Classical T Tauri-like Outflow Activity in the Brown Dwarf Mass Regime

E. T. Whelan¹, T. P. Ray², F. Bacciotti³, L. Podio² and S. Randich³

¹Laboratoire d'Astrophysique de l'Observatoire de Grenoble , ²Dublin Institute for Advanced Studies, ³INAF/Osservatorio Astrofisico di Arcetri

Since 2005 we have been analysing the spectra of brown dwarfs (BDs) using the technique of spectro-astrometry and to date have found 5 outflows driven by BDs. Our aim is to obtain an understanding of outflow activity in the BD mass regime and make a comprehensive comparison with low mass protostars, in particular the classical T Tauri stars (CTTSs). Table 1 summarises some results for the sources in our sample. Also see Whelan et al. (2009b) for a complete discussion and comparison with CTTSs. Some noteworthy results include the asymmetry in the ISO-217 bipolar outflow which is revealed in the relative brightness of the two lobes (red-shifted lobe is brighter) and the factor of two difference in radial velocity (the red-shifted lobe is faster). Asymmetries are common in jets from low mass protostars (0.1 Msun to 2 Msun) and the observation of a strong asymmetry at such a low mass supports the idea that BD outflow activity is scaled down from CTTSs. In addition, Whelan *et al.* (2009a) find a strong contribution to the H α line emitted by LS-RCrA 1 and evidence of a dust hole in its disk. Using methods previously applied to CTTS Whelan et al. (2009b) estimate the mass outflow rate (M_{out}) for LS-RCrA 1, ISO and ISO-Oph 102 \dot{M}_{out} to be in the range 10^{-10} to 10^{-9} Msun yr⁻¹ which is comparable to measured mass accretion rates.

Source	$Mass~(M_{\rm JUP})$	$V_{\it rad}~(\rm km s^{-1})$	Outflow PA (°)	Publication
ISO-217	80^{1}	-20/30	$202 (\pm) 8$	Whelan et al. (2009b)
2MASS1207A	24^2	-8/4		Whelan $et al. (2007)$
ISO-Oph 32	40^{4}	-10-20	$240 \ (\pm 7)$	Whelan $et al.$ (2009b)
ISO-Oph 102	60^4	-45	0	Whelan <i>et al.</i> (2005)
LS-RCrA 1	$35-72^5$		15	Whelan et al. (2009a)

Table 1. BD candidates found to date to be driving outflows. In all cases the $[OI]\lambda 6300$ line is the dominant line and V_{rad} is given here. For all sources where an outflow position angle (PA) is known (except ISO-Oph 102) this has been estimated from the spectro-astrometric analysis. 1-5 refer to the papers giving the mass estimates, 1=Muzerolle *et al.* (2005), 2=Mohanty *et al.* (2007), 3=Mohanty *et al.* (2004), 4=Natta *et al.* (2002) and 5=Barrado y Navascués *et al.* (2004).

References

Barrado y Navascués, D., Mohanty, S., & Jayawardhana, R. 2004, ApJ, 604, 284
Muzerolle, J. et al. 2005, ApJ, 625, 906
Mohanty, S., Jayawardhana, R., Huélamo, N., & Mamajek, E. 2007, ApJ, 657, 1064
Mohanty, S., Jayawardhana, R., & Basri, G. 2004, ApJ, 609, 885
Natta, A. et al. 2002, A&A, 393, 597
Whelan, E. T. et al. 2005, NATURE, 435, 652
Whelan, E. T. et al. 2007, ApJL, 659, L45
Whelan, E. T., Ray, T. P., & Bacciotti, F. 2009(a), ApJL, 691, L106
Whelan, E. T., Ray, T. P., Podio, L, Bacciotti, F., & Randich, S 2009(b), ApJ, submitted