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Viscoplastic fluids exhibit yield stress, beyond which they flow viscously, while at
lower stress levels they behave as solids. Despite their fundamental biological and
medical importance, the hydrodynamics of swimming in viscoplastic environments is
still evolving. In this study, we investigate the swimming of an ellipsoidal squirmer and
the associated tracer diffusion in a Bingham viscoplastic fluid. The results illustrate that
neutral squirmers in viscoplastic fluids experience a reduction in swimming speed and an
increase in power dissipation as the Bingham number increases, with swimming efficiency
peaking at moderate Bingham numbers. As the aspect ratio of a squirmer increases,
ellipsoidal squirmers exhibit significantly higher swimming speeds in viscoplastic fluids.
The polar and swirling modes can either enhance or reduce swimming speed, depending
on the specific scenarios. These outcomes are closely related to the confinement effects
induced by the yield surface surrounding the swimmer, highlighting how both swimmer
shape and swimming mode can significantly alter the yield surface and, in turn,
modify the swimming hydrodynamics. In addition, this study investigates the influence
of viscoplasticity on swimmer-induced diffusion in a dilute suspension. The plasticity
enforces the velocity far from the swimmer to be zero, thus breaking the assumptions used
in Newtonian fluids. The diffusivity reaches its maximum at intermediate aspect ratios and
Bingham numbers, and increases with the magnitude of the squirmer’s dipolarity. These
findings are important to understand microscale swimming in viscoplastic environments
and the suspension properties.
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1. Introduction

Locomotion of microorganisms and man-made microswimmers has been a subject of
booming interest over the last decade due to its importance in many medical fields and
biophysical processes, such as drug delivery, gut flora and red tide blooms (Nelson,
Kaliakatsos & Abbott 2010; Li et al. 2017; Ishikawa & Pedley 2023a,b). Swimming
microorganisms inhabit a diverse range of complex fluid environments. Examples include
a ciliate Tetrahymena inhabiting the mud, an infectious protozoa Trypanosoma entering
the bloodstream and Helicobacter pylori in gastric mucus. Many biological fluids,
such as blood or respiratory and gastric mucus, exhibit intricate rheological properties,
including shear-thinning viscosity, viscoelasticity and viscoplasticity. While swimming
in Newtonian fluids is well investigated (Lauga & Powers 2009; Lauga 2020; Ishikawa
2024), the hydrodynamics of swimming in these complex fluids is still evolving despite its
fundamental biological and medical importance (Wu et al. 2020; Spagnolie & Underhill
2023).

To date, several studies have explored the hydrodynamics of microswimmers in shear-
thinning fluids (Datt et al. 2015; Elfring & Lauga 2015; Nganguia et al. 2017; Pietrzyk
et al. 2019; van Gogh et al. 2022), viscoelastic fluids (Zhu, Lauga & Brandt 2012;
Binagia et al. 2020; Housiadas, Binagia & Shaqgfeh 2021; Li, Lauga & Ardekani 2021;
Ouyang et al. 2023), porous media (Nganguia & Pak 2018; Nganguia et al. 2020; Demir
et al. 2024), blood suspensions (Wu et al. 2024a,b), fluids with non-uniform viscosity
(Eastham & Shoele 2020; Gong, Shaik & Elfring 2024), as well as viscoplastic fluids
(Eastham, Mohammadigoushki & Shoele 2022). The combination of these results suggests
that non-Newtonian rheology has a profound impact on the locomotion of microswimmers.

The viscoplastic fluids exhibit yield stress, beyond which they flow viscously, while at
lower stress levels they behave as solids. A typical example of swimming in a viscoplastic
fluid is H. pylori bacterium moving through dense, gel-like gastric mucus (Celli et al.
2009; Mirbagheri & Fu 2016). Experimental studies of locomotion in viscoplastic fluids
have observed that helical and undulatory swimmers are able to swim faster than in a
Newtonian fluid (Dorgan, Law & Rouse 2013; Kudrolli & Ramirez 2019; Nazari, Shoele &
Mohammadigoushki 2023). Most previous numerical studies on swimming in viscoplastic
fluids have been confined to two dimensions (Hewitt & Balmforth 2017; Supekar, Hewitt
& Balmforth 2020) or slender bodies (Hewitt & Balmforth 2018). Recently, Hewitt (2024)
reviewed the studies of locomotion through a viscoplastic fluid for cylindrical filamentary
bodies.

In order to understand the dynamics of swimming microorganisms, several fluid
dynamical models for low Reynolds number environments have been proposed.
A simplified ciliate model known as the ‘squirmer’ was first introduced by Lighthill (1952)
and then generalised by Blake (1971). Keller & Wu (1977) built on the model by extending
the squirmer to be prolate ellipsoidal. Their model has been extended to include a force-
dipole mode (Ishimoto & Gaffney 2013; Theers et al. 2016; van Gogh et al. 2022). The
squirmer model has therefore become a popular generic locomotion model for various
problems such as hydrodynamic interactions (Ishikawa et al. 2006, 2020) and active
suspensions (Ishikawa, Brumley & Pedley 2021; Qi et al. 2022; Zantop & Stark 2022).

Eastham er al. (2022) employed the spherical squirmer model to investigate how fluid
plasticity affects locomotion performance in a Bingham viscoplastic fluid. This study
found that a spherical squirmer in a Bingham fluid experiences reduced swimming speed
and increased energy dissipation as the Bingham number increases. Nevertheless, the
swimming efficiency reaches a maximum at a moderate Bingham number. Swimming
in viscoplastic fluids also has some similarities with swimming in confinement, as the
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viscous fluid region is bounded by the solid region. Reigh & Lauga (2017) and Nganguia
et al. (2020) studied the dynamics of a spherical squirmer encapsulated in a spherical
droplet by theory and simulation, and found that the swimming speed depends on the
size ratio between the droplet and the squirmer. Aymen et al. (2023) and Della-Giustina,
Nganguia & Demir (2023) further extended the model to include swimmer shape and
medium heterogeneity. These studies consistently reported that the swimming speed of a
neutral squirmer increases as the size ratio between the closed domain and the squirmer
increases, unless the ratio is too small.

The flow field generated by the microswimmers also affects the diffusion properties
of the suspension, which are crucial in biological processes such as reproduction,
colonisation and infection. As the microorganisms mix the fluid as they swim, they
enhance the diffusion of chemicals and tracers (Katija & Dabiri 2009; Thiffeault &
Childress 2010; Lin, Thiffeault & Childress 2011; Nordanger, Morozov & Stenhammar
2023). The enhanced diffusion was first measured experimentally by Wu & Libchaber
(2000) in a suspension of Escherichia coli bacteria. Experiments have shown that
the scaling between the enhanced diffusion due to swimmer activity and swimmer
volume fraction is linear at low volume fractions (Leptos et al. 2009; Jepson et al.
2013; Kasyap, Koch & Wu 2014). Such enhanced diffusion in dilute or semi-dilute
suspensions of microswimmers is also reported by simulations and theoretical studies
(Underhill, Hernandez-Ortiz & Graham 2008; Ishikawa, Locsei & Pedley 2010; Kurtuldu
et al. 2011; Mifno et al. 2013). Ishikawa et al. (2010) showed that the flow-induced
diffusivity is proportional to the volume fraction of squirmers in the semi-dilute regime.
Studies have also been carried out on tracer displacements induced by individual
swimmers (Thiffeault & Childress 2010; Lin et al. 2011; Pushkin, Shum & Yeomans 2013;
Mathijssen, Pushkin & Yeomans 2015; Mueller & Thiffeault 2017). These studies provide a
fundamental understanding of how individual swimming motions contribute to the overall
diffusive behaviour in a suspension. Squirmers swimming in a viscoplastic fluid can only
displace fluid particles within the yielded region, while fluid particles outside the yielded
region remain stationary. This should have important implications for the swimmer-
induced transport of chemicals and tracers. However, to the best of the authors’ knowledge,
our current understanding of swimmer-induced diffusion rests mainly on Newtonian fluids,
and the effect of viscoplasticity is unexplored.

Furthermore, the effect of the swimmer’s body shape on swimming performance can
be qualitatively different in Newtonian and non-Newtonian fluids. Recent studies have
reported that the body shape plays a significant role in the locomotion of microswimmers
through complex fluids (Eastham & Shoele 2020; van Gogh et al. 2022; Demir et al.
2024; Gong et al. 2024; Ouyang et al. 2024). van Gogh et al. (2022) demonstrated
that an elongated ellipsoidal microswimmer can swim faster and more effectively in a
shear-thinning fluid than in a Newtonian fluid. Similarly, Demir et al. (2024) showed that
an ellipsoidal microswimmer always propels faster, consumes less energy and is more
efficient than a spherical microswimmer in either a homogeneous fluid or a heterogeneous
medium. When swimming in a fluid with linearly varying viscosity, Gong et al. (2024)
found that the effect of viscosity gradients on power dissipation and efficiency diminishes
as the slenderness of the swimmer increases.

Nevertheless, the effect of body shape on locomotion in viscoplastic fluids remains
unclear. In this study, we employ the spheroidal squirmer model to probe the role
of body shape in swimming in a Bingham viscoplastic environment. The results
reveal key features that are distinct from those obtained using the spherical squirmer
model, suggesting that both biological and artificial microswimmers could potentially
optimise their geometric shape or swimming mode to enhance swimming performance
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Figure 1. (a) Computational set-up of an ellipsoidal microswimmer in a Bingham fluid environment.
(b) Sketch of an ellipsoidal microswimmer, where b, and b, are the semi-major and semi-minor axes of the
ellipsoid. Here, rey = (bxbg)l/ 3 refers to the equivalent radius of the ellipsoidal microswimmer.

in viscoplastic environments. In addition, this study investigates the influence of
viscoplasticity on swimmer-induced diffusion in a dilute suspension. The plasticity
enforces the velocity far from the swimmer to be zero, thus breaking the assumptions used
in Newtonian fluids, such as the velocity perturbation induced by a force-free swimmer
decays with the square of the distance. Swimmer-induced diffusion in a plastic fluid has
not been reported before, so new insights can be gained.

The paper is structured as follows. We formulate the problem in §2 by introducing
the squirmer model and the governing equations, and discuss the numerical method. We
investigate swimming in a viscoplastic fluid in § 3. The effects of the swimmer shape,
the polar and swirling squirming velocities and the Bingham number on the propulsion
behaviour are examined. The differences in the propulsion speed across various aspect
ratios is explained in terms of forces acting on the body. In § 4, we discuss the squirmer-
induced tracer diffusion in a dilute suspension. The motion of tracers in a plastic fluid
is restricted to the vicinity of the squirmer. Since the outer region can be regarded as
solid, the Brownian motion of the tracers can be ignored. By assuming diluteness, the
tracer particles only move when a swimmer comes close and otherwise remain stationary.
Moreover, if an isotropic suspension is assumed, where the orientation of the squirmers is
isotropic, the tracer exhibits a three-dimensional random walk, taking steps only when the
squirmer comes close. The diffusion coefficient is derived under these assumptions and
the effects of the swimmer shape, the swimming modes and the Bingham number on the
diffusivity are discussed. Finally, we conclude this study in § 5.

2. Basic equations and numerical methods
2.1. The squirmer model

We consider an ellipsoidal microswimmer propelling through a viscoplastic fluid, as
illustrated in figure 1(a). The swimmer has the aspect ratio a, = b, /b,, with semi-major
axis by and semi-minor axis b, as shown in figure 1(b). We denote half of the focal length

by ¢ = /b2 — b2, which yields the eccentricity e = ¢/b, (0 < e < 1, with e = 0 describing
a sphere). The prolate spheroidal coordinate system (¢, 7, ¢) is related to the body-fixed
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Cartesian coordinates (x’, y’, ') via (Dassios, Hadjinicolaou & Payatakes 1994)

1 2 0 220
§=%(\/(x/+c) +y?+7 —\/<x/—c) +y' +z’), @.h
1 2 2
T=o (\/(x’+c) +y’2+z/2+\/(x/—6) +y’2+z/2)a (22)
y/
¢ = arctan (_) . (23)
Z

In the equations, —1<¢ <1, 1<t and 0< ¢ <2m. All points with T=19=e¢ !

(i.e. x"2/b% + o2+ z/z)/bg = 1) lie on the ellipsoid’s surface.

The microswimmer is modelled as a spheroidal squirmer in this research. In the
squirmer model, the propulsion is generated by imposing surface squirming velocities.
The surface velocity is assumed to be tangential, steady and axisymmetric. The general
form of the surface velocity with an azimuthal component is expressed as (Pak & Lauga
2014; Pedley, Brumley & Goldstein 2016)

o0

2B, > ,
Uyg=—) nora D @ mp - (= nm) - > CuPy(p-m)lp-(I—nn)t, (24)

n=1 n=1

where p = e, is the unit orientation vector, n = e is the unit normal vector and ¢ = e, is
the unit azimuthal tangent vector; / is the unit tensor and P, is the derivative of the nth-
order Legendre polynomial. The coefficients B, and C, are often called polar modes and
azimuthal (or swirling) modes, respectively. Typically, only the first two polar squirming
modes (B; and Bj) are considered. The first polar mode B; determines the swimming
speed Uy in an infinite Newtonian fluid in the Stokes flow regime as (Keller & Wu 1977;
Theers et al. 2016)

Uy =B11 (‘L’o — (‘L'g — 1) coth™! ‘5()). (2.5)

The swimming speed of a spherical swimmer is recovered for the spherical limit (79 — 00)
as Uy = 2By /3. Therefore, B; is chosen as the characteristic velocity scale. The second
polar mode B, regulates the strength of a force dipole, i.e. the stresslet, in an infinite
Newtonian fluid (Ishikawa, Simmonds & Pedley 2006). Recently, researchers have started
to consider the effect of higher-order polar modes (Datt et al. 2015; De Corato & D’ Avino
2017; Pietrzyk et al. 2019) or the azimuthal swirling modes (Pak & Lauga 2014; Pedley
et al. 2016; Binagia et al. 2020; Fortune et al. 2021) on the swimming of spherical
squirmers. Nevertheless, the effect of the azimuthal modes on the swimming dynamics
of non-spherical squirmers in a complex fluid has not been reported.

We consider the prescribed surface velocity (2.4) with the first two polar modes (B and
B») and the second azimuthal mode (C»>) as being non-zero, then it is simplified as

Usqg=—Bi(e; -ep)e; — Bal(er -ep)er —3Cri(e; - ep)ey,
— —Bito(1 — ¢ (i — )21+ BOe; +3xLey ). (2.6)

The ratios 8 = B>/ B and x = C,/Bj represent the squirmer’s dipolarity and chirality,
respectively. Dipolarity 8 helps in categorising the types of microswimmer as pusher
(B <0, e.g. E. coli), puller (8 > 0, e.g. Chlamydomonas) and neutral (8 =0, e.g. Volvox)
types, while chirality x represents the intensity of a microswimmer with rotating flagella
and a counter-rotating body (Pedley et al. 2016; Binagia et al. 2020; Fadda, Molina &
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Yamamoto 2020). We refer to the squirmer with y # 0 as a swirling squirmer. Note that
the surface velocity for spherical squirmer is recovered in the spherical limit ({ — cos )
(Housiadas et al. 2021; Kobayashi, Molina & Yamamoto 2024) as

B 3
Ugy = (B1 sin @ + 72 sin 29) eg+ 3 Casin 20, Q@.7)

where 6 = arccos(p - r/r) represents the polar angle between the position vector  and
the swimming direction p, while ey is the unit tangent vector along the 6 direction. In
the present study, we investigate three types of swimmers: neutral swimmers (8 = x =0),
pullers or pushers (8 # 0, x = 0) and neutral swirling swimmers (8 =0, x # 0).

2.2. Basic equations
The locomotion of a squirmer through a viscoplastic fluid is simulated by the direct forc-
ing/fictitious domain method (Yu & Shao 2007; Yu & Wachs 2007). Let £2 and P represent
the entire domain and the domain occupied by the squirmer, respectively (P C £2); P is
bounded by the squirmer surface S. The governing equations are written as

d
,ole;=V-(—pl+ T+ Ain 2, (2.8)
u=U+wxr)+tus in S, 2.9
du
psVyp—— =/ n-(—pl+1t)ds, (2.10)
dr S
d(J-
J- @) :/r x [ - (=pl+7)]ds. @.11)
dr S

In these equations, u, p and py represent the fluid velocity, pressure and density,
respectively, T is the stress tensor and A is a pseudo-body force (Lagrange multiplier)
defined in the particle domain. The density, volume, moment of inertia tensor, translational
velocity and angular velocity of the squirmer are denoted by o5, V), J, U and w,
respectively, and r is the position vector with respect to the particle centre of mass.
A solenoidal velocity field u, inside the squirmer is imposed (see Appendix A for
the details of derivation). Therefore, the velocity field inside the squirmer is given by
u=U+wxr)+u,.

As a viscoplastic fluid, we assume a Bingham fluid model as one of the simplest
viscoplastic fluids, for which the constitutive equation reads

Ty

T= 2,u+—))E for || > Ty,
( |E g

E=0 for|t|<T,. (2.12)

Here, 7, is the yield stress, 1 is the viscosity constant and E is the rate of strain tensor.
The second invariant of a tensor is defined as |§| = /(8 : 8)/2 for any tensor § € R3*3. The
Bingham model was employed to investigate the viscoplastic effect on the self-propulsion
of a spherical squirmer (Eastham et al. 2022), but it did not consider non-spherical body
shapes.

We employ the augmented Lagrangian method proposed by Dean & Glowinski (2002)
for the solution of the constitutive equation (2.12), which are rewritten as

T=2unE+1,B, (2.13)
1015 A12-6
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where B is a non-dimensional tensor-valued function which satisfies |B| < 1, B: E= |E|,
as well as the following relation (Dean & Glowinski 2002)

B=P,(B+otE) Vo=>0, (2.14)

where P4 (q) is a symmetry-preserving orthogonal projection operator defined by

q if [q| <1,

2.15
q/lql if|q| > 1. 1)

Pa(q) :{

Here, g represents a non-dimensional tensor. Equation (2.14) implies that E=0 when
|[B+o1yE| <1 and B= E/|E| when |B+ot,E| > 1, and thus (2.13) is equivalent to
(2.12).

The following characteristic scales are used for the non-dimensionalisation scheme:
Le=req (reg= (bxbg)l/ 3 being the radius of a sphere with the same volume as the
ellipsoid, i.e. the equivalent radius) for length, U, = By for velocity, . = L./U. for
time, uwU./L. for stress and pU, /Lz for body force. For convenience, we write the
dimensionless quantities in the same form as their dimensional counterparts, unless
otherwise specified. By employing the variations v, V and & for the fluid velocity
and the squirmer translational and angular velocities, respectively, the complete set of
dimensionless governing equations in the weak form comprise the following three parts.

(i) Equations of motion

0
Re/ (—u—i-u'Vu)-vdx:f(—Vp+V2u+BiV-B)-vdx+//l‘vdx,
2 \ ot 9] P

(2.16)
dU dw du
Re (pr — 1) (VPE -V+J- I ~£) =/P(Re dtadx —/l) -(V4+E&xr)ydx, (217
/[u—(U—{—a)xr)—ua]-ydx:O. (2.18)
P

(i1) Continuity equation

/ gV - -udx=0. (2.19)
Q

(iii) Constitutive equation
B=P,(B4+0oBiE) VYo>0. (2.20)

In (2.18) and (2.19), y and g represent the corresponding variations. In this study,
pr = ps/ps s the swimmer—fluid density ratio, which is set to be unity. The following
dimensionless numbers are introduced:

B
Reynolds number : Re = M, (2.21)
7
. . Tyleq
Bingham number: Bi = ——. (2.22)
£ uBy

The Bingham number here represents the non-dimensional yield stress.

2.3. Numerical method

Throughout this study, we set o = Re/(2Bi?) in (2.20) as suggested by Dean & Glowinski
(2002). The problem (2.16)—(2.20) is solved in an iterative way with the fractional step
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Parameter name Symbol Definition Value
Reynolds number Re Of Bireq/1t 0.01
Bingham number Bi Tyleq /W By Up to 100
Aspect ratio ay by /b, 1to8
Dipolarity B B>/ B —3t03
Chirality X C» /B 0 and 3

Table 1. List of the non-dimensional simulation parameters.

time scheme, as detailed in Yu & Wachs (2007). The fictitious domain method for dealing
with the swimming of a spherical or ellipsoidal squirmer in a Newtonian fluid has been
validated in our previous studies (Lin & Gao 2019; Xia et al. 2025a,b). The accuracy
for particle sedimentation in Bingham fluids was verified in Yu & Wachs (2007). In
this study, we validate the swimming speed, power dissipation and swimming efficiency
in a Newtonian fluid against the theoretical results derived by Demir et al. (2024).
A convergence test is performed in Appendix B.

As shown in figure 1(a), a cubic periodic computational domain is adopted with L, =
Ly =L;=32re. This configuration allows the squirmer to swim periodically through
the domain. The computational domain is sufficiently large so that the effect of domain
size completely disappears for a viscoplastic fluid, and it can reproduce an unbounded
domain. According to the convergence test in Appendix B, 16 grid points are used
across the squirmer’s equivalent radius (i.e. r.;/Ax =16) and the time step is set to
be At = 10_4req /B1. The definitions and values of the non-dimensional parameters are
summarised in table 1. In this paper, we consider a low Reynolds number of Re =0.01,
which is small enough to neglect inertia. The aspect ratios range up to 8, corresponding
to eccentricities up to 0.99. For each simulation, the squirmer was started from rest and
allowed to accelerate until it reached a steady swimming speed. Simulation results were
obtained after reaching a steady time-averaged swimming speed.

3. Swimming in a viscoplastic fluid

In this section, we discuss the steady swimming speed U, the power dissipation P and the
swimming efficiency n for an ellipsoidal squirmer propelling in a viscoplastic fluid. The
power P expended by the squirmer into the fluid is defined to be

P:—/(u-t)-nds, 3.1
N
while the swimming efficiency is defined as the ratio of the power (Pp) required to tow

a rigid ellipsoid in uniform motion at the swimming speed U of the squirmer to the work
done by the squirmer

Pp Fp-U
P P
where F p is the force required to tow the passive particle with the same size and shape
at the swimming speed U in the same fluid. The power dissipation Py and swimming
efficiency ny for a non-swirling squirmer in a Newtonian fluid in the Stokes flow regime

are derived theoretically by Demir et al. (2024). In figures 3 and 9, we have compared the
swimming speed, power dissipation, as well as swimming efficiency of a neutral swimmer
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Figure 2. (a) Swimming speed U, (b) power dissipation P and (¢) swimming efficiency », of a neutral
squirmer, as a function of the Bingham number Bi. The dashed lines represent the numerical results obtained
using the continuous Galerkin finite element method for spherical squirmers, as presented in Eastham & Shoele
(2020). Here, the results are scaled by the corresponding values for a squirmer in a Newtonian fluid.

and a puller with the theoretical solutions. The results demonstrate excellent agreement
with the theory.

3.1. Neutral squirmer

We compute the swimming speed, power dissipation and swimming efficiency relative
to their corresponding Newtonian values as a function of Bingham number Bi for both
spherical and ellipsoidal neutral squirmers in figure 2. The results for the spherical
squirmer (a, = 1) agree well with results obtained from the finite element simulation of
Eastham et al. (2022). From figure 2(a,b), we find that the squirmers for all aspect ratios
swim slower and require more power than their Newtonian counterpart as the Bingham
number increases. While the squirmer experiences a reduction in speed, more elongated
squirmers are able to maintain speeds closer to that of their counterpart in Newtonian
fluids. In the range of 10 < Bi < 100, the power dissipation increases approximately
exponentially with Bi, following P/Py ~ Bi%®3 from fitting, and is nearly independent
of the aspect ratio. Although the power dissipation increases monotonically with the
Bingham number, figure 2(c) shows that the variation in the swimming efficiency is non-
monotonic as Bi increases. The scaled swimming efficiency, n/ny, reaches a maximum
value before decreasing to a low value. This behaviour has been reported by Eastham er al.
(2022) for a spherical squirmer. The optimal Bingham number for maximum efficiency is
smaller in the case of a long ellipsoid. At Bi < 0.1, the elongated squirmer swims more
efficiently, while the spherical squirmer has higher efficiency for moderate to high values
of the Bingham number.

The observations in figure 2 can be made more clearly by plotting the results as a
function of the aspect ratio for various Bi. Figure 3(a) suggests that ellipsoidal squirmers
swim much faster compared with spherical squirmers, and the influence of body shape
on swimming speed becomes significantly more pronounced in environments with higher
viscoplasticity. As illustrated in figure 3(b,c), ellipsoidal squirmers expend less energy and
are more efficient swimmers compared with spherical squirmers for the same value of the
Bingham number.

The results in figure 2 have been obtained for ellipsoidal microswimmers with
constraints on volume, while some studies fixed the semi-major length b, when the aspect
ratio changes (van Gogh et al. 2022; Demir et al. 2024). In figure 4, we replot figure 2 as
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Figure 3. (@) Normalised swimming speed, (b) normalised power dissipation and (c) swimming efficiency, of
a neutral squirmer, as a function of aspect ratio. Curves are obtained from Demir et al. (2024) for swimming in
Newtonian fluids, while the symbols denote numerical results.
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Figure 4. (a) Swimming speed U, (b) power dissipation P and (c) swimming efficiency 7, as a function of the
modified Bingham number Bi*, defined by using the semi-major length b,. The results are normalised by their
corresponding values for a neutral squirmer in a Newtonian fluid.

a function of the modified Bingham number Bi*, which is defined as

Bi*=%=arz/33i. (3.3)
uBi
Our results show that the constraint of constant semi-major length does not qualitatively
alter the results obtained under the fixed volume assumption. One interesting observation
is that the scaled power dissipation has a much weaker dependence on the aspect ratio
under the constant semi-major length constraint, as observed in figure 4(b). A similar weak
dependence of particle shape on power dissipation has also been reported by Demir et al.
(2024) for a squirmer swimming through a heterogeneous medium with fixed semi-major
axis length. Figure 4(c) exhibits a similar non-monotonic variation of the scaled efficiency
with respect to Bi, as observed in figure 2(c).

The locomotion behaviour of spherical squirmer closely correlated with the
confinement effects induced by the yielded region surrounding the swimming body
(Eastham et al. 2022). Figure 5(a—c) shows the yield-surface profiles around a neutral
swimmer for various aspect ratios. The yield surface is given by the iso-surface of
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Figure 5. Yield-surface profiles around a neutral swimmer (8 = 0) for various Bi. Panels show (a) a, =1,
(b) ar =3, (¢) ar = 6. (d) Volume of the yielded region as a function of Bi. The dashed line in (d) is added to
represent the slope Bi ~3/%. The yield surface is given by the iso-surface of |7| = Bi.

|T| = Bi. Indeed, increasing the Bingham number for a fixed aspect ratio results in a
reduction of the yielded region around the squirmer and the plasticity becomes more
dominant, as previously demonstrated by Eastham ez al. (2022). The decreased swimming
speed of neutral swimmers with increased confinement is also consistent with results
from other models involving confinement (Reigh & Lauga 2017; Nganguia et al. 2020).
By comparing figure 5(a—c), increasing the squirmer’s aspect ratio at a fixed Bingham
number results in an expansion of the yielded region around the squirmer. Consequently,
the ellipsoidal squirmer moves faster than the spherical squirmer for a given Bingham
number. To gain further insight, we display in figure 5(d) the volume of the yielded region
Vy normalised by the squirmer volume V), versus the Bingham number. It can be observed
that the volume of the yielded region Vy decreases with Bi and increases as the squirmer’s
aspect ratio becomes larger. At low yield stress, the volume of the yielded regime declines
as Vy ~ Bi~3/% for all aspect ratios. This scaling can be derived by assuming Vy ~ rf,,
with ry being the radius of the yielded regime (i.e. |t|,—,, = Bi). As will be discussed in
the next paragraph, the velocity disturbance induced by a neutral squirmer in the far field

decays as » 3 in the limit Bi — 0, where r is the distance. The derivative of the velocity
disturbance decays as r=4, so || also decays as || ~r 4, leading to ry 4~ Bi. Asa
result, we obtain the scaling of Vy ~ Bi —3/4 However, as the Bingham number increases,
the yield surface progressively shrinks toward the squirmer’s surface, and the adopted
scaling assuming the far-field decay tendency fails to hold for Bi >> O(10~1). Specifically,
the more elongated squirmer has a greater impact on the shape of the yield surface,
producing a much larger yielded region. Thus, in high Bi environments, the yielded region
around an ellipsoidal squirmer is significantly larger than that around a spherical squirmer,
resulting in a much higher swimming speed for the ellipsoidal squirmer compared with the
spherical one.
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Figure 6. Laboratory-frame velocity component in the swimming direction scaled by the swimming speed U
versus the position relative to the centre of squirmer along the semi-major axis. (a,b) Effect of aspect ratio
for (a) Bi =0.01 and (b) Bi =1.0. (c¢) Effect of the Bingham number on velocity for a, = 3. Here, x /b, =1
corresponds to the particle’s surface. The black dash line is added to represent the slope ~r 3. The vertical
dash-dot lines indicate the corresponding positions of the yield surface, where the flow properties undergo
rapid transition.

The flow decay around a microswimmer is important for discussing the interaction of
microswimmers and tracer diffusion. Since the stresslet of a neutral squirmer is zero,
the flow decays as ~r~3 in a Newtonian fluid in the far field (Theers er al. 2016).
figure 6(a,b) shows the component of fluid velocity u# in the swimming direction versus
the position relative to the squirmer centre along the semi-major axis for different aspect
ratio for fixed Bingham numbers of Bi =0.01 and 1.0, respectively. The decay tendency
of 3 is marginally observed for a spherical squirmer with Bi = 0.01. The flow decreases
significantly with increasing distance, rapidly becoming negligible in the vicinity of the
yield surface. For a mild viscoplastic environment of Bi = 1.0, the velocity reduces to a
negligible value (i.e. u/U < 10™%) at x /b, < 1.6, implying that near-field fluid mechanics
dominates. When we fix a, =3 instead, and vary the Bingham number (figure 6¢), we
observe that the flow decreases significantly with increasing Bingham number. This trend
is consistent with the results in figure 2(a) and figure 4(a) that show that the propulsion
speed decreases monotonically with increasing Bingham number. The results in figure 6
differ from the observed behaviour in Newtonian fluids and heterogeneous media (Demir
et al. 2024). In viscoplastic fluids, the flow decays much faster than in Newtonian fluids
and heterogeneous media, where the flow decays as ~r > in the far field, regardless of the
shape of the microswimmer.

To better understand the flow convergence near the yield surface, we further examine
the fluid velocity profiles in this region. As described figure 7, the flow increases from the
yield surface following 73 apart from the vicinity of the squirmer, where r is the distance
from the wall. This scaling is regardless of either the Bingham number or squirmer’s
aspect ratio, offering a consistent description of the near-yield-surface flow behaviour.
From figure 7(b,c), the fluid velocity can be reasonably approximated as u = A(xy — x)>
in the whole yielded region for Bi > 1. Here A is a coefficient related to the squirmer’s
aspect ratio and Bingham number. To understand the 7> growth, consider how the velocity
disturbance induced by a point force in a Newtonian fluid grows in the vicinity of an
infinite flat plate. The Blakelet solution (Blake 1975) provides r> growth of the velocity
disturbance in a Newtonian fluid near a flat plate, in the direction perpendicular to the wall,
which is slower than in the Bingham fluid. Since the apparent viscosity of the Bingham
fluid increases as the velocity gradient decreases, the viscosity increases near the wall and
the velocity decays rapidly. This can be one reason for the faster growth of the velocity in
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Figure 7. Laboratory-frame velocity component in the swimming direction scaled by the swimming speed
U versus the position relative to the position of the yield surface along the semi-major axis. (a,b) Effect of
aspect ratio for (a) Bi =0.01 and (b) Bi =1.0. (¢) Effect of the Bingham number on velocity for a, = 3.
Here, xy represents the relative coordinate of the yield surface in the x-direction, thus (xy — x)/(xy —by) =0
corresponds to the position of the yield surface. The black dash line is added to represent the slope ~r>.

the Bingham fluid. While universal theory is not currently available, it will be an important
focus of our future work.

3.2. Pullers and pushers

In Stokes flow of a Newtonian fluid, the swimming speed of a squirmer is independent
of the swimming dipolarity S. In contrast, in a viscoelastic fluid, the swimming speed
depends on the value of B. For a spherical squirmer in an upper convected Maxwell
fluid, the speed is given by U/Uy =1 — 0.28Wi, where Wi is the Weissenberg number
(Datt & Elfring 2019). This equation indicates that the swimming speed decreases for
positive values of 8 and increases for negative values. It is reasonable to discuss the
swimmer type dependence on the locomotion of the squirmer in a viscoplastic fluid.
To address this question, we study cases of a puller/pusher (|8| =3) with higher polar
modes B,-» and C,, set to zero. We examine the velocity fields around the pushers, pullers
and neutral swimmers in a Bingham environment in figure 8, where the yield surface is
shown with the dash lines. By comparing figure 8(a,b,c) or (d,e,f), one can observe that
the flow field and the yield surface are symmetrical for § =3 and —3, but different for
neutral swimmers. We compare the swimming speed, power dissipation and efficiency
among pullers, pushers and neutral swimmers in table 2. We find that these values differ
between neutral swimmers and pullers or pushers, but are independent of the sign of 8 (i.e.
puller versus pusher). In some cases, the puller/pusher may swim faster than the neutral
swimmer, but in others, it may swim slower. However, its swimming efficiency is much
lower than that of a neutral swimmer, as the second polar mode contributes to mixing of
the surrounding fluid and increases power dissipation.

Figure 9 shows the normalised propulsion speed, power dissipation and swimming
efficiency of a puller (8 =3) as a function of aspect ratio. The results show that the
puller uses more energy and swims more slowly in viscoplastic fluids. In addition,
ellipsoidal pullers swim faster with increasing aspect ratio for a given Bingham number.
By comparing figures 9(b) and 3(b), we observe that ellipsoidal pullers expend more
energy compared with spherical pullers, while ellipsoidal neutral swimmers expend less
energy compared with spherical swimmers. As illustrated in figure 9(c), the hydrodynamic
efficiency in viscoplastic fluids is non-monotonic: it first decreases as a, approaches 1.5-2,
and then increases for a, > 2.
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Figure 8. The velocity fields (colours) and streamlines (black lines) for (a,b,c) Bi =1 and a, =3, (d.e.f)
Bi =10 and a, = 6. Panels show (a,d) f = —3, (b,e) B =3 and (¢,f) B =0. The green or blue lines represent
the yield surface, while the black lines are the streamlines.

ar B Bi U/B; P/uBireq n
3.0 -3 1.0 0.88 234.1 0.324
3.0 3 1.0 0.88 234.1 0.324
3.0 0 1.0 0.75 20.8 2.74
6.0 -3 10.0 0.69 734.3 0.394
6.0 3 10.0 0.69 734.3 0.394
6.0 0 10.0 0.76 94.9 4.37

Table 2. List of the normalised swimming speed, power dissipation and swimming efficiency for specific
cases of a pusher, puller and neutral swimmer in a viscoplastic fluid.
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Figure 9. (@) Normalised swimming speed, (b) normalised power dissipation and (c) swimming efficiency, of
a puller (8 =3), as a function of aspect ratio. Curves are obtained from Demir et al. (2024) for swimming in
Newtonian fluids, while the symbols denote numerical results.

In order to highlight the dependence of the squirmer’s aspect ratio and Bingham number
on the swimming speed variation due to the second polar mode, we plot a phase map
in figure 10(a), which shows the regimes where speed-enhanced (Ug—3/Up—o > 1) and
hindered (Ug—=3/Up=o < 1) swimming occur in the a,—Bi space. By applying data fitting,
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Figure 10. Ratio of swimming speed between a puller (8 =3) and a neutral squirmer in a viscoplastic
fluid. (a) Phase diagram over the aspect ratio a, and Bingham number Bi. Symbols are coloured by
the speed ratio Ug—3/Ug—o, and the dashed line gives the boundary between these states by data fitting.
(b) Value of Ug—3/Up—o as a function of the Bingham number Bi as a function of the aspect ratio.
(c) Normalised volume of yielded region Vy, g—3/ Vy g—¢ as a function of Bi.

the transition condition for Ug—3/Ug—o = 1 is represented by a dashed curve in the figure.
It is observed that the second polar mode only reduces the swimming speed of elongated
squirmers in a strongly viscoplastic environment when a, exceeds a critical value, while
in other scenarios, it enhances the speed. The ratio Ug—3/Ug—¢ as a function of the aspect
ratio a, is shown in figure 10(b). As a general trend, Ug—3/ Ug—( decreases with increasing
a, for a fixed value of Bingham number. Specifically, the speed of a spherical puller is
approximately 1.7 times greater than that of a spherical neutral swimmer at Bi = 100,
whereas the speed of an elongated puller (a, > 4) is only half that of the neutral squirmer.
To understand this behaviour, we compare the volume of the yielded regime for pullers
and neutral swimmers in figure 10(c) as a function of Bi. The results indicate that the
volume of the yielded region depends on both the Bingham number and the body shape.
In general, the second polar mode consistently increases the volume of the yielded region
for a spherical squirmer, leading to a speedup of the squirmer. However, for ellipsoidal
squirmers with aspect ratios exceeding a certain value, the yielded region created by the
polar mode is much smaller than that of neutral squirmers at large Bingham numbers
(Bi > 10). As aresult, the increased confinement slows down the ellipsoidal squirmer.

3.3. Neutral swirling squirmer

The swirling mode plays a role in complex fluids such as viscoelastic fluids. Theoretical
and numerical studies have indicated that the swimming speed of squirmers is enhanced
due to the coupling between chirality and viscoelasticity (Binagia et al. 2020; Housiadas
et al. 2021). In particular, previous studies highlight the critical role of the first normal
stress difference induced by the swirling flow in boosting swimming speeds (Binagia &
Shaqgfeh 2021; Kobayashi et al. 2024). To date, however, no one has considered how the
presence of the azimuthal modes in the squirmer model impacts the swimming kinematics
in a viscoplastic fluid, and studies of swirling squirmers in complex fluids have been
limited to spherical shapes.

In the a,—Bi plane plotted in figure 11(a), we report the change in swimming speed
when introducing the second swirling mode (x = 3) relative to its non-swirling counterpart
(i.e. Uy=3/ Uy—o) for different parameter points. Similar to our observation in figure 10(a),
while the swirling motion generally contributes to an increase in the swimming speed of
a squirmer for small a,, beyond a given threshold in aspect ratio and/or Bingham number,
the swirling squirmer swims slower than the non-swirling swimmer with the same a,
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Figure 11. Ratio of swimming speed between a swirling squirmer (x = 3) and a non-swirling neutral squirmer
in a viscoplastic fluid. (@) Phase diagram over the aspect ratio a, and Bingham number Bi. Symbols are
coloured by the speed ratio U, —3/U,—o, and the dashed line gives the boundary between these states by data
fitting. (b) Value of Uy—3/U,—¢ as a function of the aspect ratio. (¢) Normalised volume of yielded region
Vy,x=3/ Vv,x=0 as a function of the Bingham number.

and Bi. The transition condition for U,—3/U,—o = 1 is fitted and represented by a dashed
curve in the figure. In figure 11(b), we show that U,—_3/U,—o decreases with the aspect
ratio, similar to the results observed in figure 10(b). Specifically, the speed enhancement
of a spherical swirling squirmer relative to a non-swirling squirmer is approximately 1.7
times at Bi = 100, while the speed of ellipsoidal squirmers with large aspect ratios is
significantly reduced by the swirling mode. We plot the variation in the normalised volume
of the yielded region (Vy, y—3/ Vy, ,=o) in figure 11(c). For all aspect ratios, Vy, ,—3/ Vy, y=o
first increases with increasing Bi, reaching a local maximum at Bi = O(10~!), then
becomes smaller as Bi continues to increase. For a spherical squirmer, the swirling mode
always increases the volume of the yielded region. However, for ellipsoidal squirmers, the
yielded region generated by swirling squirmers can be much smaller than that of non-
swirling squirmers at large Bingham numbers. As a result, the increased confinement
reduces the speed of the squirmer with a large aspect ratio.

The stress distributions in figures 12 and 13 for a, = 1.5 and 6 can help us to understand
the observed dependence of the yielded region on the swirling mode. In the case of
ar = 1.5 and Bi = 10, the magnitude of both normal and shear stresses around a swirling
squirmer is much larger than that around a non-swirling squirmer, as shown in figure 12.
Therefore, the yielded region around a swirling squirmer is larger than that around a non-
swirling squirmer. Unlike the case of a, = 1.5 and Bi = 10, for the case of a, =6 and
Bi =100, the magnitude of both normal and shear stresses around a swirling squirmer
is smaller than that around a non-swirling squirmer, as shown in figure 13, resulting in a
reduced yielded region for the swirling squirmer. The mechanism by which the swirling
mode reduces stress around a squirmer with a large aspect ratio remains unclear and
warrants further investigation.

3.4. Force analysis

The dimensionless net force acting on a force-free squirmer is given by

F:/(_p)/.nd5+2/E-ndS+Bi/B-ndS:0, (3.4)
S S S

Frres Fvisc FPlas
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Figure 12. Stress fields around the squirmer (a, = 1.5) in a viscoplastic fluid with Bi = 10 in the x—y plane:
(a,b) swirling swimmer (x = 3) and (c,d) non-swirling swimmer. Panels (a,c) show the normal stress 7y, and
panels (b,d) show the shear stress t.y. The dashed line represents the yield surface.
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Figure 13. Stress fields around the squirmer (a, = 6) in a viscoplastic fluid with Bi =100 in the x—y plane:
(a,b) swirling swimmer (x = 3) and (c,d) non-swirling swimmer. Panels (a,c) show the normal stress 7y, and
panels (b,d) show the shear stress 7xy. The dashed line represents the yield surface.

where FP"¢ is the contribution due to pressure, F visc regults from the viscous stress and
FPlas represents the plastic force.

In a Newtonian fluid, the force can also be decomposed into contributions of the
thrust force and towing force as F = Fprysr + Frow = 0. Here, Fpyy5: 1s the thrust force
generated by the squirmer when it is being held fixed, while F;,,, = aU is the towing force
required to tow the squirmer at the swimming speed U with o being the translational drag
coefficient (Yang et al. 2017). However, this decomposition in complex fluids is not entirely
rigorous due to the nonlinearity of the rheology, i.e. F # Fipryst + Frow, as discussed
in Datt et al. (2015). We have carefully compared the thrust and towing forces in our
settings and found that the difference between them is approximately 10 % in magnitude at
Bi =10. Although such a decomposition is no longer rigorous in a viscoplastic fluid, we
can still gain some insight into the propulsion behaviour by analysing the trust and drag
forces separately. In particular, the comparison of the contributions of pressure, viscosity
and plasticity and the comparison of the contributions of thrust and drag coefficients are
helpful to facilitate our qualitative understanding.

In this subsection, we discuss changes in the thrust forces that act to generate propulsion
of the squirmer and how they vary with aspect ratio. This is done by analysing the
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Figure 14. (a—c) Thrust force contributions as a function of aspect ratio at Bi = 10. Panel (@) neutral swimmer,
B = x =0, panel (b) puller, 8 =3, x =0, panel (¢) neutral swirling swimmer, 8 =0, x = 3. (d) Translational
drag coefficient of different type of squirmers versus aspect ratio. The forces are normalised by (B1req.
(e) Volume of yielded region of squirmers versus aspect ratio.

force contributions parallel to the swimming axis on a fixed squirmer. Figure 14(a—c)
illustrates the variation of the decomposed thrust forces as a function of the aspect ratio
for different swimmer types at Bi = 10. We find that the total thrust forces do not change
much for various aspect ratios, suggesting that the variation in free-swimming speed, U, is
primarily attributed to changes in swimming drag associated with squirmer’s aspect ratio.
Moreover, the viscous, plastic and pressure contributions reveal a strong dependence on
the cell shape. For all swimmer types, the viscous and plastic forces significantly increase
with the aspect ratio, while the pressure force shows a decrease with a,. By comparing
figure 14(a—c), we observe that the neutral squirmer generates a larger thrust force than
the puller/pusher or swirling squirmer. In figure 14(d), we provide the translational drag
coefficient o = Fy,y, /U, which decreases with the aspect ratio. Meanwhile, in figure 14(e),
we observe that the volume of the yielded region around the fixed squirmer increases with
the aspect ratio. This is because the reduction in the confinement effect causes a decrease
in the translational drag coefficient as the aspect ratio increases. This ultimately leads to a
higher swimming speed as the aspect ratio increases.

For a neutral squirmer with constant-volume constraints, the results in figure 14 are
quite different from the observed behaviour in heterogeneous media (Demir et al. 2024).
In heterogeneous fluids, the thrust force increases with the aspect ratio, and the drag
coefficient shows a non-monotonic trend as a function of the aspect ratio: « generally
increases with increasing the aspect ratio for a, > 2.3. In summary, the increase in
swimming speed with aspect ratio in a heterogeneous fluid is primarily attributed to the
enhanced thrust force, whereas in a viscoplastic fluid, the increase in swimming speed
results from a decrease in the drag coefficient.

4. Squirmer-induced diffusion

Fluid particle diffusion induced by swimmers is a crucial factor in enhancing mass
transport and nutrient uptake, and is thus linked to a wide variety of biological phenomena,
such as reproduction, colonisation and infection. In the dilute limit, where swimmers
move along straight paths and the interactions between tracers and swimmers are well
captured, the diffusivity of fluid particle (tracer) is well studied (Thiffeault & Childress
2010; Lin et al. 2011; Pushkin & Yeomans 2013; Pushkin et al. 2013; Mueller & Thiffeault
2017). While the enhanced diffusion due to swimmers has been extensively explored, the
combined effects of the swimmer shape and the rheological properties of the surrounding
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Figure 15. (a) Numerical settings for the calculation of squirmer-induced diffusion. (b—d) Typical trajectories
of tracers as a neutral squirmer moves along the x axis. Panel (b), a, =3, Bi =0.01; (¢) a, =3, Bi =1.0;
(d) ar =8, Bi =1.0. The starting and ending points of the tracer trajectories are marked by filled black circles
and open red circles, respectively. Here, y = 0 represents the swimming axis of the squirmer.

fluid on the diffusive properties of fluid particles remain inadequately understood. Our aim
here is to explore how both the squirmer shape and the fluid viscoplasticity influence the
diffusion phenomena.

4.1. Motion of fluid particles

As depicted in figure 15(a), we consider an axially symmetric squirmer that moves in a
straight line along the x direction with a constant velocity U in a viscoplastic fluid. Here,
Ly, Ly and L, represent the domain sizes in the x, y and z directions, respectively. We

define A= L,L, as the cross-sectional area of the region, which is equal to (32req)2.
The simulation is carried out to the extent that this cross-sectional area is larger than the
yielded region. The area farther away from this region is solidified by plasticity, so the
motion of the fluid particles, including Brownian motion, is assumed to be negligible.
The number of sample tracers used in the simulation is N = 10002, and their initial
positions, ri"" ial are set uniformly at random in the mid-plane, where the flow is initially
unyielded. After the squirmer passes away, the sample tracers move to rl.f inal in the
unyielded region and stop moving. Particles are assumed to move with the velocity created
by the squirmer and the effect of Brownian motion is ignored. The displacement of

the ith tracer is defined as Ar; = rlf""“l — rinitial "and the ensemble-averaged squared
displacement tensor can be calculated by
N 20 0
1 I
Ro=—> (Ari®Arp=| 0 12 0 |, 1)

i=1 0 0 r?

where 1| and r are the average displacements over the N tracers parallel to (longitudinal),
and in the plane perpendicular to (transverse), the swimming direction. The velocities of
the tracers are interpolated from the velocity fields, and the time integration is performed
using a second-order Runge—Kutta method. The accuracy of the calculated displacements
is guaranteed by the number of particles and the database resolution used in this study.
The representative trajectories of the tracer particles for specific cases (8 = 0) are shown
in figure 15(b—d). At a low Bingham number of Bi = 0.01, the tracers initially positioned
near the swimming axis tend to move forward, while those farther from the axis are
displaced backwards. In contrast, at Bi = 1, all tracers are displaced backwards. In general,
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Figure 16. Dependence of the scaled longitudinal average displacement, rﬁ /T
(b) the Bingham number for a neutral squirmer.

the longitudinal average squared displacement rﬁ dominates over the transverse average

squared displacement ri, hence we focus on the longitudinal squared displacement in the
following discussion.

Figure 16 presents the scaled longitudinal average displacement, rﬁ /r2

eq’

of a, and Bi. Figure 16(a) reveals that, when the aspect ratio exceeds 2, rﬁ decreases
as the aspect ratio increases. This can be understood by comparing the tracer trajectories
in figure 15(c,d) for a neutral squirmer (Bi =1, a, =3 and 8) in motion. As the aspect
ratio increases, a decrease in the backward displacement is observed for tracers initially
positioned near the swimming axis, leading to a reduction in the longitudinal average
squared displacement. In figure 16(), we find that rﬁ generally increases with the Bingham
number. As presented in figure 15(b,c), an increase in the backward displacement of
tracers is observed as Bi increases, then the longitudinal average squared displacement
increases.

as a function

4.2. Diffusion coefficient

The diffusivity is a measure of the spreading of the tracer particles. The definition of the
diffusion tensor is given by

D— lim (r@®) —rO]1®[r) —r(O)])’ 4.2)

t—00 2t

where r is the position of a fluid particle, and the angle bracket denotes an ensemble
average over particles in the whole domain.

Here, we focus on fluid particle diffusion in a dilute suspension of squirmers, allowing
us to neglect multi-body interactions of squirmers. Since the motion of tracers in a plastic
fluid is restricted to the vicinity of the squirmer, the tracer particles only move when
a swimmer comes close and otherwise remain stationary. Furthermore, we assume an
isotropic suspension, where the orientation of the squirmers is isotropic. Under these
assumptions, the tracer exhibits a three-dimensional random walk, taking steps only when
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Figure 17. Dependence of squirmer-induced diffusivity on (a) the aspect ratio and (b) the Bingham number
for a neutral squirmer.

the squirmer comes close. The diffusion tensor becomes isotropic, and given by

r2 + 272 UA
D=Dl= <<—” . L> Wd’) I, (4.3)
IA P

where ( )4 indicates the average over the cross-sectional area A, and ¢ is the volume
fraction of squirmers in a dilute suspension. This definition indicates that the diffusivity
is linearly related to the total squared displacement of tracers, the swimming speed U and
the volume fraction ¢.

Figure 17 shows the numerically calculated squirmer-induced diffusivity, D, as a
function of a, and Bi. The results reveal a non-monotonic behaviour of diffusivity with
respect to both the aspect ratio and the Bingham number. As these parameters increase,
the diffusivity first reaches a maximum and then decreases. The increase in D with a, in
figure 17(a) is attributed to the increase in swimming speed shown in figure 3(a), while the
decrease in D with further increased a, results from the reduction in the average squared
displacement in figure 16(a). In contract, the increase in D with Bi for Bi <1 is driven
by the increase in the average squared displacement, while the decrease in D with Bi at
higher Bingham numbers is due to the reduced swimming speed, as seen in figure 2(a).

We then investigated the effect of the swimming dipolarity 8 (|8] < 1) on the squirmer-
induced diffusivity D. As shown in figure 18, we see that both rf and D reach minimum
values when B =0, i.e. for neutral squirmer, and increase as || increased. This result is
qualitatively consistent with previous studies for a Newtonian fluid (Pushkin et al. 2013;
Thiffeault 2015). Figure 19 shows the representative trajectories of tracer particles for the
spherical cases (a, = 1 and Bi =0.1). As | 8] increases, the tracers initially positioned near
the swimming axis tend to move forward with larger displacement, thereby enhancing the
average longitudinal squared displacement and diffusivity.

5. Conclusion

In this study, we numerically investigated the impact of fluid viscoplasticity and
microswimmer body shape on locomotion and swimmer-induced diffusion.

Our results show that both spherical and ellipsoidal neutral squirmers experience
reduced speed and increased power dissipation as the Bingham number Bi increases.
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Figure 18. Effect of 8 on (a) the longitudinal average displacement and (b) the squirmer-induced diffusivity.
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Figure 19. Typical trajectories of tracers as a squirmer (a, = 1 and Bi =0.1) moves along the x axis. Panel
(a) B=0; (b) B=—1;(c) B =1. The starting and ending points of the tracer paths are marked by filled black
circles and open red circles, respectively.

The efficiency of the swimmer, on the other hand, reaches its highest value at a moderate
range of Bi. By increasing the aspect ratio, ellipsoidal squirmers exhibit significantly faster
swimming speeds over spherical squirmers in viscoplastic fluids. Moreover, ellipsoidal
squirmers swim more efficiently in a weak viscoplastic fluid (Bi < 10~!), but less
efficiently under stronger viscoplastic conditions compared with spherical squirmers.
This behaviour is attributed to the reduced confinement effect from the yield surface for
elongated squirmers. We found that, for a fixed Bi, the ellipsoidal squirmer induces a
larger yielded region than the spherical squirmer, particularly at high Bingham numbers.

The swimming speed of the squirmer can be either enhanced or diminished by including
the second polar mode or swirling mode, depending on the combined effects of the
Bingham number and aspect ratio. We found that pullers and pushers with the same
strength of dipolarity have indistinguishable swimming speeds and efficiencies. Below a
critical aspect ratio or Bingham number, the speed of a pullet/pusher or swirling squirmer
exceeds that of its neutral squirmer counterpart, but above the critical values, these
modes slow down the squirmer. These findings highlight the importance of investigating
squirming modes to optimise swimming strategies in viscoplastic fluids. We plan to
explore the critical values over a broader parameter range in future work.
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We examine how the thrust forces and translational drag coefficients vary as a function
of the aspect ratio for different types of squirmers. Unlike the case of squirmers in
heterogeneous media (Demir et al. 2024), we found that while the total thrust forces do not
change significantly with varying aspect ratios, the translational drag coefficients exhibit a
pronounced decrease as the aspect ratio increases. These findings help explain the increase
in propulsion speed as a function of aspect ratio in a viscoplastic fluid.

The yield stress always restricts the flow region within a yield surface that lies at a
finite distance from the squirmer, thereby influencing the diffusion of fluid particles in
viscoplastic fluids. We calculated the squirmer-induced diffusivity and found that it is
higher for moderate aspect ratios and Bingham numbers, increasing with the magnitude
of the squirmer’s dipolarity. This study represents a first step towards understanding the
enhanced diffusion caused by non-spherical swimmers in complex fluids. It suggests that
a moderate aspect ratio of microswimmers, combined with the fluid viscoplasticity, can
significantly enhance active mixing.

Recent studies have explored the propulsion of ellipsoidal squirmers in complex
environments (van Gogh et al. 2022; Demir et al. 2024; Gong et al. 2024). Our findings
complement these closely related studies by addressing swimming in a viscoplastic
Bingham fluid. We note that the Bingham material is the simplest viscoplastic fluid,
neglecting viscoelastic and thixotropic effects seen in gel-like mucus. Future research
could investigate the swimming behaviour of squirmers in more complex environments.
Another intriguing avenue for future study is the impact of our findings on the
hydrodynamic interactions between microswimmers in viscoplastic fluids. Since flow
properties undergo rapid transitions across the yield surface, the collective motion of
swimmers in such a fluid will differ significantly from that in Newtonian fluids or
heterogeneous media.
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Appendix A. Imposed solenoidal velocity

To recover the tangential velocity ug, on the surface of the squirmer (given in (2.6)), we
impose an internal velocity field u, inside the squirmer. The value of #, on the surface of
the squirmer satisfies

L BTN R N
ua|r:to—usq— Bito(1—¢ )2(70 ¢ ) [(1+BC)es +3xLepl. (AD)

The imposed flow leads to a zero translational and rotational velocity (Li & Ardekani

2014), i.e.
/// u,Jd¢drde =0, and ///r X ugJdedrde =0, (A2)

where J = h¢hhy is the Jacobian determinant. In the spheroidal coordinate system, the
internal flow can be decomposed into u,; = v.e; + vee; and Uy = vy ey,.

The axisymmetric flow u,; can be expressed by the streamfunction ¥(z, ) as
ug =curl(¥(z, ¢)ey/hy), which satisfies E*w (z, ¢) =0 with

2 1

2 82 2 82
:m[(r — D5+ -0?) ] (A3)

a2
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ar
1.5 2 3 4 6 8
ao/ By —105.9 —739.6 —8222.8 —41284.3 —375334.5 —1781709.3
ai/By —105.9 —739.6 —8222.8 —41284.3 —375334.5 —1781709.3
ax/ By 117.3 855.8 9726.5 49156.9 448890.7 2134042.4
a3/ By —13.4 —119.5 —1509.9 —7881.8 —73571.9 —352356.6
as/ B> 8.3 26.9 118.3 321.6 1278.9 3370.0
as/B> 8.3 26.9 118.3 321.6 1278.9 3370.0
as/ B> —-4.9 -20.8 —106.4 —303.5 —1246.9 —3322.6

Table 3. Values of the constants a; in (A7) and (A8) for some specific aspect ratios.

The velocity components of u,; can be derived as

1 0¥

1 ov
ve=—— = )R — g (Ad)
hehy 3¢ Cle
= — = 1 - 2 - 2—. A5
e P G SR (A3)

The general separable solution for the stream function can be obtained as (Dassios et al.
1994)

(1, 8)=280(1)Go(8) + 81 (1)G1(8) + Z[gn(T)Gn(C) + hn () Hy (8] (A6)
n=2

Here, G, and H,, are the Gegenbauer functions of the first and second kinds, respectively,
while g, (t) and &, () are T-dependent functions given by certain linear combinations of
G (t) and Hy(t). For our problem, (A6) can be simplified as ¥ (t, {) = g2(7)G2(¢) +
g3(7)G3(¢). The functions g2(t) and g3(7) are determined as

82(1) =apGo(1) +a1G1(7) + a2G2(7) +a3G4(1), (A7)

83(1) = a4Go(1) +asG1(7) +acG3(7), (A8)

where the constants a; will be further calculated by requiring that the solution satisfies
(A1) and (A2). The boundary conditions for ¥ (7, ¢) read

¥ (10, £) =0, (A9)

ov

dT =Ty

= (B1 + Bx¢) o1 — ¢2). (A10)

Note that (A9) ensures v; = 0 at the squirmer’s surface (Theers et al. 2016). Since (A9)
and (A10) involve elliptic integrals, this boundary value problem is solved by numerical
method, and we list the numerical solution of a; in table 3.

Assuming that u,, = v,e, is purely in the ¢ direction with no ¢ dependence, a specific
velocity is given as

2
vy = —3Co70(1 —;2)%(r§—42)‘5;<f_ 1) , (A11)

70— 1
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Figure 20. Convergence characteristics of the swimming speed with grid resolution r,, /Ax for an ellipsoidal
squirmer with a, =2 in a Bingham fluid.

which satisfies the boundary condition as well as the conditions of zero translational and
rotational velocity
1

vy (10, £) = —3Cat0(1 — )3 (2 — £2) "¢, (Al12)

/// Uz Jd¢drdp =0 and /// r X ugJdedrde =0. (A13)

We note that (A11) does not satisfy the Stokes equation. Nevertheless, this does not affect
our results, as the fluid field inside the particle domain is not physically meaningful.
This is because, in a still fluid, if the velocity distribution at the particle’s surface is
given as a boundary condition, the flow outside it is uniquely determined. Equation (A11)
also ensures that the velocity component perpendicular to the particle’s surface is zero,
thereby ensuring mass conservation. Finally, the imposed velocity u, = u,1 + u42 can be
computed in the prolate spheroidal coordinates.

Appendix B. Mesh convergence test

To ensure sufficient mesh resolution in the boundary layers near the squirmer’s surface,
we performed a mesh convergence test. The convergence of U/B; with respect to the
grid resolution r.;/Ax for an ellipsoidal neutral squirmer of a, =2 in a Bingham fluid
is shown in figure 20. The results indicate numerically converged solutions, and the mesh
resolution for r.4 /Ax > 16 is adequate to resolve the boundary layers in Bingham fluids.
The outcomes from r,, /Ax = 16 are in good agreement with those for r., /Ax =32, with
a relative error of approximately 3 %. We choose r.;/Ax = 16 in the present simulations
for efficiency.
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