Part (i) is [3], Proposition 2.2.1 (1), which is applied as in [3], §3. The description of

the corresponding homotopy category follows from [3], Proposition 2.2.1 (1) and Example
1.4.7. The main point is that the right homotopy relation between cofibrant objects is

the usual chain homotopy of complexes. To see this, note that the trivially cofibrant

objects are the projective complexes as is shown in the proof of [3], Proposition 2.2.1 (1).
Therefore, one can argue as in [21], Proposition 9.1. Finally, part (ii) is [3], Proposition

3.1.3.

We call this the singular projective model structure on Ch(S). Its existence can also be

deduced from the general result [10], Theorem 7.2.15, of Enochs and Jenda. The class C
(resp. F) of cofibrant (resp. fibrant) objects consists of the acyclic and termwise projective
(resp. all) complexes. The class T of trivial objects is given by the condition T = C⊥ as in

Theorem 3.4 (i). The singular projective model structure is obtained from C, F and T as

in Theorem 1.1 (ii) where we let P denote the class of all short exact sequences in Ch(S).
Again, this is an abelian hereditary model structure and the associated model category is

stable (cf. [3], Corollary 1.1.15). The loop and suspension functors can be made explicit

as follows.

Lemma 3.5. The adjunction [−1] : Ch(S) � Ch(S) : [1] is a Quillen equivalence for the

singular projective model structure on Ch(S). The left derived functor of [−1] coincides

with the suspension functor Σ and the right derived functor of [1] coincides with the loop
functor Ω.

Proof. There are isomorphisms Ext1Ch(S)(X[−1],Y ) ∼= Ext1Ch(S)(X,Y [1]) and

Ext1Ch(S)(X[1],Y ) ∼= Ext1Ch(S)(X,Y [−1]) for all X,Y ∈ Ch(S). This implies that both
functors preserve the class of trivial objects. By exactness, they preserve all weak

equivalences. Since they are inverse to each other, this implies that they form a Quillen

equivalence in both directions.
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In order to compute the suspension functor, let X ∈ Ch(S) be cofibrant and factorize

X → 0 into a cofibration followed by a trivial fibration. This gives an exact sequence

0→X → Y → Z → 0 where Y is trivial and Z is cofibrant. Then Z is the suspension of
X in Ho(Ch(S)). Since Z is termwise projective, the above sequence is termwise split. As

usual, we obtain a map of complexes Z →X[−1] which is unique up to chain homotopy.

However, together with X also Y is cofibrant sinceX → Y is a cofibration. As remarked in
the proof of Theorem 3.4, this implies that Y is a projective complex, hence is contractible.

It follows that the map Z →X[−1] is a homotopy equivalence in the usual sense of chain

complexes. As remarked earlier, this implies that Z→X[−1] is a weak equivalence because
Z and X[−1] are cofibrant. This implies L[−1]∼=Σ. That R[1]∼=Ω follows formally from

the uniqueness of adjoints.

Note that if S is a Gorenstein ring, then the Gorenstein projective model structure on

Mod(S) is Quillen equivalent to its Gorenstein injective counterpart (cf. [21], page 583).

It follows from the results of Becker that the corresponding homotopy category is also
equivalent to the category Kac(Inj(S)) of complexes of injective S -modules up to chain

homotopy (cf. [3], Proposition 2.2.1 (2) and Proposition 3.1.5).

By a result of Krause, the full subcategory of compact objects of Kac(Inj(S)) is
equivalent to the quotient of the bounded derived category Db(noeth(S)) of noetherian S -

modules by the subcategory of perfect complexes (cf. [24], Corollary 5.4 and [36], 07LT).

Quotients of this form are usually called singularity categories in algebraic geometry.
This is where the name for the above model structure derives from. We would also like

to emphasize that the results of [3] and [24] are much more precise in the sense that they

are derived from the existence of various recollements between triangulated categories.

4. The right transfer to smooth G-representations

We continue to denote by k a field of characteristic p and by G a topological group
admitting an open subgroup I which is pro-p. We wish to apply the results of §3 to the

ring S =H = EndG(X)op. In the following, we will therefore often make the assumption

that the ring H is Gorenstein.

Example 4.1. The ring H is Gorenstein in the following situations.

(i) Let G be a finite group with a split BN -pair of characteristic p. Recall that then

B admits a normal p-Sylow subgroup U such that B = U �T with T = B ∩N .
Setting I = U and endowing G with the discrete topology the Hecke algebra H

is a Frobenius algebra by a result of Tinberg (cf. [38], Proposition 3.7). In this

case, H is even self-injective. As an example one may take the group G = G(K)

of rational points of a split connected reductive group G over a finite field K of
characteristic p and I = U the group of rational points of the unipotent radical of

a Borel subgroup of G.

(ii) Let G(K) denote the group of rational points of a split connected reductive group G
over a non-Archimedean local field K of residue characteristic p. The group G(K)

carries a natural locally profinite topology. Denote by X the semisimple Bruhat–

Tits building of G(K), by C a chamber of X and by σ a facet of X contained in the
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closure of C. Denote by Pσ the parahoric subgroup of σ and by IC the pro-p radical
of PC . Both of them are compact open subgroups of G(K) and we have IC ⊆ Pσ.

If G = Pσ and if I = IC , then the ring H is isomorphic to the Hecke algebra of a

finite group with a split BN -pair of characteristic p as in (i). Therefore, H is a
Frobenius algebra and hence is self-injective.

(iii) We keep the notation of (ii). If P †
σ denotes the stabilizer of σ in X then P †

σ is

an open subgroup of G(K) containing Pσ. If G = P †
σ and if I = IC , then H is a

Gorenstein ring by a result of Ollivier and Schneider (cf. [28], Proposition 5.5). Its
self-injective dimension is equal to the rank of the center of G.

(iv) We keep the notation of (ii). If G = G(K) and if I = IC , then H is a Gorenstein

ring by a result of Ollivier and Schneider (cf. [28], Theorem 0.1). Its self-injective

dimension is bounded above by the rank of G.

In all of the above examples, the characteristic of k may in fact be arbitrary. However,

we will continue to assume that k is of characteristic p. In the situation of Example 4.1
(iv), the group I = IC is a called a pro-p Iwahori subgroup of G=G(K) and H is called the

corresponding pro-p Iwahori-Hecke algebra over k. Since this is the motivating example

for our work, we decided to stick to this terminology in general.

Remark 4.2. If the Gorenstein ring H has finite global dimension, then all H -modules

have finite projective dimension and Ho(Mod(H)) = 0. In the above examples, this
happens only in exceptional cases. In the situation of Example 4.1 (iv) for instance,

the global dimension of H was studied in [28], §7. If the semisimple rank of G is positive

and if the residue class field of K is not F2, then the global dimension of H is infinite
(cf. [28], Corollary 7.2 and Lemma 7.3). Moreover, the supersingular H -modules tend to

have infinite projective dimension (cf. [23], §1, for a more precise result).

For the following result, recall that we denote by B0 the 0-th boundary functor

introduced in §1.

Proposition 4.3. Let Y = (Y•,d•) be an acyclic complex of H-modules.

(i) There is a functorial exact sequence 0→H1FY → FB0Y →B0FY → 0.

(ii) If Y is termwise projective, then the canonical map B0Y → UB0FY is an H-

linear bijection and the sequence in (i) is I-exact. Moreover, the unit ηB0Y :B0Y →
UFB0Y is a split monomorphism with cokernel isomorphic to UH1FY .

Proof. Factorize d1 into Y1 � B0Y ↪→ Y0, and apply the functor F. This gives a

factorization FY1

g
� FB0Y

h→ FY0 of Fd1 with im(h) = im(hg) = im(Fd1) = B0FY .

Since g is surjective, we have ker(h) = g(ker(hg)) = g(ker(Fd1)) = g(Z1FY ). However, the

exact sequence Y2 → Y1 → B0Y → 0 gives the exact sequence FY2
Fd2→ FY1

g→ FB0Y →
0. This shows that ker(g) = im(Fd2) = B1FY . Therefore, g induces an isomorphism
H1FY = Z1FY/B1FY = Z1FY/ker(g) ∼= g(Z1FY ) = ker(h), and we get the required

exact sequence

0→H1FY → FB0Y →B0FY → 0.
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If Y is termwise projective, then the sequence FY1 → FY0 → FY−1 is I -exact. In fact,
the unit ηY : Y → UFY of the adjunction is an isomorphism of complexes (cf. Lemma

2.5). Therefore, Lemma 2.7 shows that the canonical map B0Y ∼= B0UFY → UB0FY is

bijective. Consider the composed map FY1 � FB0Y �B0FY . If we apply the functor U,
then the resulting map Y1

∼= UFY1 → UFB0Y → UB0FY ∼=B0Y = im(d1) is given by d1
and hence is surjective. This implies that the map FB0Y →B0FY is an I -epimorphism.

Now, apply U to the exact sequence in (i) to get a map UFB0Y → UB0FY ∼=B0Y with

kernel UH1FY . One checks directly that it is a left inverse of the unit ηB0Y .

Corollary 4.4. If M ∈ GProj(H) and if N ∈ Mod(H), then the map HomH(N,M) →
HomG(FN,FM) induced by F is injective. If H is Gorenstein and if Mod(H) is endowed

with the Gorenstein projective model structure, then the composed functor Rep∞k (G)
U−→

Mod(H)−→Ho(Mod(H)) is essentially surjective.

Proof. As for the first statement, it suffices to show the injectivity of the map

HomH(N,M) → HomH(N,UFM) obtained by composing with the adjunction isomor-

phism HomG(FN,FM) ∼= HomH(N,UFM). Explicitly, this composition is given by
sending g :N →M to UFg◦ηN = ηM ◦g. If we realize M =B0Y for some acyclic complex

Y of projective H -modules, then ηM is a monomorphism by Proposition 4.3 (ii). This

proves the first statement.
In the homotopy category Ho(Mod(H)), any H -module becomes isomorphic to its

cofibrant replacement. For the second statement, it therefore suffices to show that any

Gorenstein projective H -module is contained in the essential image of the functor U. This
follows from Proposition 4.3 (ii) because M =B0Y ∼= UB0FY .

The previous results can be interpreted in terms of Quillen adjunctions for suitable
model structures on Rep∞k (G) and Ch(G). For the rest of this section, we endow Ch(H)

with the singular projective model structure from Theorem 3.4 (i). If H is Gorenstein, we

will always endow Mod(H) with the Gorenstein projective model structure from Theorem
3.2. As before, let F : Mod(H)�Rep∞k (G) :U be the adjunction given by FM =X⊗H M

and UV = V I ∼=HomG(X,V ). By the same symbols, we denote its termwise extension to

an adjunction F : Ch(H) � Ch(G) : U .

Proposition 4.5. The right transfer of the singular projective model structure exists

along the adjunction F : Ch(H) � Ch(G) : U and makes it a Quillen equivalence.

Endowing Ch(G) with the right transfer, there is an equivalence of categories

Kac(Proj(H))∼=Ho(Ch(G)).

Proof. Together with Rep∞k (G) also Ch(G) is a Grothendieck category (cf. Lemma 1.7

(i)). In particular, all objects of Ch(G) are small. Since Ch(H) is cofibrantly generated,
the first result will follow from Theorem 1.2 and Proposition 1.4 if we can show that path

objects exist in Ch(G). To construct them, let V ∈ Ch(G). We need a factorisation

ΔV : V
α−→ P

β−→ V ×V

of the diagonal morphism such that Uα is a weak equivalence and Uβ is a fibration, that

is, an epimorphism.
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Let C = coker(ΔV ), and let π : V ×V → C denote the canonical projection. Since the

abelian category Ch(H) has enough projectives (cf. Lemma 1.7 (ii)), there is a surjection

f :Q→ UC where Q is a projective complex. In terms of the singular projective model
structure, this is a fibration in which Q is trivially cofibrant (cf. the proof of Theorem

3.4). Since Q is termwise projective, the unit of the adjunction ηQ : Q → UFQ is an

isomorphism (cf. Lemma 2.5). Let g : FQ → C be the adjoint of f. Then f = Ug ◦ ηQ
whence Ug is surjective.

We now define P = {(v,q) ∈ (V ×V )⊕FQ | π(v) = g(q)} so that the projections p : P →
V ×V and h : P → FQ make the square

P FQ

V ×V C

h

p g

π

Cartesian. Let i : V → P be given by i(v) = (Δ(v),0). This gives a factorization ΔV = pi,

and we claim that it has the desired properties. As a right adjoint, the functor U preserves

fibre products. Therefore, the square

UP UFQ

U(V ×V ) UC

Uh

Up Ug

Uπ

is Cartesian. Since the class of epimorphisms in an abelian category is stable under
pullbacks and since Ug is an epimorphism, it follows that so is Up.

Note that ΔV is a split monomorphism with splitting the first projection. Therefore,

the image of the sequence 0 −→ V
ΔV−→ V ×V

π−→ C −→ 0 under U remains exact. In
particular, Uπ is surjective and so is its pullback Uh. Since fiber products in abelian

categories preserve kernels, the sequence

0−→ UV
Ui−→ UP

Uh−→ UFQ−→ 0

is exact. Thus, coker(Ui)∼=UFQ∼=Q is trivially cofibrant. This shows that Ui is a trivial

cofibration and hence a weak equivalence, as required.

We have now shown that the right transfer exists. To get that the adjunction is a Quillen
equivalence, we simply apply Lemma 1.6 and Lemma 2.5. Recall that the cofibrant objects

in Ch(H) are the acyclic complexes which are termwise projective (cf. Theorem 3.4 (i)).

The final statement follows from Theorem 3.4 (i) and [19], Proposition 1.3.13.

The model structure on Ch(G) constructed in Proposition 4.5 will be referred to as the

I-singular projective model structure.

Corollary 4.6. The I-singular projective model structure on Ch(G) is stable. More

precisely, the adjunction [−1] : Ch(G)�Ch(G) : [1] is a Quillen equivalence whose derived

adjunction is given by the loop and suspension functors.
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Proof. The statement about the Quillen equivalence follows formally from Proposition
4.5 and Lemma 3.5 because U and F commute with the shift functors. Note that RU

commutes with the loop functor by [1], Corollary 3.1.4. Therefore, Lemma 3.5 and the

right derived version of [19], Theorem 1.3.7, imply

RUΩ∼=ΩRU ∼=R[1]RU ∼=R([1]U)∼=R(U [1])∼=RUR[1].

Composing with LF gives the isomorphism Ω∼=R[1] on Ch(G). The uniqueness of adjoints

then also gives L[−1]∼=Σ.

As in Lemma 2.15, we are in a situation where the right adjoint U preserves cofibrant
objects.

Lemma 4.7. Endow Ch(G) with the I-singular projective model structure. For an object

V• ∈ Ch(G), the following are equivalent.

(i) V• is cofibrant.

(ii) V• is an I-exact sequence of I-projectives,that is, UV• = V I
• is an acyclic complex

of projective H-modules.

If these conditions are satisfied, then the counit εV• : FUV• → V• is an isomorphism in

Ch(G).

Proof. Any cofibrant object Z ∈ Ch(H) is termwise projective. By Lemma 2.5, the unit
ηZ :Z →UFZ is an isomorphism. With these observations and using the characterization

of I -projectives in Lemma 2.8 (iii) the proof of Lemma 2.15 carries over almost verbatim.

As a formal consequence, we get the following analog of Corollary 2.16.

Corollary 4.8. Endow Ch(H) and Ch(G) with the singular projective model structure

and the I-singular projective model structure, respectively. Then U and F restrict to

inverse equivalences of categories Ch(G)c � Ch(H)c.

Moreover, we obtain the following description of the cofibrations in Ch(G).

Corollary 4.9. A morphism i : V• → W• in Ch(G) is a cofibration for the I-singular
projective model structure if and only if it is a termwise split monomorphism whose

cokernel is an I-exact sequence of I-projectives.

Proof. Assume that i is a cofibration. For any n∈Z consider the complex Dn+1Vn = [0→
Vn

id→ Vn → 0] concentrated in degrees n+1 and n. Then Dn+1Vn → 0 is an I -epimorphism

and hence is a fibration. In fact, this is a trivial fibration because applying U gives the

bounded acyclic complex [0→UVn
id→UVn → 0] which is trivial in the singular projective

model structure by [3], Proposition 3.1.1. Consider the map V• →Dn+1Vn given by the
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differential of V• in degree n+1 and the identity of Vn in degree n. By the left lifting
property of i applied to the diagram

V• ��

i

��

Dn+1Vn

��
W• �� 0,

there is a map j : W• → Dn+1Vn such that jn is a splitting of in. Since the cokernel

of a cofibration is cofibrant (cf. [19], Corollary 1.1.11), it follows together with Lemma

4.7 that i is a termwise split monomorphism whose cokernel is an I -exact sequence of
I -projectives.

For the converse the arguments given in [19], Proposition 2.3.9, carry over mutatis

mutandis.

We now pass back from complexes to the categories Mod(H) and Rep∞k (G). For the
rest of this section, we will therefore assume that H is a Gorenstein ring and that Mod(H)

carries the Gorenstein projective model structure from Theorem 3.2.

Proposition 4.10. The right transfer of the Gorenstein projective model structure exists

along the adjunction F : Mod(H) � Rep∞k (G) : U .

Proof. Since Mod(H) is cofibrantly generated, this will follow from Theorem 1.2 and

Proposition 1.4 if we can show that path objects exist in Rep∞k (G). To construct them,

we follow the argument in the proof of [21], Proposition 9.1. Given W ∈ Rep∞k (G), we
choose an I -epimorphism q : Y →W , where Y is I -projective. Then the maps

W
i−→W ×Y

p−→W ×W

given by i(w) = (w,0) and p(w,y) = (w,w+ q(y)) give a factorization ΔW = pi of the

diagonal ΔW :W →W ×W . Moreover, Ui is an injection such that coker(Ui) ∼= UY is

a projective H -module. Thus, Ui is a trivial cofibration in Mod(H). This implies that i

is a weak equivalence. Moreover, the map Up is surjective because the map Uq is. Thus,
Up is a fibration in Mod(H). This implies that p is a fibration.

Using Lemma 2.18, one can follow the above arguments to give a second proof of the

existence of path objects in the situation of Proposition 4.5.

The model structure on Rep∞k (G) constructed in Proposition 4.10 will be called the
I-Gorenstein projective model structure. This is the model structure on Rep∞k (G) we

will consider for the rest of this section. To describe it more concretely, call an object

V ∈Rep∞k (G) I-trivial if the object UV ∈Mod(H) is trivial, that is, has finite projective
dimension. With this terminology, the fibrations in Rep∞k (G) are the I -epimorphisms and

the trivial fibrations are the I -epimorphisms with I -trivial kernel.

We now give a different characterization of the I -trivial objects. Recall from the
discussion following Corollary 2.9 that every V ∈ Rep∞k (G) admits an I -resolution

X• → V → 0. By Lemma 2.4 and Lemma 2.7, this is a complex X• of I -projective

G-representations such that UX• → UV → 0 is exact.
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Definition 4.11. We say that a representation V ∈ Rep∞k (G) has finite I-projective

dimension if it admits an I -resolution of finite length, that is, if there exists an I -exact

sequence 0→Xn →Xn−1 → ·· · →X0 → V → 0, where Xi is I -projective for any i.

Lemma 4.12. A representation V ∈ Rep∞k (G) is I-trivial if and only if it has finite

I-projective dimension.

Proof. Assume that V has finite I -projective dimension. Applying U to a finite I -
resolution of V, we obtain a finite projective resolution of UV . Thus, V is I -trivial.

Conversely, suppose that V is I -trivial and choose any I -resolution X• = (X•,d•) of

V. Let n denote the projective dimension of UV . Since UX• is a projective resolution
of UV , the H -module ker(Udn−1) is projective by [36], 00O5. By Lemma 2.7, we have

ker(Udn−1) = U im(dn). Moreover, im(dn) is generated by its I -invariants because it is a

quotient of the I -projective object Xn (cf. Lemma 2.8). Applying Lemma 2.8 again, we

see that im(dn) is I -projective and that

0→ im(dn)→Xn−1 → . . . →X0 → V → 0

is a finite I -resolution of V.

In a next step, we characterize the trivial cofibrations in Rep∞k (G).

Lemma 4.13. A morphism i : V →W in Rep∞k (G) is a trivial cofibration if and only if

it is a split injection with an I-projective cokernel.

Proof. If i is a split injection with an I -projective cokernel, we may assume W = V ⊕C
where C is I -projective. If we have a commutative diagram

V V ′

W = V ⊕C W ′,

f

i p

where p is an I -epimorphism, then the map C →W ′ lifts to a map g :C → V ′ because C

is I -projective. The map (f,g) : V ⊕C =W → V ′ is then a lift of i.
Conversely, suppose that i : V →W is a trivial cofibration. Its cokernel C is trivially

cofibrant by [19], Corollary 1.1.11. This means that the functor HomG(C,·) sends I -

epimorphisms to surjections which is equivalent to C being I -projective. It remains to
show that i is a split injection. Factorize i as V

α→ V ⊕W
p2→ W , where α(v) = (v,i(v))

and p2 is the projection onto the second summand. Since p2 is an I -epimorphism and

since i is a trivial cofibration, we obtain a lift h in the commutative diagram

V
α ��

i
��

V ⊕W

p2

��
W

h
��

W.

The first projection p1 : V ⊕W → V then gives the splitting p1h of i.
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The same argument shows that if V ∈ Rep∞k (G) is I -trivial, then any cofibration i :

V →W is a split injection with a cofibrant cokernel. In general, however, cofibrations will

not be monomorphisms. Indeed, the adjunction in Proposition 4.10 is Quillen by Lemma
1.6. Therefore, the functor F preserves cofibrations, that is, the image under F of any

monomorphism with a Gorenstein projective cokernel is a cofibration in Rep∞k (G). By

the lack of exactness of F, this will not be a monomorphism in general. However, we have
the following result.

Lemma 4.14. If i : V → W is a cofibration, then so is the inclusion im(i) ↪→ W and
we have W = im(i) + k[G] ·UW . In particular, any cofibrant object is generated by its

I-invariants.

Proof. For the first part, note that

V
i ��

i
��

im(i)� �

��
W W

is a pushout square and that the class of cofibrations is closed under pushouts (cf. [19],
Corollary 1.1.11). For the second part, let W ′ = im(i)+k[G] ·UW . The inclusion W ′ ↪→W

is an isomorphism on I -invariants, hence is a trivial fibration. Thus, we may apply the

lifting property of i to the diagram

V
i ��

i
��

W ′

��
W

��

W

and get W =W ′. The last statement follows from taking V = 0.

In order to characterize the cofibrant objects, we first need to define a certain class of

short exact sequences in Rep∞k (G).

Definition 4.15. Let P be the class of sequences 0 → V → W → X → 0 in Rep∞k (G)

which are both exact and I -exact.

A morphism p : W → X in Rep∞k (G) is called a P-epimorphism if the sequence

0 → ker(p) → W
p→ X → 0 belongs to P. Note that the P-epimorphisms are precisely

the epimorphisms which are also I -epimorphisms. The notion of a P-monomorphism is
defined dually. In fact, the class P is proper in the sense of [26], Chapter XII.4.

Lemma 4.16. The class P is proper.

Proof. Clearly, P is closed under isomorphisms of short exact sequences and contains

all split exact sequences. Now, let f : V → V ′ and g : V ′ → V ′′ be a composable pair
of morphisms. Assume first that f and g are epimorphisms. We must show that if gf

is an I -epimorphism, then so is g and that if f and g are I -epimorphisms, then so is

gf . Both cases follow immediately by applying U to gf . Now, assume that f and g are
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monomorphisms. We may use them to identify V and V ′ with subrepresentations of V ′′.
Consider the commutative diagram

0 �� (V ′)I ��

��

(V ′′)I ��

��

(V ′′)I/(V ′)I ��

��

0

0 �� (V ′/V )I �� (V ′′/V )I �� (V ′′/V ′)I

with exact rows. If f and g are P-monomorphisms, then the outer vertical maps are

surjective. The snake lemma implies that the vertical map in the middle is surjective,

too. This means that gf is a P-monomorphism. Finally, if gf is a P-monomorphism,
then the vertical map in the middle is surjective. Since the right vertical map is always

a monomorphism, the snake lemma implies that the left vertical map is surjective, too.

This means f is a P-monomorphism.

Using the proper class P, we can characterize the cofibrant objects of Rep∞k (G) by

applying the arguments from [21], Proposition 4.1.

Lemma 4.17. For an object V ∈ Rep∞k (G), the following are equivalent.

(i) V is cofibrant in the I-Gorenstein projective model structure;

(ii) V is generated by its I-invariants and Ext1P(V ,W ) = 0 for all objects W ∈Rep∞k (G)
of finite I-projective dimension.

Proof. Assuming (i) V is generated by its I -invariants (cf. Lemma 4.14). Let W ∈
Rep∞k (G) have finite I -projective dimension. Any element of Ext1P(V ,W ) is the class of

a short exact sequence 0→W →E
p→ V → 0 in P. Then Up is a surjection whose kernel

UW has finite projective dimension (cf. Lemma 4.12). Thus, p is a trivial fibration. Since

V is cofibrant it follows that p admits a section. This implies Ext1P(V ,W ) = 0.

Assuming (ii), let p : V ′ → V ′′ be a trivial fibration. To show that V is cofibrant,

we must prove that any morphism f : V → V ′′ lifts to a morphism V → V ′ along p.
Note that k[G] ·UV ′′ ⊆ im(p) because p is an I -epimorphism. Since V is assumed to be

generated by its I -invariant, we get im(f)⊆ im(p). Thus, we may assume that V ′′ = im(p)

and that p is a P-epimorphism. If we set W = ker(p), then the short exact sequence

0 → W → V ′ p→ V ′′ → 0 belongs to P. Since p is a trivial fibration, W has finite I -

projective dimension by Lemma 4.12. By the long exact sequence on ExtP , we get

that HomG(V ,V ′) → HomG(V ,V ′′) → Ext1P(V ,W ) is exact. Our vanishing assumption
therefore implies that f lifts to a map V → V ′ as required.

Remark 4.18. As in Remark 2.3, the group Ext1P(V ,W ) is not to be confused with

the relative extension group Ext1G,I(V ,W ) defined in (7). Since we have a functorial

isomorphism Ext1G,I(V ,W ) ∼= Ext1H(V I,W I) (cf. Corollary 2.17), there is, however, a

canonical group homomorphism Ext1P(V ,W ) → Ext1G,I(V ,W ) sending an equivalence

class [0→W → E → V → 0] to the class [0→ UW → UE → UV → 0].

We are now able to describe the following class of cofibrations by arguing as in the

proof of [21], Proposition 4.2.
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Proposition 4.19. Any P-monomorphism i : V → W with a cofibrant cokernel is a
cofibration.

Proof. Let p : V ′ → V ′′ be a trivial fibration in a commutative square

V
f ��

i

��

V ′

p

��
W

g
�� V ′′.

Note that W = im(i)+k[G] ·UW because W → coker(i) is an I -epimorphism and coker(i)
is generated by its I -invariants (cf. Lemma 4.14). Since p is an I -epimorphism, we get

im(g) ⊆ im(p). As in the previous proof, we may therefore assume that V ′′ = im(p)

and that p is a P-epimorphism. Write K = ker(p) and C = coker(i). Since i is a P-

monomorphism, we can consider long exact sequences to obtain the following commutative
diagram whose rows and columns are exact.

HomG(W,K) HomG(W,V ′) HomG(W,V ′′)

HomG(V ,K) HomG(V ,V ′) HomG(V ,V ′′)

Ext1P(C,K) Ext1P(C,V
′) Ext1P(C,V

′′)

i∗

δ

p∗

δ

p∗

Since C is cofibrant and K has finite I -projective dimension (cf. Lemma 4.12), we have

Ext1P(C,K) = 0 by Lemma 4.17. Now, the maps f and g satisfy p∗f = i∗g and therefore
p∗δf = δp∗f = δi∗g = 0. This implies δf = 0 whence there exists h :W → V ′ with f = hi.

By construction, g−ph :W → V ′′ is zero on im(i) and therefore factors through a map

α : C → V ′′. Since C is cofibrant and p is a trivial fibration, α lifts to a map β : C → V ′

such that pβ = α. Precomposing β with the quotient map W → C, we obtain a map

j :W → V ′ satisfying pj = g− ph. Therefore, the sum h+ j :W → V ′ gives our desired

lift of i.

Remark 4.20. By definition of the Gorenstein projective model structure (cf. Theorem
3.2), the cofibrations in Mod(H) are precisely the inclusions ker(q) → M , where M is

arbitrary and q :M →N is a fibration onto a cofibrant object N. Using the above result,

we see that the analogous maps in Rep∞k (G) are also cofibrations. Indeed, ifX ∈Rep∞k (G)
is cofibrant and if p :W →X is an I -epimorphism, then p is a P-epimorphism because X

is generated by its I -invariants (cf. Lemma 4.14). Therefore, the inclusion ker(p)→W is

a P-monomorphism with cokernel X and so is a cofibration.

Recall that the adjunction in Proposition 4.10 is Quillen. We now investigate how far

it is from being a Quillen equivalence. In a first step, we make explicit the homotopy

relation in Rep∞k (G) following [21], Proposition 9.1.
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Lemma 4.21. Let V ,W ∈ Rep∞k (G) with V cofibrant. If f,g ∈HomG(V ,W ), then f and

g are homotopic if and only if g−f factors through an I-projective.

Proof. Since W is fibrant, it follows from [19], Proposition 1.2.5 (v), that f and g are

homotopic if and only if they are right homotopic. So assume that f and g are right
homotopic. By [19], Corollary 1.2.6, there is a homotopy from f to g through any path

object of W. In particular, we may take the path object W
i→ W ×Y

p→ W ×W of W
constructed in the proof of Proposition 4.10. Recall that this involves an I -epimorphism

q : Y → W where Y is I -projective. There is then a map H = (r,s) : V → W ×Y with

pH = (f,g). By construction of p, this means f = r and g= r+qs. Thus, g−f = qs factors

through the I -projective Y.

Conversely, assume that g − f admits a factorization V → Z
j→ W where Z is I -

projective. Then j factors as Z → Y
q→W because q is an I -epimorphism. Consequently,

g−f = qh where h denotes the composition V → Z → Y . Since g = f + qh, we see that f

and g are right homotopic by means of H = (f,h) : V →W ×Y .

As a consequence, we obtain that the statements in Corollary 4.4 pass to the homotopy

level. We continue to endow Mod(H) with the Gorenstein projective model structure and

Rep∞k (G) with the I -Gorenstein projective model structure.

Theorem 4.22. In the derived adjunction

LF : Ho(Mod(H)) � Ho(Rep∞k (G)) :RU

the functor LF is faithful and the functor RU is essentially surjective.

Proof. That RU is essentially surjective follows directly from Corollary 4.4. In order to

show that LF is faithful, let Qc denote the cofibrant replacement functor of Mod(H).

Recall from (4) that LF = Ho(F )Ho(Qc). By the proof of [19], Proposition 1.2.3, the

functor Ho(Qc) is always an equivalence. Therefore, it suffices to show that Ho(F ) is
faithful. Note that F preserves cofibrant objects because it is left Quillen. Since all

objects of Mod(H) and Rep∞k (G) are fibrant, it suffices to see that if M,N ∈ Mod(H)

are Gorenstein projective, then the map HomH(M,N)→HomG(FM,FN) induced by F
reflects the respective homotopy relations (cf. [19], Theorem 1.2.10 (ii)).

Let f,g ∈ ModH(M,N), and assume that Ff is homotopic to Fg. By Lemma 4.21,

there is an I -projective object Y ∈ Rep∞k (G) such that Ff −Fg = F (f − g) admits a
factorization FM → Y → FN . Applying U we obtain the commutative diagram

UFM �� UY �� UFN

M

ηM

��

f−g �� N.

ηN

��

Since ηN admits a left inverse (cf. Proposition 4.3), it follows that f −g factors through

UY . However, UY is a projective H -module (cf. Lemma 2.8). Therefore, f and g are

homotopic by [21], Proposition 9.1.
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In Theorem 5.11, the previous results will be strengthened significantly. In fact,
RU admits a right inverse and becomes an equivalence when restricted to a suitable

subcategory of Ho(Rep∞k (G)).

In order to compute the loop and suspension functors on Ho(Rep∞k (G)), we need to
compute both cylinder and path objects.

Lemma 4.23. Let V ,W ∈ Rep∞k (G), and suppose that W is I-projective.

(i) Given a cofibration q : V → W the factorization V ⊕ V
i→ V ⊕W

p→ V given by
i(v,v′) = (v + v′,q(v′)) and p(v,w) = v exhibits V ⊕W as a cylinder object for

V. In particular, if V is cofibrant, then we have ΣV ∼= coker(i) ∼= coker(q) in

Ho(Rep∞k (G)).

(ii) Given a fibration q :W → V the factorization V
i→ V ×W

p→ V ×V given by i(v) =

(v,0) and p(v,w) = (v,v+q(w)) exhibits V ×W as a path object for V. In particular,

we have ΩV ∼= ker(p)∼= ker(q) in Ho(Rep∞k (G)).

Proof. As for (i), we note that p is a split epimorphism with an I -trivial kernel, hence

is a trivial fibration. In order to see that the above factorization gives a cylinder object

for V, we need to show that i is a cofibration. Observe that the diagram

V V ⊕V

W V ⊕W

δ

q i

j

given by δ(v) = (−v,v) and j(w) = (0,w) is a pushout square. Thus, together with q

also i is a cofibration (cf. [19], Corollary 1.1.11). If V is cofibrant then ΣV ∼= coker(i)

in Ho(Rep∞k (G)) by definition of the suspension. However, the map coker(q)→ coker(i)
induced by j is an isomorphism in Rep∞k (G) by [36], 08N3.

The construction of the path object in (ii) is taken from the proof of Proposition

4.10. Since V is fibrant, we have ΩV ∼= ker(p) in Ho(Rep∞k (G)) by definition of the loop.
However, the map ker(q)→ ker(p) given by w 	→ (0,w) is an isomorphism in Rep∞k (G).

Because of condition (iii), in the following result we do not expect that the adjunction
F : Mod(H) � Rep∞k (G) : U is a Quillen equivalence in general.

Proposition 4.24. The following statements are equivalent.

(i) The adjunction F : Mod(H) � Rep∞k (G) : U is a Quillen equivalence.

(ii) The left derived functor LF : Ho(Mod(H))→Ho(Rep∞k (G)) is full.

(iii) For any acyclic complex Y ∈Ch(H) of projective H-modules, the G-representation

H1FY is I-trivial, that is, the H-module UH1FY has finite projective dimension.

(iv) The model category Rep∞k (G) is stable.

Proof. That (i) implies (ii) follows from [19], Proposition 1.3.13. Assuming (ii), the

functor LF is fully faithful by Theorem 4.22. This implies that the unit of the derived

adjunction is an isomorphism. Let X ∈Mod(H) be cofibrant, and denote by f : FX → Z
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the fibrant replacement of FX in Rep∞k (G). By the proof of [19], Proposition 1.3.13, the

map X
ηX→ UFX

Uf→ UZ is a weak equivalence. However, since f is a weak equivalence so is

Uf by definition of the right transfer. By the 2-out-of-3 property ηX is a weak equivalence

for any cofibrant object X. By Lemma 1.6, this implies (i).
If a cofibrant object X is realized as X =B0Y for some acyclic complex Y of projective

H -modules, then ηX is a monomorphism with cokernel UH1FY (cf. Proposition 4.3).

By [21], Lemma 5.8, the map ηX is a weak equivalence if and only if the H -module
UH1FY has finite projective dimension. Therefore, the above arguments show that (ii) is

equivalent to (iii). Assuming (i), the functors LF and RU are equivalences of categories

commuting with Σ and Ω, respectively (cf. [1], Corollary 3.1.4). Since Mod(H) is stable
(cf. [21], Theorem 9.3), it follows formally that so is Rep∞k (G).

Note that the unit id→ ΩΣ of the adjunction in Ho(Rep∞k (G)) gives rise to a natural

transformation LFΩ → ΩΣLFΩ ∼= ΩLFΣΩ ∼= ΩLF using the stability of Mod(H). To

describe this more explicitly, let Y = (Y•,d•) be an acyclic complex of projective H -
modules, and set M = B−1Y . Then ΩM ∼= B0Y in Ho(Mod(H)) by the construction of

the loop and suspension functors on abelian model categories. Since B0Y is cofibrant, this

gives LFΩM ∼= FB0Y . Similarly, LFM ∼= FM and therefore ΩLFM ∼=ΩFM . Note that
the canonical map q : FB0Y → FY0 is a cofibration and FB0Y is cofibrant since F is left

Quillen. Therefore, Lemma 4.23 (i) shows that FB0Y ⊕FY0 is a cylinder object for FB0Y

and ΣFB0Y ∼= coker(q)∼= FM . The corresponding adjoint morphism ϕ : FB0Y → ΩFM
can then be identified with the aforementioned natural transformation LFΩM →ΩLFM .

Assuming (iv), the map ϕ is an isomorphism. We will show this implies (iii).

By the proof of Lemma 4.23 (i), the isomorphism ΣFB0Y ∼= FM is induced by the

surjection g : FB0Y ⊕FY0 → FM sending (v,w) to Fd0(w). In order to compute the
loop of FM , choose an I -epimorphism q′ : Z → FM where Z is I -projective. By Lemma

4.23 (ii), we have ΩFM = ker(p), where p : FM ×Z → FM ×FM is given by p(v,w) =

(v,v+ q′(w)). Consider the commutative square

FB0Y FM ×Z

FB0Y ⊕FY0 FM ×FM,

0

ι p

(0,g)

where ι is the canonical map. Since ι is a trivial cofibration (cf. Lemma 4.13) and since p is

a fibration there is a map H : FB0Y ⊕FY0 → FM ×Z such that Hι= 0 and (0,g) = pH.
Consider the map ι′ : FB0Y → FB0Y ⊕FY0 given by ι′(v) = (0,q(v)). Since FY is a

complex, the map Hι′ factors through a map f : FB0Y → ker(p). By the proof of [1],

Proposition 3.1.7, its homotopy class is the adjoint morphism ϕ. Note that together with
ι′ also f factors through the canonical map FB0Y →B0FY .

Since ϕ is an isomorphism in Ho(Rep∞k (G)), it follows from [19], Theorem 1.2.10 (iv),

that f is a weak equivalence. By definition of the right transfer, Uf is a weak equivalence
in Mod(H). As seen above, it factors through the natural map UFB0Y → UB0FY .

However, the proof of Proposition 4.3 shows that the latter is a split surjection with

kernel UH1FY . Setting M1 = UB0FY and M2 = UH1FY , we identify it with the first
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projection M1×M2 →M1. Write Uf = rj, where j is a trivial cofibration and r is a trivial
fibration. Then j is a monomorphism with a projective cokernel and may be identified with

a canonical inclusion of the form M1×M2 ↪→ P ×M1×M2 where P is projective. Since

M2 ↪→M1×M2 is contained in the kernel of Uf it follows that M2 is a direct summand
of ker(r). Since ker(r) has finite projective dimension so does M2 = UH1FY .

The condition in Proposition 4.24 (iv) suggests to pass to some stable version

of Rep∞k (G). The most direct approach is to define the stable homotopy category

Ho(Rep∞k (G)) of Rep∞k (G) to have the same objects as Rep∞k (G) and to define the set
of morphisms between X and Y by

[X,Y ] = lim−→
n≥0

[ΩnX,ΩnY ].

The transition maps in this direct limit are induced by Ω, and [ΩnX,ΩnY ] denotes the set
of morphisms in the usual homotopy category. The loop functor induces a fully faithful

functor Ω on Ho(Rep∞k (G)). Moreover, since RU commutes with Ω and since Mod(H) is

stable, there is an induced functor

RU : Ho(Rep∞k (G))→Ho(Mod(H))

given by RU on objects and sending the class of f ∈ [ΩnX,ΩnY ] to ΣnRUf . However,

we currently do not know if this improves the properties of RU further.

5. Frobenius categories

Recall that a sequence X
i→ Y

p→Z in an additive category A is called exact if i is a kernel

of p and if p is a cokernel of i. An exact category is an additive category A endowed with a

class of exact sequences satisfying the axioms in [6], Definition 2.1. For the sake of clarity
these exact sequences are sometimes called admissible and the morphism i (resp. p) in

an admissible exact sequence X
i→ Y

p→ Z is called an admissible monomorphism (resp.
an admissible epimorphism).

An object Y of an exact category A is called projective (resp. injective) if the functor

HomA(Y ,·) (resp. HomA(·,Y )) is exact, that is, if it transforms admissible exact sequences
into exact sequences of abelian groups. An exact category A is said to have enough

projectives (resp. injectives) if for any object X there is an admissible epimorphism Y →X

(resp. an admissible monomorphism X → Y ) where Y is projective (resp. injective). An

exact category A with enough projectives and enough injectives is called a Frobenius
category if the classes of projective and injective objects of A coincide.

In the following, we will often assume that the exact category A is weakly idempotent

complete in the sense of [6], Definition 7.2. By [12], Proposition 2.4, this is equivalent to
the classes of admissible monomorphisms and admissible epimorphisms being closed under

retracts. Hovey’s correspondence in Theorem 1.1 was generalized to weakly idempotent

complete exact categories by Gillespie in [12], Corollary 3.4. The corresponding model
structures are called exact (cf. [12], Definition 3.1). We note that the completeness of

the cotorsion pairs in [12], Definition 2.1, is not required to be functorial and that the

bicompleteness assumption on A is relaxed significantly (cf. the beginning of [12], §4).
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Recall the following standard result (cf. [25], Theorem 1.1 and Remark 2.6).

Proposition 5.1. Let A be a weakly idempotent complete Frobenius category. There is

a unique exact model structure on A for which

• All objects are fibrant and cofibrant.
• The trivial objects are the projective (equivalently, the injective) objects.

This model structure is stable and its associated homotopy category Ho(A) is the stable

category A=A/Proj(A) of A.

Proof. Set T =Proj(A) = Inj(A). By definition of a Frobenius category (A,T ) and (T ,A)

are complete cotorsion pairs on A in the sense of [12], §2.1. Since T is a thick subcategory
of A in the sense of [12], Definition 3.2, the existence of the model structure follows from

[12], Corollary 3.4. The description of the corresponding homotopy category is given in

[12], Proposition 4.3 (5). That the suspension functor on A is an equivalence of categories
is proved in [17], Proposition 2.2.

If A is a (weakly idempotent complete) exact category, then so is Ch(A) with respect

to those sequences of complexes which are admissible in every degree (cf. [13], Lemma
2.5). The acyclicity of complexes in Ch(A) is defined as in [6], Definition 10.1. Moreover,

if A is a Frobenius category then so is Ch(A) (cf. [13], Corollary 2.7).

Our main case of interest concerns the category A=GProj(S) where S is a Gorenstein
ring. Viewed as a full subcategory of Mod(S) with the induced exact structure, this is a

Frobenius category by [12], Proposition 5.2 (4). It is weakly idempotent complete because

the class of Gorenstein projective modules is closed under retracts. In this situation, we

also have the following variant of Theorem 3.4.

Proposition 5.2. If S is a Gorenstein ring and if A=GProj(S), then there is an exact

model structure on Ch(A) for which

• The cofibrant objects are the acyclic complexes of projective S-modules.
• All objects are fibrant.
• The trivial objects are the complexes Y ∈ Ch(A) such that we have Ext1Ch(A)

(X,Y ) = 0 for any acyclic complex of projectives X.

The adjunction Q0 : Ch(A) � A : ι0 is a Quillen equivalence.

Proof. Let B denote the class of S -modules of finite projective dimension. By [21],

Theorem 8.3, (A,B) is a functorially complete cotorsion pair on Mod(S) which is generated

by a set. Moreover, A generates the category Mod(S) because it contains the projective
generator S. It follows from [3], Proposition 1.2.5, that the class A is deconstructible in the

sense of [37], Definition 3.9. By [37], Lemma 7.9, the class of acyclic complexes in Ch(A) is

deconstructible in Ch(A). We now apply [37], Lemma 7.10, to the complete cotorsion pair

(Proj(S),A) of A (cf. Proposition 5.1). Letting C denote the class of acyclic complexes of
projective S -modules and

C⊥ = {Y ∈ Ch(A) | Ext1Ch(A)(X,Y ) = 0 for all X ∈ C}
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we obtain that (C,C⊥) is a complete cotorsion pair in Ch(A). Note that Ext1Ch(A) =

Ext1Ch(S) as a bifunctor on Ch(A) because the exact subcategory Ch(A) of Ch(S) is

closed under extensions. Therefore, it follows from Theorem 3.4 (i) that C ∩ C⊥ is the

class of projective objects of Ch(S). Note that this is contained in Ch(A). Applying [12],
Corollary 3.4, to the triple (C,C⊥,Ch(A)) yields the required exact model structure. As a

consequence of Theorem 3.4 (i) and Theorem 1.1 (i), the corresponding cotorsion pairs are

functorially complete. The final assertion follows from Theorem 3.4 (ii) because Ch(A)
and Ch(S) have the same class of cofibrant-fibrant objects.

We now return to the situation where S =H =EndG(X)op. For the rest of this section

we assume that H is Gorenstein and endow the categories Mod(H) and Ch(H) with

the Gorenstein projective and the singular projective model structure, respectively (cf.

Theorem 3.2 and Theorem 3.4 (i)). Moreover, we endow the categories Rep∞k (G) and
Ch(G) with the model structures obtained via the right transfer along the adjoint pair

(F,U) (cf. Proposition 4.5 and Proposition 4.10).

Definition 5.3. A representation V ∈ Rep∞k (G) is called I-Gorenstein projective if V

is isomorphic to B0X = im(d1) for some I -exact sequence X = (X•,d•) of I -projective

G-representations. We denote by C(G) the full subcategory of Rep∞k (G) consisting of all
I -Gorenstein projective G-representations.

It follows from Lemma 4.7 and Corollary 4.8 that a representation V is I -Gorenstein

projective if and only if there is an acyclic complex Y = (Y•,d•) of projective H -modules
such that V ∼=B0FY = im(Fd1).

Using the functorial factorizations in the model category Mod(H), one can construct

functorial complete resolutions as in [14], §1. The outcome is a functor Y (·) = (M 	→ Y M =
(Y M

• ,dM• )) : Mod(H)→ Ch(H) such that

• The complex Y M ∈ Ch(H) is acyclic with B0Y
M = Z0Y

M =M .
• For any i≥ 1, the H -module Y M

i is projective.
• For any i≤ 0, the H -module Y M

i has finite projective dimension.

Note that our numbering of the complex Y M differs from that in [14] by a shift. An

H -module M is Gorenstein projective if and only if Y M
i is a projective H -module for all

i ∈ Z (cf. [14], Lemma 4.3 (4)). We now define the functor F : Mod(H)→Rep∞k (G) as the

composition

Mod(H)
Y (·)
−→ Ch(H)

F−→ Ch(G)
B0−→ Rep∞k (G),

sending M ∈Mod(H) to FM =B0FY M ∈ Rep∞k (G).

Theorem 5.4. The functors

U : Rep∞k (G)→Mod(H) and F : Mod(H)→ Rep∞k (G)

restrict to inverse equivalences of categories C(G)∼=GProj(H).

Proof. If M is Gorenstein projective, then FM is an object of C(G) because Y M is an

acyclic complex of projective H -modules (cf. [14], Lemma 4.3 (4)). Conversely, if V ∈C(G),
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then V ∼= B0FY for some acyclic complex Y of projective H -modules by Corollary 4.8.
It then follows from Proposition 4.3 (ii) and Remark 3.1 that UV ∼= UB0FY ∼= B0Y is

a Gorenstein projective H -module and that UF is isomorphic to the identity functor on

GProj(H). In particular, the functor U : C(G)→GProj(H) is essentially surjective and the
functor F : GProj(H)→C(G) is faithful. However, U on C(G) is faithful, too. This follows

from the fact that the objects of C(G) are quotients of I -projective G-representations,

hence are generated by their I -invariants (cf. Lemma 2.8).

It then follows from UF ∼= id that U is fully faithful on the essential image of F :
GProj(H)→C(G). However, this functor is essentially surjective. Indeed, if V ∈ C(G) we

may assume V = B0FY for some acyclic complex Y of projective H -modules. Set M =

B0Y . By Remark 3.1 and [14], Theorem 4.1, there is a map f : Y → Y M of complexes such
that B0f is the identity on M. We claim that the map B0Ff : V = B0FY → B0FY M =

FM is an isomorphism in Rep∞k (G). Since U reflects monomorphisms and since FM is

generated by its I -invariants, it suffices to see that UB0Ff is an isomorphism in Mod(H).
This follows from Proposition 4.3 (ii) because under the isomorphisms UB0FY ∼=B0Y =

M ∼= UFM the map UB0Ff is the identity on M.

We have the following alternative characterization of the objects of C(G).

Proposition 5.5. For any object V ∈ Rep∞k (G), the following are equivalent.

(i) We have V ∈ C(G).

(ii) The representation V is generated by its I-invariants and there is a map i : V →W
in Rep∞k (G) such that W is I-projective and Ui is a cofibration in Mod(H).

In particular, any object V of C(G) is both a quotient and a subobject of an I-projective

G-representation and UV is a Gorenstein projective H-module.

Proof. That any object V ∈ C(G) is both a quotient and a subobject of an I -projective
G-representation is true by definition. Moreover, UV is Gorenstein projective by the proof

of Theorem 5.4. Therefore, we only need to show that (i) and (ii) are equivalent. Assume

that V satisfies (i). By definition, V ∼= B0FY for some acyclic complex of projectives
Y ∈Ch(H). This gives an embedding i : V → FY0 where FY0 is I -projective. Moreover, V

is generated by its I -invariants as seen in the proof of Theorem 5.4. Under the isomorphism

UV ∼=UB0FY ∼=B0Y in Proposition 4.3 (ii), the H -module coker(Ui) gets identified with
B1Y . Thus, coker(Ui) is Gorenstein projective and Ui is a cofibration. This shows (ii).

Conversely, assume that V satisfies (ii). Since Ui is a cofibration we have coker(Ui) ∈
GProj(H). By the functorial factorisations in Mod(H), we can embed coker(Ui) into

a projective H -module via a cofibration. This way we inductively construct an acyclic
complex

0−→ UV
Ui−→ UW = Y0

d0−→ Y−1
d−1−→ Y−2

d−2−→ . . . ,

where Yi is a projective H -module for all i≤ 0. If we set Xi = FYi, then Lemma 2.5 and

Lemma 2.8 allow us to identify this complex with the I -invariants of the complex

0−→ V
i−→W ∼= FUW =X0

Fd0−→X−1
Fd−1−→ X−2

Fd−2−→ . . .
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which is therefore I -exact. Composing it with an I -resolution of V gives an I -exact
complex X of I -projective G-representations with V =B0X. This shows V ∈ C(G).

Remark 5.6. Assume that H comes from a finite group G with a split BN -pair of

characteristic p as in Example 4.1 (i). Then H is self-injective and GProj(H) =Mod(H).
Moreover, any monomorphism in Mod(H) is a cofibration. It follows from Proposition

5.5 that C(G) is the full subcategory of representations which are both a quotient and a

subobject of an I -projective G-representation. In this case, the finite-dimensional objects
of C(G) were first studied by Cabanes (cf. [7], §1). Moreover, Theorem 5.4 recovers [7],

Theorem 2. Our arguments differ only gradually. Everything relies on the fact that the

adjunction (F,U) induces an equivalence between projective H -modules and I -projective
G-representations (cf. Corollary 2.9).

Proposition 5.5 yields the following class of cofibrations in Rep∞k (G).

Lemma 5.7. If V ∈ Rep∞k (G) is generated by its I-invariants, then any map i : V →W

as in Proposition 5.5 (ii) is a cofibration.

Proof. By assumption, the map Ui : UV → UW is a cofibration in Mod(H). Since F
is left Quillen, the map FUi : FUV → FUW is a cofibration in Rep∞k (G). We have a

commutative square

FUV FUW

V W,

FUi

εV εW

i

where εV is surjective since V is generated by its I -invariants. Moreover, εW is an

isomorphism by Lemma 2.8. Therefore, the composition ε−1
W i induces an isomorphism

f : V → im(FUi). Since the inclusion g : im(FUi) → FUW is a cofibration by Lemma
4.14 so is i= εW gf .

The difference between the functors F and F can be made explicit as follows.

Lemma 5.8. There is a pointwise exact sequence

0−→H1FY (·) −→ F −→ F−→ 0

of functors from Mod(H) to Rep∞k (G). The functor F : Mod(H) → Rep∞k (G) preserves

surjections and its restriction F : GProj(H)→C(G) preserves monomorphisms.

Proof. The first statement follows from Proposition 4.3 (i). Since F preserves surjections,

it follows that so does F. The final statement follows from Theorem 5.4.

For a suitable exact structure on C(G), the functor F actually becomes exact.

Corollary 5.9. With respect to the short I-exact sequences, the category C(G) is a weakly

idempotent complete Frobenius category and the functors F : GProj(H) � C(G) : U are

exact inverse equivalences.
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Proof. Recall from Lemma 2.4 that a sequence in Rep∞k (G) is I -exact if and only if it is

a complex such that the sequence obtained by applying U is exact in Mod(H). Therefore,

everything follows from Theorem 5.4.

Remark 5.10. As recalled earlier, in an exact category A an admissible exact sequence

X
i→ Y

p→ Z really is exact in the categorical sense, that is, we have i = ker(p) and

p = coker(i). If 0 → X
i→ Y

p→ Z → 0 is a short I -exact sequence in C(G), then the

relations i=ker(p) and p=coker(i) hold in C(G) but not necessarily in the larger category

Rep∞k (G). In fact, in Rep∞k (G) the sequence is a complex, i is injective and p is surjective.

However, in Rep∞k (G) the inclusion im(i)⊆ ker(p) might not be an isomorphism. In fact,
im(i) is the subrepresentation of ker(p) generated by U ker(p).

Endowing C(G) with the structure of a Frobenius category as in Corollary 5.9 the

functors F and U can be viewed as inverse equivalences of exact model categories
GProj(H) ∼= C(G) and Ch(GProj(H)) ∼= Ch(C(G)). Therefore, a morphism f : V → W

in C(G) is a weak equivalence if and only if Uf is a weak equivalence in GProj(H) and

hence in Mod(H). Consequently, the inclusion functor i : C(G) → Rep∞k (G) preserves
weak equivalences and i admits a well-defined homotopy functor Ho(i) : Ho(C(G)) →
Ho(Rep∞k (G)). Denote by Q : Mod(H)→GProj(H) the cofibrant replacement functor.

Theorem 5.11. The composed functor

Ho(C(G))
Ho(i)−→ Ho(Rep∞k (G))

RU−→Ho(Mod(H))

induced by the fully faithful functor C(G)
i→ Rep∞k (G)

U→ Mod(H) is an equivalence of

categories with inverse Ho(F)Ho(Q).

Proof. Write U (1) for the functor U : Rep∞k (G) → Mod(H) and U (2) for the induced
functor C(G) → GProj(H). Since all objects of Rep∞k (G) are fibrant, the proof of [19],

Proposition 1.2.3, shows that the homotopy functor of the fibrant replacement functor of

Rep∞k (G) is isomorphic to the identity functor. Therefore, RU (1) ∼=Ho(U (1)).
If j : GProj(H)→Mod(H) denotes the inclusion, then we have U (1)i= jU (2) and hence

Ho(U (1))Ho(i) = Ho(j)Ho(U (2)). However, the proof of [19], Proposition 1.2.3, shows

that Ho(j) is an equivalence of categories with inverse Ho(Q). Moreover, Ho(U (2)) is
an equivalence of categories with inverse Ho(F) by Corollary 5.9.

In particular, Theorem 5.11 implies that the functor RU (resp. Ho(i)) admits a right
(resp. left) inverse and that Ho(i) allows us to view Ho(C(G)) as a (not necessarily full)

subcategory of Ho(Rep∞k (G)). The restriction of RU to this subcategory is an equivalence

of categories

Ho(C(G))∼=Ho(Mod(H)).

Remark 5.12. Due to the generality of our setup there are situations in which our
results are not particularly helpful. If G is discrete, for example, and if I = 1 then

Mod(H) = Rep∞k (G) and we simply study the identity functor F = U = id. If G is a

pro-p group and if I =G, then H = k is selfinjective and C(G) is the category of trivial
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G-representations. In this case, the equivalence U : C(G)→GProj(H) =Mod(k) is given

by the forgetful functor. In the situations of Example 4.1, however, the category Mod(H)

is comparatively easy to understand and yet strongly linked to Rep∞k (G). Passing to
Ho(Mod(H)) ∼= GProj(H)/Proj(H) simplifies the situation further by getting rid of the

objects of finite projective dimension.

Finally, we explain in which way the objects of C(G) appear in the theory of equivariant
coefficient systems on Bruhat–Tits buildings as studied in [22] and [28]. To this aim, we

assume that H is associated to G = G(K) and I = IC as in Example 4.1 (iv). Given

M ∈Mod(H), Ollivier and Schneider construct in [28], §6.4, a functorial exact sequence
of H -modules

0→GP(M)d → . . . →GP(M)0 →M → 0,

where d is the semisimple rank of G. If G is semisimple, then all GP(M)i are Gorenstein
projective by [28], Lemma 6.4. On the other hand, the second author functorially

associates with M ∈Mod(H) a G-equivariant coefficient system F(M) on the semisimple

Bruhat–Tits building X of G (cf. [22], §3.2). The corresponding complex Cor
c (X(•),F(M))

of oriented chains is I -exact (cf. [22], Proposition 2.9). In fact, it is concentrated in degrees
0≤ i≤ d and admits a functorial isomorphism

Cor
c (X(•),F(M))I ∼=GP(M)• (11)

in Ch(H) (cf. [22], Remark 3.24). In particular, there is a functorial isomorphism
H0(Cor

c (X(•),F(M))I)∼=M of H -modules (cf. [22], Theorem 3.21).

Proposition 5.13. Assume that G is semisimple. For any M ∈ Mod(H), there is an

isomorphism of complexes of smooth k-linear G-representations

Cor
c (X(•),F(M))∼= FGP(M)•.

Proof. This will follow from Theorem 5.4 and (11) if we can show that the complex

Cor
c (X(•),F(M)) consists of objects of C(G). To see this, let σ be a facet of X contained

in the closure of C and denote by P †
σ the stabilizer of σ in G. Setting Xσ = ind

P †
σ

I (k), we

have the Gorenstein ring H†
σ = EndP †

σ
(Xσ)

op associated to P †
σ and I = IC as in Example

4.1 (iii). Note that we may view H†
σ as a subalgebra of H. Denote by Uσ, Fσ and Fσ our

usual functors corresponding to P †
σ and H†

σ.

In [22], Theorem 3.12, the second author constructs a fully faithful functor tσ :
Mod(H†

σ)→ Rep∞k (P †
σ) which is right inverse to Uσ. Given N ∈Mod(H†

σ) the canonical

complete resolution Y N
• provides an embedding N ↪→ Y N

0 where Y N
0 is an H†

σ-module of

finite projective dimension. By our semisimplicity assumption, the ring H†
σ is selfinjective

(cf. [28], Proposition 5.5). It follows that Y N
0 is a projective H†

σ-module. The arguments

given in the proof of [22], Theorem 3.12, then show that there is a functorial H†
σ-linear

isomorphism tσN ∼= FσN . Thus, tσ ∼= Fσ as functors.
Consider the automorphism jσ of the k -algebra H†

σ introduced in [28], §3.3.1. Via scalar

restriction it induces an automorphism of the category Mod(H†
σ) denoted by N 	→N(εσ).

ForM ∈Mod(H), denote byMσ ∈Mod(H†
σ) the scalar restriction ofM along the inclusion
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H†
σ ↪→H. By construction and [28], Lemma 3.7, any term in the oriented chain complex

of F(M) is a finite direct sum of representations of the form Vσ = indG
P †

σ
(FσMσ(εσ)). By

exactness of compact induction, the embedding j : FσMσ(εσ) → FσY
Mσ(εσ)
0 induces an

embedding i = indG
P †

σ
(j) : Vσ → indG

P †
σ
(FσY

Mσ(εσ)
0 ) of G-representations. The latter is I -

projective because compact induction commutes with arbitrary direct sums and satisfies

indG
P †

σ
(Xσ)∼=X. Moreover, the P †

σ-representation FσMσ(εσ) is generated by its I -invariants

(cf. Proposition 5.5) and the G-representation Vσ is generated by its P †
σ-subrepresentation

FσMσ(εσ). It follows that the G-representation Vσ is generated by its I -invariants. By
Proposition 5.5 (ii), we are left to show that Ui is a cofibration.

Since FσMσ(εσ) embeds into an I -free P †
σ-representation the pro-p radical Iσ of the

parahoric subgroup Pσ acts trivially on FσMσ(εσ). By [22], Proposition 4.17, there is
a natural H -linear isomorphism H ⊗H†

σ
UσFσMσ(εσ) ∼= UVσ inducing an isomorphism

coker(Ui) ∼= H ⊗H†
σ
coker(Uσj). Since H†

σ is self-injective, the H†
σ-module coker(Uσj) is

Gorenstein projective. As in [28], Lemma 6.4, it follows that coker(Ui) is Gorenstein

projective over H.

Remark 5.14. Assume that G is semisimple, and take up the notation from the proof of

Proposition 5.13. Let N be any H†
σ-module, and let M =H⊗H†

σ
N . Then N is Gorenstein

projective over H†
σ and M is Gorenstein projective over H. We have seen that indG

P †
σ
(FσN)

is an object of C(G). Moreover, FM is an object of C(G) by Theorem 5.4. By Theorem
5.4 and the proof of Proposition 5.13, there are canonical H -linear isomorphisms

UF(H⊗H†
σ
N)∼=H⊗H†

σ
N ∼=H⊗H†

σ
UσFσN ∼= U indP †

σ
(FσN).

It follows from Theorem 5.4 that this is induced by an isomorphism of functors F◦(H⊗H†
σ

(·))∼= indG
P †

σ
◦Fσ from Mod(H†

σ) to C(G).

On the other hand, any representation V ∈Rep∞k (G) gives rise to a G-equivariant coef-
ficient system V as in [28], §3.1. The corresponding oriented chain complex Cor

c (X(•),V )

will generally not consist of objects of C(G) as the following example shows.

Example 5.15. Let σ be a facet of X contained in the closure of C. Moreover, denote

by Iσ the pro-p radical of the parahoric subgroup Pσ. Then W = indG
P †

σ
(V Iσ ) is a

direct summand of one of the terms of the oriented chain complex of V . However, if

the P †
σ-representation V Iσ is not generated by its I -invariants, then neither is the G-

representationW. Indeed, ifW ′ = indG
P †

σ
(k[P †

σ ] ·V I), thenW ′ is a proper subrepresentation

of W. On the other hand, the inclusion W ′ ↪→W induces an isomorphism on I -invariants

as follows from [22], Proposition 4.17. Therefore,

k[G] ·W I = k[G] · (W ′)I =W ′ �W

and W does not lie in C(G) by Proposition 5.5. For a concrete example consider the

GL2(Qp)-representation V described in [28], Remark 3.2 (3).
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