
J. Fluid Mech. (2023), vol. 969, A21, doi:10.1017/jfm.2023.525

On asymmetric vortex pair interactions in shear
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This study examines the two-dimensional interaction of two unequal co-rotating viscous
vortices in uniform background shear. Numerical simulations are performed for vortex
pairs having various circulation ratios Λ0 = Γ1,0/Γ2,0 = (ω1,0/ω2,0)(a2

1,0/a2
2,0) � 1,

corresponding to different initial characteristic radii ai,0 and peak vorticities ωi,0 of each
vortex i = 1, 2, in shears of various strengths ζ0 = ωS/ω2,0, where ωS is the constant
vorticity of the shear. Two primary flow regimes are observed: separations (ζ0 < ζsep < 0),
in which the vortices move apart continuously, and henditions (ζ0 > ζsep), in which the
interaction results in a single vortex (where ζsep is the adverse shear strength beyond
which separation occurs). Vortex motion and values of ζsep(Λ0) are well-predicted by
a point-vortex model for unequal vortices. In vortex-dominated henditions, shear varies
the peak–peak distance b, and vortex deformation. The main convective interaction begins
when core detrainment of one vortex is established, and proceeds similarly to the no-shear
(ζ0 = 0) case: merger occurs if the second vortex also detrains, engendering mutual
entrainment; otherwise straining out occurs. Detrainment requires persistence of straining
of both sufficient magnitude, as indicated by relative straining above a consistent critical
value, (S/ω)i > (S/ω)cr, where S is the strain rate magnitude at the vorticity peak, and
conducive direction. Hendition outcomes are assessed in terms of an enhancement factor
ε ≡ Γend/Γ2,start. Although ε generally varies with ζ0, (a2

1,0/a2
2,0) and (ω1,0/ω2,0) in a

complicated manner, this variation is well-characterized by the pair’s starting enstrophy
ratio, Z2/Z1. Within a transition region between merger and straining out (approximately
1.65 < Z2/Z1 < 1.9), shear of either sense may increase ε.
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1. Introduction

Vortices and their interactions play significant roles in myriad flows ranging from the
astrophysical (Fu et al. 2014) to the quantum mechanical (Baggaley & Barenghi 2018),
and as such, have attracted intense research interest for decades. A large portion of this
research has focused on the relatively simplified case of two-dimensional vortices, which
are generally agreed to play a role in the famous inverse energy cascade in two-dimensional
turbulence, although by what means and to what extent remain uncertain (Xiao et al.
2009; Burgess, Dritschel & Scott 2017a,b; Sutyrin 2019). Studies of two-dimensional
vortices and their role in inter-scale flow phenomena have generally fallen into one of two
categories: macroscopic studies of the vortex population in aggregate, which generally
focus on the evolution of the number of vortices in the flow field and the distribution
of their properties (Tabeling 2002); and atomic studies that consider in detail a single
pair of vortices, whose interaction is often considered a ‘building block’ of the more
complicated flows (Leweke, Le Dizès & Williamson 2016). The vast majority of these
atomic studies have considered a symmetric pair – two identical vortices – interacting
in isolation; a handful have considered unequal vortices interacting in isolation; a small
number have considered a symmetric pair in a background flow such as linear shear; and
to date none have considered the most general case of two unequal vortices interacting in
background flow. This is despite that last-mentioned case being, self-evidently, the most
common in turbulent flows; to study it necessitates a robust, general understanding of the
isolated two-vortex interaction, which until recently has remained elusive. However, recent
developments have elucidated a general underlying physical model for vortex interactions,
enabling the more general case to now be considered.

An isolated symmetric pair of two-dimensional co-rotating vortices undergoes merger,
combining the fluid of each into a single compound vortex, when its aspect ratio surpasses
a critical value, a/b > (a/b)cr, where a is the characteristic vortex radius, and b is
the peak–peak distance; prior to the onset of the merging process, a = a(t) grows (in
viscous flow) and b = b0 remains constant (see e.g. Melander, Zabusky & McWilliams
1988; Cerretelli & Williamson 2003; Meunier, Le Dizès & Leweke 2005). This critical
distance corresponds to the point at which their mutual strain causes the vortices to
become sufficiently deformed that fluid detrains from the vortex cores, in the vicinity
of a central hyperbolic point in the instantaneous streamline pattern (e.g. Velasco Fuentes
2005; Brandt & Nomura 2006). This engenders a mutual entrainment process whereby
the vortex cores move together rapidly, producing the compound vortical structure (Huang
2005; Brandt & Nomura 2007). When viscosity is present, the continuous growth of a
ensures that (a/b)cr is always eventually met (Melander et al. 1988).

An isolated asymmetric pair – two unequal co-rotating vortices – on the other hand, may
interact in one of several different ways, depending on a number of factors (e.g. Melander,
Zabusky & McWilliams 1987; Dritschel & Waugh 1992; Yasuda & Flierl 1997; Trieling,
Velasco Fuentes & van Heijst 2005). There is therefore no simple critical merging distance
or similar criterion for interaction (Dritschel & Waugh 1992). When viscosity is present,
the interaction always produces a single vortex, but the interaction may be either a merger
similar to the symmetric case, or a straining out in which only one vortex is induced to
detrain and is ultimately broken up and destroyed, while the survivor remains essentially
unaffected (Huang 2006). Thus the outcome of interaction depends upon the relative
timing of detrainment and destruction (Brandt & Nomura 2010): once the first vortex is
induced to detrain, if it can induce the second to also detrain before the first breaks up,
then mutual entrainment ensues (i.e. merger occurs); otherwise, the first-detraining vortex
is simply destroyed (i.e. straining out occurs).
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Asymmetric vortex pairs in shear

In other words, the outcome of an asymmetric pair interaction derives from the
degree of mutuality of the interaction. Folz & Nomura (2017) assessed these outcomes
quantitatively in terms of an enhancement factor ε ≡ Γend/Γ2,start and a merging
efficiency η ≡ Γend/Γtot,start, and found that all interaction outcomes across a wide range
of pair parameters (including initial peak vorticity ratio ω1,0/ω2,0 and initial radius ratio
a1,0/a2,0) were well-characterized by a mutuality parameter

MP = (S/ω)1

(S/ω)2
, (1.1)

which compares the relative straining (S/ω)i of each vortex i = 1, 2, where S is the
strain rate magnitude (note that S =

√
S2, where S2 = tr[SmnSmn]), and ω is the absolute

vorticity at the vortex peak. Merger corresponds to MP near unity and straining out
to high MP, with a narrow transition region between them. This is consistent with an
earlier finding by Trieling et al. (2005) that the occurrence of complete merger of an
asymmetric pair (in inviscid flow) was characterized reasonably well by a critical merging
distance based on the pair’s mean radius (ā), while complete straining out occurred when
b0 was below that associated with an induced relative strain rate sufficient to cause
breakup of a single vortex in shear. Dritschel & Waugh (1992) found similar results for
highly disparate Rankine vortices. The relative straining, in turn, reflects the deformation
(i.e. eccentricity) of each vortex (see Le Dizès & Laporte 2002; Leweke et al. 2016), and
the onset of detrainment for a given vortex is associated with a consistent critical value
(S/ω)cr ≈ 0.135 ± 0.003 (Folz & Nomura 2017). For a symmetric pair, these criteria
are equivalent to (a/b)cr. This mutuality model (including the detrainment–entrainment
processes) constitutes a general model for the interaction of two two-dimensional vortices
in isolation.

This paper now examines the influence of linear background shear – which can be
considered a first-order approximation of the flow generated by surrounding vortices in
a turbulent flow field – on these processes (e.g. Trieling, Dam & van Heijst 2010). The
shear is characterized in terms of a shear strength parameter of the form

ζ ≡ ωS/ω2, (1.2)

which compares the constant vorticity of the shear ωS = −α ≡ −dU/dy to a characteristic
vorticity of the pair (which potentially could be time-varying; here the vorticity of the
stronger vortex 2 is used). Shear is considered favourable when it has the same rotational
sense as the vortices, i.e. when ζ > 0, and adverse when they are opposed, i.e. when
ζ < 0. In general, shear deforms a vortex elliptically, with the major axis oriented
approximately orthogonal to or aligned with the shear direction in favourable and adverse
shear, respectively.

When adverse shear acts on a single isolated vortex, the opposing rotations of the vortex
and the shear create a pair of hyperbolic stagnation points in the elliptical streamline
pattern about the vortex center, which causes peripheral vorticity of a non-uniform vortex
to be advected away, or ‘stripped’, in the form of filaments (see e.g. Legras & Dritschel
1993; Kimura & Herring 2001; Legras, Dritschel & Caillol 2001; Hurst et al. 2016). This
is fundamentally the same physical process as detrainment of a vortex in a pair. Increasing
the relative strength of adverse shear (i.e. making ζ < 0 more negative) causes detrainment
to occur at progressively higher vorticity levels within the non-uniform vortex (Legras &
Dritschel 1993), until a generally consistent critical shear strength is reached at which
the vortex breaks up and is rapidly elongated into a filament (ζbu = −0.10 to −0.13; see
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also Mariotti, Legras & Dritschel 1994; Paireau, Tabeling & Legras 1997). In viscous
flow, the peak vorticity of the vortex, ω = ω(t), generally decays in time due to viscous
diffusion, causing |ζ | (of either sense) to increase (as ∼ 1/ω, due to conservation of
circulation Γ = πa2ω = const. as area increases, linearly for the no-shear, i.e. ζ0 = 0,
case, a2(t) = a2

0 + 4νt; see e.g. Meunier et al. 2002), ensuring that detrainment and
breakup always ultimately occur in adverse shear.

When two co-rotating vortices are present, the shear exerts these same influences
directly upon each as they interact with each other. As noted above, all studies of this
case to date have considered a symmetric pair (e.g. Carton, Maze & Legras 2002; Perrot
& Carton 2010; Marques Rosas Fernandes et al. 2016). Additionally, and perhaps most
significantly, sufficiently adverse shear, i.e. ζ < ζsep, causes separation of the pair, wherein
the vortices simply move apart indefinitely rather than merging or orbiting (observed
by Kimura & Hasimoto (1985) for point vortices; Maze, Carton & Lapeyre (2004) for
finite-area inviscid vortices; and Folz & Nomura (2014) for finite-area vortices with
viscosity). If it does not cause separation, the shear causes the vortices to follow elliptical
trajectories rather than circular. Note that whether the shear causes b = b(t) to increase or
decrease from the initial b0 depends not only upon the relative sense of shear, as is often
stated in the literature, but also upon the initial orientation of the vortices (this is discussed
briefly in § 5). In inviscid flow, a stationary case (ζ = ζsep) exists between the separation
and elliptical motion cases, with two distinct types of cases for ζ > ζsep: periodic motion
and merger. The occurrence of merger is found to be reasonably well-characterized by
the minimum b falling sufficiently low that the aspect ratio surpasses the critical value
previously found for symmetric pairs without shear (Trieling et al. 2010). In viscous flow,
the presence of viscosity effectively ensures that merger always occurs when ζ > ζsep,
commencing when the combined variation of a and b results in a/b > (a/b)cr, where the
value of (a/b)cr is similar to that observed in the no-shear case (Folz & Nomura 2014). In
these cases, the primary effect of shear is to accelerate or delay the onset of the merging
process.

Drawing upon these observations, the convective interaction of two unequal vortices
under the influence of linear background shear is now examined. Numerical simulations
of an asymmetric pair of two-dimensional viscous vortices in linear background shear
are performed. The interaction regimes are identified and supported by analytical and
point-vortex results. This study focuses primarily on cases in which the vortices interact
to produce a single resulting vortex, i.e. henditions (see § 1.1). For these cases, the
influence of shear on vortex motion, deformation and interaction processes is examined
both qualitatively and quantitatively. A characterization of the interaction outcomes is
developed, in the course of which a quantitative assessment is performed in the manner
of Folz & Nomura (2017), and the results are correlated to significant pair parameters.
Since the parameter space of this flow is quite large, this study considers primarily the
effects of initial shear strength ζ0 and initial circulation ratio Λ0, with two sub-categories
of the latter. These results elucidate the major effects of shear on a pair of interacting
vortices, and show how their interaction outcomes relate to the considered initial flow
parameters, forming a basis from which future studies may consider further parameters
and flow regimes.

This paper is organized as follows. First, § 2 discusses the motion of a pair of unequal
point vortices in linear background shear, and an analytical expression for the critical shear
strength for separation is obtained. Next, § 3 describes the flow set-up and simulations.
Then § 4 gives general observations for vortex interactions in shear and identifies the main
flow regimes: § 4.1 discusses separations, and § 4.2 outlines the vortex-dominated regime.
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Asymmetric vortex pairs in shear

In § 5 is the heart of the study, which analyses vortex-dominated henditions. The first
subsection, § 5.1, describes the method used to perform the quantitative assessment of
the hendition outcomes; the second subsection, § 5.2, examines the influence of the shear
on the timing and duration of detrainment; and the final subsection, § 5.3, presents the
results of the quantitative assessment and discusses the influence of shear. Finally, § 6
summarizes the findings, and discusses some implications and potential areas of further
study. Supplementary material is also provided (available online at https://doi.org/10.1017/
jfm.2023.525), which includes additional information about the quantities used to evaluate
henditions, including their time development in the single-vortex case.

1.1. A note on nomenclature: hendition
There is no extant word in the English language that means, simply, ‘two things
become one thing’ without also implying either increase or enhancement (combination,
unification, consolidation, fusion, incorporation, etc.). This is certainly the case for
‘merger’, which is used as a generic term by some researchers (e.g. Melander et al. 1987;
Tabeling 2002; Jing, Kanso & Newton 2012), while others use it to denote specifically
interactions that produce an enhanced resulting vortex (e.g. Dritschel & Waugh 1992;
Trieling et al. 2005; Brandt & Nomura 2010). Other terms imply only destruction without
any increase or enhancement (annihilation, removal, etc.). This muddles the terminology
and obscures the distinction between fundamentally different types of interaction (those in
which mutual entrainment does, and does not, occur).

As such, the authors introduce the new term ‘hendition’, from the Greek phrase
‘ ’ meaning ‘one through two’. A hendition is an occurrence in which there are
two vortices at the start and only one at the end, regardless of the properties of the resulting
vortex (relative to the starting vortices) or the physical process by which this interaction
proceeds. Merger and straining out are then specific types of hendition, as is the case of
two vortices becoming one through diffusion (not considered here). In a more complicated
flow, such as two-dimensional turbulence, the case of a dipole encountering a third vortex,
after which the two like-signed vortices interact to produce one, would be considered
a hendition. The case of three or more like-signed vortices interacting simultaneously,
resulting ultimately in a single vortex, could be referred to by a similar term: henmultion.
It is hoped that the use of the term ‘hendition’ will ensure clarity of this paper, and more
generally may be of use in vortex-related discussions going forward.

2. Modified point-vortex model for unequal vortices

The basic behaviour of two well-separated vortices is similar to that of two point vortices
(Trieling et al. 2010), even in viscous flow (Folz & Nomura 2014). Kimura & Hasimoto
(1985) studied the motion of equal point vortices in shear, and Ryzhov, Koshel & Carton
(2012) studied the motion of unequal point vortices in an arbitrary deformation flow. Here,
the motion of two unequal point vortices in uniform background shear is examined, and
the boundary between the major flow regimes is identified.

Two point vortices having circulation ratio Λ ≡ Γ1/Γ2 are located initially at x1 =
−b0/2 and x2 = b0/2 and y0 = 0, where b0 is the initial peak–peak distance, and x and y
are the flow and shear directions, respectively. The linear background shear has constant
strength α ≡ dU/dy. The vortices’ motion is described by a system of equations (Kimura
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(a) (b) (c) (d )

Figure 1. Trajectories of point vortices of pairs (red for vortex 1, blue for vortex 2), having circulation ratio
Λ = Γ1/Γ2 = 0.70, within shear of various strengths μ = αb2

0/Γ2. For this case, separation shear strength is
μsep = 0.0995. The filled circles indicate the starting positions for the integrated trajectories (2.1)–(2.4), with
(a) μ = −0.0992, (b) μ = 0, (c) μ = 0.0992, and (d) μ = 0.128.

& Hasimoto 1985)

dx1

dt
= − Γ2

2π

y1 − y2

b2 + αy1, (2.1)

dy1

dt
= Γ2

2π

x1 − x2

b2 , (2.2)

dx2

dt
= − Γ1

2π

y2 − y1

b2 + αy2, (2.3)

dy2

dt
= Γ1

2π

x2 − x1

b2 , (2.4)

where (xi, yi) are the coordinates of vortex i = 1, 2, and the instantaneous peak–peak
distance b =

√
(x1 − x2)2 + ( y1 − y2)2 may vary in time. The y-coordinate of the centre

of rotation of the system is Y = (Γ1y1 + Γ2y2)/(Γ1 + Γ2), and is always at 0.
These equations can be integrated to find the vortex trajectories. In symmetric flow,

these trajectories are either closed or open, with a critical stationary case separating these
regimes (Kimura & Hasimoto 1985). Trieling et al. (2010) characterized these regimes
using a non-dimensional shear strength parameter μs = αb2

0/Γ for symmetric vortices.
Closed trajectories occur in favourable (μs < 0) to weakly adverse (μs,sep > μs > 0)
shear, where μs,sep is the critical shear strength associated with the stationary case. In
this regime, from their initial position, the vortices follow overlapping elliptical trajectories
where an extremum of b occurs when the vortices are aligned vertically, i.e. along the shear
direction. This extremum is minimum b in favourable shear, and maximum b in adverse
shear, respectively, with circular trajectories occurring in the no-shear case (μs = 0). Open
trajectories occur in strongly adverse shear (μs > μs,sep > 0), and the vortices simply
move apart continuously; this behaviour is termed separation.

For the case of unequal vortices, a similar parameter is constructed:

μ = αb2
0/Γ2 (2.5)

based on the stronger vortex, here taken to be 2. Figure 1 shows example trajectories
for a pair having Λ = 0.70 in various μ. Similar regimes are observed, with the
vortices following closed concentric elliptical trajectories for favourable (μ < 0) or weakly
adverse (μsep > μ > 0) shear, and open trajectories for strongly adverse shear (μ > μsep),
distinguished by a critical separation shear strength μsep.

In the symmetric case, an analytical expression for the critical shear strength associated
with the stationary case, similar to μs,sep, was derived by Kimura & Hasimoto (1985)
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Asymmetric vortex pairs in shear

using the Hamiltonian of the system (2.1)–(2.4),

H = −Γ1Γ2

4π
ln[((x1 − x2)

2 + ( y1 − y2)
2)] + α

2
(Γ1y2

1 + Γ2y2
2). (2.6)

When the vortices are unequal, many of their simplifying assumptions cannot be made,
but an analytical expression for μsep may nevertheless be found in the following manner.

Rearranging (2.6) gives

H − α

2
(Γ1y2

1 + Γ2y2
2) = −Γ1Γ2

4π
ln[((x1 − x2)

2 + ( y1 − y2)
2)]. (2.7)

Then

exp
(

H
−4π

Γ1Γ2
− −4π

Γ1Γ2

α

2
(Γ1y2

1 + Γ2y2
2)

)
= ((x1 − x2)

2 + ( y1 − y2)
2), (2.8)

and noting that H is constant,

C exp
(

4π

Γ1Γ2

α

2
(Γ1y2

1 + Γ2y2
2)

)
= ((x1 − x2)

2 + ( y1 − y2)
2) = ξ2 + η2, (2.9)

where ξ ≡ x1 − x2 and η ≡ y1 − y2 (using the nomenclature of Kimura & Hasimoto
1985), and C = ξ2

0 since η = 0 in the initial condition.
When the vortices are oriented vertically, the coordinates y1 and y2 are equal to the

distances of the weaker and stronger vortices from the centre of rotation, r1 and r2
respectively, since that centre remains fixed in space. Additionally, η = b in the vertical
orientation. Therefore, at the critical time,

y1 = r1 ≡ 1
1 + Λ

ηv, y2 = r2 ≡ Λ

1 + Λ
ηv, (2.10a,b)

where ηv is η when the vortices are aligned vertically, and Λ ≡ Γ1/Γ2. So

ξ2
0 exp

(
2πα

Γ1Γ2
(Γ1r2

1 + Γ2r2
2)

)
= η2

v, (2.11)

ξ2
0 exp

(
2πα

ΛΓ2

(
Λ

η2
v

(1 + Λ)2 + Λ2η2
v

(1 + Λ)2

))
= η2

v, (2.12)

and ultimately

ξ2
0 exp

(
2πα

Γ2(1 + Λ)
η2

v

)
= η2

v. (2.13)

Normalizing (2.13) by the initial peak–peak distance ξ0 = b0,

exp

(
2παb2

0
Γ2(1 + Λ)

(
ηv

b0

)2
)

=
(

ηv

b0

)2

. (2.14)

For this equation to have a finite solution, it must be true that

2παb2
0

Γ2(1 + Λ)
� 1

e
, (2.15)
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ζsep

Λ0 a2
1,0/a2

2,0 ζsep,p ReΓ = 5000 ReΓ = 1000

1.0 1.0 −0.0091 −0.0093 ± 0.0001 −0.0093 ± 0.0001
0.9 1.0 −0.0086 −0.0089 ± 0.0002 −0.0089 ± 0.0002
0.8 1.0 −0.0082 −0.0084 ± 0.0002 −0.0084 ± 0.0002
0.7 1.0 −0.0077 −0.0077 ± 0.0002 −0.0079 ± 0.0001
0.6 1.0 −0.0073 −0.0074 ± 0.0001 −0.0074 ± 0.0001
0.5 1.0 −0.0068 −0.0069 ± 0.0001 —
0.9 0.9 −0.0086 −0.0089 ± 0.0002 −0.0089 ± 0.0002
0.8 0.8 −0.0082 −0.0084 ± 0.0002 −0.0084 ± 0.0002
0.7 0.7 −0.0077 −0.0077 ± 0.0002 −0.0080 ± 0.0002
0.6 0.6 −0.0073 −0.0074 ± 0.0001 −0.0074 ± 0.0001
1.0 0.9 −0.0091 −0.0093 ± 0.0002 —
1.0 0.6 −0.0091 −0.0093 ± 0.0003 —
0.9 0.81 −0.0086 −0.0086 ± 0.0002 —
0.9 0.54 −0.0086 −0.0088 ± 0.0002 —

Table 1. Predicted ζsep,p from (2.18), with corresponding observed ζsep = −α/ω2,0 from numerical simulation
of various starting pairs having a2,0/b0 = 0.157 (see § 4.1). The margin of error on the empirical data
corresponds to the bracketing values used to determine ζsep.

so the critical criterion in terms of μ = αb2
0/Γ2 is

μsep = (1 + Λ)

2πe
. (2.16)

Note that for symmetric vortices, this is identical to the criterion found by Trieling et al.
(2010).

This criterion can be modified to apply for well-separated finite area vortices. Recalling
that each vortex’s circulation remains constant in this case, Γ2 = Γ2,0 = πa2

2,0ω2,0 may
be substituted into (2.16), where a2,0 and ω2,0 are the stronger vortex’s initial characteristic
radius and peak vorticity, respectively:

μsep = (αb2
0/πa2

2,0ω2,0)sep = (1 + Λ)

2πe
. (2.17)

Then ( −α

ω2,0

)
sep

≡ ζsep,p = −(1 + Λ)

2e

(
a2,0

b0

)2

, (2.18)

where ζsep,p is a critical shear strength for the separation of finite-area vortices as predicted
by this modified point-vortex model (an equivalent expression can be found by normalizing
using vortex 1). It is seen that there is direct dependence between the magnitude of ζsep,p
and both Λ and (a2,0/b0): a more disparate pair (i.e. having lower Λ) will separate for
weaker adverse shear than a more similar pair, although there is a minimum adverse shear
strength required for any separation to occur (limΛ→0 ζsep,p(Λ) = (a2,0/b0)

2/(2e) /= 0).
Likewise, a given pair (i.e. having a given Λ) will separate for weaker shear the smaller
their initial aspect ratio a2,0/b0 is (i.e. the larger their initial normalized peak–peak
distance). Values for ζsep,p for various pairs are shown in table 1. In § 4.1, these values
are compared to empirical results from simulations of finite-area pairs.
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2a1,0 2a2,0

b0

y

x

ω1,0 ω2,0

dU
dyα = 

Figure 2. Initial flow configuration: two co-rotating vortices, i = 1, 2 (peak vorticity ωi,0, characteristic radius
ai,0, Gaussian vorticity distribution), whose peak–peak axis is oriented orthogonally to the direction of linear
background shear (strength α = dU/dy). The case shown has ζ0 > 0.

3. Set-up and numerical simulations

The initial flow configuration is shown in figure 2: for each case, two finite-area,
co-rotating vortices are initially oriented along the flow direction of linear background
shear, separated by an initial peak–peak distance b0. Each vortex i = 1, 2 is initially
circular with a Gaussian vorticity distribution, and has an initial peak vorticity ωi,0 and
characteristic radius ai,0, giving an initial circulation ratio

Λ0 ≡ Γ1,0

Γ2,0
= ω1,0a2

1,0

ω2,0a2
2,0

� 1. (3.1)

This study focuses primarily on pairs having either ω1,0/ω2,0 < 1, a2
1,0/a2

2,0 = 1 (termed
‘UPEA’ for ‘unequal peaks, equal areas’), or ω1,0/ω2,0 = 1, a2

1,0/a2
2,0 < 1 (termed

‘EPUA’ for ‘equal peaks, unequal areas’), as well as symmetric pairs (i.e. those having
ω1,0/ω2,0 = a2

1,0/a2
2,0 = 1). A handful of pairs having ω1,0/ω2,0 /= 1, a2

1,0/a2
2,0 /= 1

(termed ‘UPUA’ for ‘unequal peaks, unequal areas’) are also included in § 4.1. The overall
range of circulation ratios considered is 0.6 � Λ0 � 1 (a few additional UPEA cases with
Λ0 = 0.50 were also performed to aid in the analysis of separations). The pair’s initial
aspect ratio a2,0/b0 = 0.157 and the circulation Reynolds number ReΓ = Γ2,0/ν = 5000
are maintained at constant values in order to facilitate comparison with the no-shear case
(ζ0 = 0) examined previously in Folz & Nomura (2014, 2017). This also allows each
vortex of the initially well-separated pair to adjust to the combined influence of the other
vortex and the shear prior to interacting. This methodology helps to ensure that observed
differences between the present results and the no-shear case are attributable primarily to
the effects of shear.

The numerical simulations are performed using a hybrid finite-difference/pseudo-
spectral code with periodic boundary conditions in the flow direction and shear-periodic
boundary conditions in the shear direction (see Gerz, Schumann & Elghobashi (1989)
for details of the method). The pair is initially positioned at the centre of a square
domain of size L × L with 20482 grid points, and b0 = 1/24L. This gives a resolution of
approximately 38 points across the larger core. In comparison with a 10242 grid for cases
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spanning the considered parameter range, differences in computed vortex quantities were
found to be small (e.g. core circulation, an integrated quantity, differed by at most 2 %,
and the starting relative straining (S/ω)1, a pointwise quantity, differed by at most 5 %),
the quantitative assessments were similar (e.g. the merging efficiency η differed by at most
five percentage points, and typically less than two; these quantities are discussed in § 5),
and qualitatively all notable phenomena were observed for both resolutions in each case.
Domain size independence was also tested using an initial separation distance b0 = 1/12L
in the favourable case and b0 = 1/18L in the adverse case, with similarly small observed
differences (e.g. η differed by at most six percentage points). The higher 20482 resolution
and smaller b0 = 1/24L were utilized in all cases in order to minimize spurious variation
in core quantities employing the threshold (see § 5), and to maintain maximum fidelity in
general (this resolution was also previously found to be sufficient for the no-shear case;
see Brandt & Nomura 2007, 2010).

The relative strength of the constant shear, α ≡ dU/dy, is characterized in terms of its
vorticity ωs relative to that of the stronger vortex in the initial condition ω2,0:

ζ0 ≡ ωs

ω2,0
= −α

ω2,0
. (3.2)

In order to allow the vortices to adjust to the shear prior to the start of the main convective
interaction, the range of |ζ0| considered is limited to |ζ0| < ζadj, where ζadj is a value
chosen such that the viscous increase of |ζ | (∼ 1/ω(t); see § 1) would not be sufficient to
induce detrainment prior to the end of the adjustment period of the vortices to each other,
t∗adj. This value ensures that |ζ1(t∗adj)|, |ζ2(t∗adj)| < |ζcr,s|, where the critical shear strength
associated with detrainment, ζcr,s ≈ −0.063, was found through simulations of a single
vortex in shear (see the supplementary material). An estimate for t∗adj is made using results
from Le Dizès & Verga (2002) for a Gaussian vortex having ReΓ = 2000 (the lower ReΓ

result is used to ensure a conservative estimate), which indicate an adjustment period of
approximately tν/(πa2

1,0) = 0.05 using their nomenclature. Using analytical results for a
single isolated Gaussian vortex (see § 1) gives a requirement that |ζi,0| � 0.0387, which in
turn gives a value |ζ2,0| � ζadj ≡ 0.0387(ω1,0/ω2,0).

In all cases, temporal results are presented on a convective time scale t∗ = t/T0, where
T0 = (4πb2

0)/(Γ1,0 + Γ2,0) is the period of revolution of a pair of point vortices having
the same Λ0 and ζ0 = 0.

4. General flow behaviour

First, observations of the general flow behaviour are made, and the major interaction
regimes identified, for two unequal vortices interacting in the presence of shear (with finite
viscosity). Figures 3 and 4 show vorticity contours of example cases demonstrating the
major trends with respect to shear strength ζ0 and vortex circulation ratio Λ0. Observations
for UPEA and EPUA cases are qualitatively similar, so only UPEA cases are shown. The
motion and full flow development of two illustrative cases, ζ0 = 0.0167, Λ0 = 0.90 and
ζ0 = −0.0073, Λ0 = 0.70, can be seen in supplementary movies 1 and 2, with useful
related information presented in figure 5.

For comparison, a no-shear merger case is included (ζ0 = 0, Λ0 = 0.90, figure 3d)
and reviewed briefly. As discussed in § 1, when shear is not present, the vortices
initially (columns 1–4) revolve along concentric circular trajectories (maintaining constant
peak–peak distance b0; see dashed lines in figures 5b,e), growing by viscous diffusion and
deforming elliptically along the peak–peak axis due to their intensifying mutually induced
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0

(a)

0.05 0.07 0.12 0.14 0.30

0

(b)

0.15 0.55 0.66 1.14 1.22

0

(c)

0.24 0.73 0.97 1.62 1.86

0

(d )

0.22 0.85 1.56 2.04 2.23

0

(e)

0.32 1.38 1.62 2.51 2.67

0

( f )

0.20 0.40 0.60 0.80 1.00

0

(g)

0.02 0.03 0.05 0.07 0.08

Figure 3. Vorticity contour plots showing time evolution of flows for UPEA pairs having ReΓ = 5000 and
Λ0 = 0.90, with varying shear strength ζ0: (a) ζ0 = 0.1, (b) ζ0 = 0.0167, (c) ζ0 = 0.0045, (d) ζ0 = 0 (no
shear), (e) ζ0 = −0.0045, ( f ) ζ0 = −0.0091, and (g) ζ0 = −0.1. For Λ0 = 0.90, ζsep = −0.0089 (see table 1)
and ζadj = 0.0348; cases (b–e) fall within the vortex-dominated regime, ζsep < ζ0 < ζadj. For these cases, each
column corresponds to an equivalent stage of flow development (see §§ 4 and 5.2): column 1, initial condition;
column 2, first quarter-turn; column 3, oriented approximately 45◦ above the positive x-axis; column 4, start
of core detrainment, t∗ = t∗start; column 5, end of core detrainment and start of mutual entrainment, t∗ = t∗det;
and column 6, end of mutual entrainment, t∗ = t∗ent. For cases (a, f ,g), the column images have been chosen to
illustrate the general flow development. The vortices rotate clockwise in favourable shear (counter-clockwise
in adverse shear). The contour interval is 10 %, and t∗ for each plot is indicated at the lower left. The data in
(d) were presented previously in Folz & Nomura (2017). 969 A21-11
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0

(a)

0.18 0.27 0.49 1.43

0

(b)

0.20 0.65 0.90 1.45 1.60

0

(c)

0.16 0.68 0.95 1.52 1.63

0

(d )

0.42 1.74 2.16 2.73 2.89

0

(e)

0.45 1.00 1.75 2.75 2.90

0

( f )

0.58 1.25 1.56 2.95

0

(g)

0.20 0.39 0.59 0.79 0.99

Figure 4. Vorticity contour plots showing time evolution of flows for UPEA pairs having ReΓ = 5000 and
|ζ0| = 0.0073, with varying Λ0: (a) Λ0 = 0.7, (b) Λ0 = 0.9, (c) Λ0 = 1.0 having favourable shear (ζ0 =
0.0073); and (d) Λ0 = 1.0, (e) Λ0 = 0.9, ( f ) Λ0 = 0.7, (g) Λ0 = 0.5 having adverse shear (ζ0 = −0.0073).
The columns have meanings equivalent to those in figure 3, but the sixth column of the straining out cases has
been omitted since no entrainment occurs. The vortices rotate clockwise in favourable shear (counter-clockwise
in adverse shear). The contour interval is 10 %, and t∗ for each plot is indicated at the lower left.
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0.5 1.0 1.50

0.5

1.0

1.5

b/
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1.5
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ζ0 = 0.0167, Λ0 = 0.90 ζ0 = –0.0073, Λ0 = 0.70

1.0 1.5

t∗
0

0.5
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co
s2

(θ
)

1 2 3 4

t∗
0

0.5

1.0

(a) (d )

(b) (e)

(c) ( f )

Figure 5. Time development of the vortex pair prior to the end of core detrainment for illustrative cases (solid
lines): (a,d) trajectories of vortex peaks (red × indicates vortex 1, blue + indicates vortex 2); (b,e) normalized
separation distance b/b0; and (c, f ) cos2(θ) of the angle θ between the peak–peak axis of the pair and the
principal extensional strain eigenvector of the shear, eα , which is oriented 45◦ from the flow direction. The
Reynolds number is ReΓ = 5000. Filled circles indicate starting positions, a square indicates the time of the
first deformation maximum prior to the start of detrainment, and a diamond indicates the second such maximum
that occurs in the ζ0 = 0.0167, Λ0 = 0.90 case. These times are taken at the corresponding local maxima in
the relative straining of the weaker vortex in each case, (S/ω)1, as discussed in § 5.1. In (b,e), the dashed line
corresponds to the no-shear case having the same Λ0.

strain, leading eventually to detrainment of at least one vortex’s core fluid in the vicinity of
the centre of rotation (column 4). This is the start of the main convective interaction: if both
vortex cores detrain (columns 4–5), then a two-way interaction with mutual entrainment
(columns 5–6), i.e. merger, occurs (as in figure 3d); otherwise, one vortex detrains and
breaks up while the other remains relatively unaffected, i.e. straining out occurs. Due to
the presence of viscosity, all like-signed pair interactions without shear are henditions,
i.e. they result in a single vortex.
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0 0.18 0.38 0.78 0.81 0.93

Figure 6. Vorticity contours for ζ0 = 0.033, Λ0 = a2
1/a2

2 = 0.70, EPUA case (contour interval is 10 %, and
ReΓ = 5000). This case is a merger, whereas the equivalent no-shear case is a straining out (discussed further
in § 5.1).

When shear is present (ζ0 /= 0), it alters the motion and deformation of a pair (having
a given Λ0) in a manner and degree determined by its relative strength (figure 3). When
shear is favourable (ζ0 > 0, figures 3a–c) or weakly adverse (ζsep < ζ0 < 0, figure 3e),
the interaction is a hendition; otherwise, when shear is strongly adverse (ζ0 < ζsep < 0,
figures 3f ,g), the vortices undergo separation and move apart continuously. The separation
case is discussed in § 4.1.

During shear-influenced henditions (such as those shown in the illustrative cases, i.e.
figures 3(b) and 4( f ) and supplementary movies 1 and 2), the vortices follow concentric
elliptical trajectories in which the peak–peak distance b reaches a minimum (when
ζ0 > 0) or maximum (when ζ0 < 0) when the peak–peak axis is aligned with the shear
direction, akin to the point-vortex case discussed in § 2 (figures 5a,d,b,e). The shear causes
periodic amplification of the deformation of the vortices, but, notably, this deformation
is greatest when the peak–peak axis is oriented through the first and third quadrants,
i.e. approximately along the direction of principal extensional strain of the shear, and not
when b is minimal (figures 3a–c,e and 4a–f, columns 1–3, and figure 5). When shear is
strongly favourable (figure 3a), it reduces b and amplifies deformation so substantially that
it is the predominant cause of the hendition. Otherwise, when shear is weakly favourable or
adverse, it is the viscous growth of the vortices and concomitant intensification of mutual
strain that eventually cause detrainment to initiate and the main interaction to occur, similar
to the no-shear case.

For a given shear strength ζ0, the circulation ratio of the pair, Λ0, influences whether
the interaction is a hendition or a separation, and the type of hendition should one
occur (figure 4). For a symmetric pair in weakly favourable or adverse shear (figures
4c,d), assuming ζ0 > ζsep(Λ0 = 1.0) (recall from § 2 that ζsep = ζsep(Λ0)), the interaction
is a merger, similar to the no-shear case, but with the vortices experiencing equal
shear-induced periodic amplification of deformation. For increasing asymmetry of the
pairs (figures 4b–a,e–f ), the variation of b increases, the deformation amplification
becomes increasingly unequal (greater for the weaker), and during the main convective
interaction, the mutual entrainment process becomes increasingly one-sided (e.g. the ζ0 =
0.167, Λ0 = 0.90 illustrative case). When the pair is sufficiently disparate (figures 4a, f ),
the interaction is entirely one-sided and the weaker vortex is simply destroyed, leaving the
stronger one essentially unaffected, i.e. straining out occurs (e.g. the ζ0 = −0.0073, Λ0 =
0.70 illustrative case). In adverse shear, sufficiently small Λ0 may result in ζ0 < ζsep(Λ0)
(unless ζ0 > ζsep(Λ0 = 0)), and separation may occur instead, i.e. asymmetry may in a
sense ‘cause’ separation in certain circumstances.

Additionally, merger may occur in certain cases with higher |ζ0| that for lower or zero
|ζ0| are straining out. An example is shown in figure 6, an EPUA case having ζ0 = 0.033,
Λ0 = 0.70 (several lower-|ζ0| EPUA Λ0 = 0.70 cases are straining out, as is the UPEA
case with the same ζ0 and Λ0; this will be seen in § 5.1). In these cases, the influence of
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the shear enables the second vortex to detrain, and thereby allows for mutual entrainment
to occur. It can therefore be said that, in general, the outcome of a given interaction is a
function of ζ0, Λ0, and whether the pair is UPEA or EPUA.

In all cases, the resulting vortex or vortices continue(s) to evolve through viscous
diffusion akin to a single vortex under the influence of shear (not shown). In adverse
shear, this inevitably leads to filamentation (i.e. detrainment) and, ultimately, breakup. See
§ 1 and references for general discussion of this case.

4.1. Separation and determination of ζsep

Shear is seen to cause separation when adverse shear strength surpasses a critical value
ζ0 < ζsep(Λ0), consistent with the analysis in § 2. To determine the value of ζsep(Λ0)
for a given Λ0, a series of simulations is performed for increasing ζ0 until separation
occurs; ζsep is taken to be the midpoint of the bracketing ζ0 values. Empirical results for
ζsep are collected in table 1 for a variety of cases, including UPEA, EPUA and UPUA
pairs having several Λ0 values, and both ReΓ = 5000 and 1000 (except UPUA cases).
Close agreement is seen, across the entire range of parameters considered, between these
empirical ζsep values and predicted ζsep,p values computed using (2.18). Although a full
exploration of the separation regime is beyond the scope of this study, these results give a
general indication of the behaviour of ζsep for finite-area unequal vortices, and attest to the
accuracy of (2.18) within the parameter range considered: ζsep decreases with decreasing
Λ0, and is not significantly sensitive to ReΓ (it is expected that this would remain true as
ReΓ → ∞), or whether the pair is UPEA, EPUA or UPUA. These findings are consistent
with previous studies of symmetric pairs in inviscid (Trieling et al. 2010) and viscous (Folz
& Nomura 2014) flow. Note that (2.18) also predicts dependence on a2,0/b0, which is not
considered in this study.

Due to ongoing viscous diffusion, the separated vortices eventually detrain and break
up (not shown). There is therefore no distinction between ‘separation without elongation’
and ‘separation with elongation’ in viscous flow, as there is in the inviscid case (Trieling
et al. 2010). In the cases considered, separation always occurs before filamentation
(i.e. detrainment) and breakup: increasing adverse |ζ0| simply causes filamentation to
begin earlier, and for more disparate pairs (generally, lower Λ0, except for the UPUA case)
one vortex begins filamentation significantly before the other. It is theoretically possible
for a vortex in a UPUA pair to be induced to undergo filamentation and breakup by shear
insufficient to cause separation, based on examination of (2.18) in conjunction with known
critical values associated with these processes (Moore & Saffman 1971; Mariotti et al.
1994; Folz & Nomura 2017; see also this paper’s supplementary material), but these cases
are difficult to simulate and are beyond the scope of the present study.

4.2. The vortex-dominated regime
This study focuses on interactions between the two vortices of a pair, which are influenced
by the shear. This excludes cases in which the shear causes the vortices to separate, and
cases in which the shear essentially forces them together. Separation is precluded when
ζ0 > ζsep, as discussed, whereas the latter set of cases is less clearly delineated. However, a
reasonable demarcation can be found in the requirement, discussed in § 3, that the vortices
be afforded sufficient time to adjust to each other’s presence (i.e. a mutually induced strain
field) prior to the onset of detrainment, i.e. that |ζ0| < ζadj. This effectively ensures that the
main interaction is initiated primarily through the vortices’ influence (i.e. their intensifying
mutual strain).
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The vortex-dominated regime, therefore, consists of all cases in the range ζsep < ζ0 <

ζadj (since |ζadj| > |ζsep| for the cases considered in this study). Within this range, all
interactions occur primarily between the two vortices, with the shear an external influence.
Note that both ζsep and ζadj are functions of Λ0, and ζadj depends on ω1,0/ω2,0 as well (see
§ 3; in the full parameter space, both are functions of a2,0/b0 as well). The remainder of
this study considers only vortex-dominated interactions, unless noted otherwise.

5. Analysis and characterization of vortex-dominated interactions

When two like-signed vortices interact under the influence of external shear, i.e. when the
pair’s interaction is vortex-dominated, in viscous flow, hendition always occurs. In these
cases, the shear affects primarily the occurrence and timing of core detrainment, which can
have a significant effect on the ensuing processes and resulting vortex. As seen in § 4, it
can even, in some cases, enable entrainment and merger to occur when, in its absence, they
would not. In order to examine the shear’s net influence on vortex-dominated henditions,
their outcomes must be assessed quantitatively. These results can then be related to basic
pair parameters, and, ultimately, a general characterization of vortex-dominated henditions
developed.

5.1. Quantitative assessment of interaction outcomes in shear
The outcome of any hendition can be assessed quantitatively in terms of an enhancement
factor

ε ≡ Γend

Γ2,start
(5.1)

and a corresponding merging efficiency

η ≡ Γend

Γtot,start
, (5.2)

based on the ratio of the circulation of the resulting vortex, Γend, at the end of the main
convective interaction, t∗end, to that of the stronger vortex, Γ2,start, and of the pair combined,
Γtot,start, respectively, at the start of the main convective interaction, t∗start. (Note that the
symbol η has a different meaning here than in § 2.) Mergers correspond to ε > 1, while
strainings out correspond to ε ≈ 1. Note that η is not a meaningful quantity for strainings
out.

In order to identify the appropriate Γ , t∗start and t∗end in the course of the flow
development, which proceeds continuously due to the viscosity, a method is used that
is similar to that developed for the no-shear case in Folz & Nomura (2017). The vortex
cores are identified via a threshold based on the second invariant of the velocity gradient
tensor: II∗

t = II/IIpeak = 0.10, where II = 1/2(ω2/2 − S2) is the second invariant at a
given location and time, ω is the local vorticity, S is the local strain rate magnitude, and
IIpeak refers to the value of II at the location of the vorticity peak within a contiguous
II > IIt region (see Folz & Nomura (2017) for discussion of this choice of II∗

t value).
Aggregate properties of the vortex cores are then computed for the entire flow region

meeting the II > IIt criterion, which allows the entire flow development to be monitored
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Figure 7. Time development of key quantities for illustrative cases, scaled for better visualization:
(a) ζ0 = 0.0167, Λ0 = 0.90; (b) ζ0 = −0.0073, Λ0 = 0.70. Left-hand axis: normalized core area AII/AII,0
(solid line); and normalized core circulation ΓII/ΓII,0 (dashed line), scaled by a factor of 2 in (a) and 3 in (b).
Right-hand axis: relative straining of weaker vortex (S/ω)1 (through t∗det; thick dotted line), with critical (S/ω)cr
also indicated (thin horizontal dotted line). The + signs indicate the start and end times of a supercritical peak
of (S/ω)cr and corresponding troughs in AII/AII,0 and ΓII/ΓII,0. The � and � symbols indicate the start and
end of core detrainment, t∗start and t∗det, respectively. The � symbols indicate the end of mutual entrainment, t∗ent
(occurs in (a) only). See text for definitions of the times.

continuously, including the transition from two vortices to one:

AII =
∫

II>IIt

dA (5.3)

and

ΓII =
∫

II>IIt

ω dA, (5.4)

where AII is the aggregate core area, ΓII is the aggregate core circulation, and dA refers
to an area element of fluid (similar properties of each individual vortex i = 1, 2 are
also computed using a separate II∗

t,i based on the peak of each, not shown). The time
development of the relative straining of each vortex, (S/ω)i, is also monitored.

The time development of these quantities is presented for the illustrative cases in
figure 7; see the supplementary material for the complete flow development of all the
cases shown in figures 3 and 4. The salient features (which are observed in every case
considered) are similar to those observed in the no-shear case (Folz & Nomura 2017).
First, there is a period dominated by growth of AII and simultaneous slight decline
of ΓII , corresponding to the initial revolving and viscous growth of the pair. This is
followed by diminishing growth (until a local maximum is reached) then decline of AII and
simultaneous more rapid decline of ΓII , until each reaches a local minimum, corresponding
to core detrainment. In some cases (such as that in figure 7a), these local minima are
followed by rapid rises to local maxima, i.e. spikes, corresponding to mutual entrainment.

The most significant effect of shear is the introduction of additional local minima in the
ΓII development (with corresponding variations in the AII development, e.g. beginning at
t∗ = 0.50 in figure 7(a), and at t∗ = 1.1 in figure 7(b)). It is seen that these ‘troughs’
correspond to local maxima, or ‘bumps’, in the time development of (S/ω)1 (which
exhibits net growth due to viscous diffusion intensifying (S/ω)1), which in turn correspond
to the periodic amplified deformation, associated with the vortices’ orientation, observed
in § 4. (The squares and diamonds in figure 5 correspond to the peaks of bumps in (S/ω)1
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in figure 7; corresponding bumps also occur in (S/ω)2, not shown here.) Notably, (S/ω)i
of either vortex may temporarily exceed the critical (S/ω)cr = 0.135 (associated with core
detrainment) one or more times, with negligible evident detrainment, before (S/ω)1 (and
in some cases, (S/ω)2) ultimately surpasses it terminally as AII growth diminishes and ΓII
decline accelerates.

Due to these nonlinearities, t∗start is taken to be the earlier time at which one vortex
achieves – and thereafter maintains – (S/ω)i > (S/ω)cr = 0.135 through to the end of
detrainment. (In the no-shear case, t∗start had been identified as the time of deviation of
AII from linear growth – see Folz & Nomura (2017); t∗start as identified in the present
manner produces similar results in those cases, not shown.) This time is indicated for the
illustrative cases in figure 7 (in figures 3(b–e) and 4(a–f ), column 4 corresponds to t∗start).
Maintaining the critical (S/ω)cr = 0.135 value has been seen to correspond to detrainment
both here and in the no-shear case, and is also consistent with the value observed in
simulations of a single Gaussian vortex in adverse shear (e.g. Mariotti et al. 1994),
suggesting that this is a general critical value for Gaussian vortices subject to external
strain. In this study, the first detraining vortex is always vortex 1. This identification of t∗start
with the maintaining of (S/ω)1 > (S/ω)cr is consistent with the observation in Trieling
et al. (2010) that symmetric pairs in shear always merge when their peak–peak distance
remains within the critical merging criterion for symmetric pairs without shear; it is noted,
though, that they do observe merger to occur in cases (typically having favourable shear) in
which the vortices only temporarily surpass the critical criterion. The choice of t∗start here
therefore likely constitutes a conservative estimate for the start of the main convective
interaction.

The end of the interaction, t∗end, is taken to be the time of the first peak (i.e. spike)
immediately following the minimum if there is one (i.e. the end of entrainment, t∗ent),
or the time of the local minimum otherwise (i.e. the end of detrainment, t∗det). These
times are indicated for the illustrative cases in figure 7 (and in figures 3(b–e) and
4(a–f ), column 5 corresponds to t∗det, and column 6 to t∗ent). In all cases considered,
t∗end corresponds to the existence of only a single vortical structure meeting the II > IIt
criterion. These are identical to the criteria used in the no-shear case (Folz & Nomura
2017).

5.2. The influence of shear on the timing and duration of detrainment
The shear has a significant influence on the timing of detrainment, as seen in figures 8(a,b),
which show t∗start and Δdt∗ = t∗det − t∗start, the duration of the detrainment-dominated
portion of the main convective interaction, respectively. The large degree of variation
of t∗start with ζ0 reflects the influence of shear on b, and thereby the overall growth of
(S/ω)i leading to detrainment: lowering and increasing t∗start, i.e. accelerating or delaying
the onset of detrainment, derives from shear reducing or increasing b from b0, respectively
(here associated with favourable and adverse shear; this is discussed further below). The
variation of t∗start with Λ0 (and whether the pair is UPEA or EPUA) is consistent with
that observed in the no-shear case: t∗start decreases for increasing pair disparity (lower Λ0;
Folz & Nomura 2017). It is also noted that as ζ0 increases from 0, the variation of t∗start
with Λ0 is reduced, consistent with the (increasingly strong, favourable) shear playing
an increasingly significant role in the initiation of detrainment. The observed variation of
Δdt∗ likewise reflects the influence of shear on b, with reduction and increase likewise
generally shortening and prolonging the duration of detrainment, although the effect here
is not strictly monotonic. This is attributed to the complexity of the detrainment process,
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Figure 8. For vortex-dominated henditions: (a) time of interaction start, t∗start, and (b) the duration of
detrainment, Δdt∗ ≡ t∗det − t∗start, as functions of ζ0 and Λ0 (both UPEA and EPUA). The meanings of symbol
shapes and colours are indicated in (a,b), respectively; a black outline indicates UPEA cases (and symmetric),
and a white outline indicates EPUA cases (ReΓ = 5000).

as well as the method of assigning t∗start and t∗end. It is also seen that Δdt∗ increases with
decreasing Λ0 (consistent with Folz & Nomura 2017), and that in some cases this can be
quite significant, especially for ζ0 < 0.

It should be understood that the net influence of the shear on Δdt∗ derives not only from
the time variation of b, but also from directional effects that inhibit core detrainment. In
order to examine this influence, the angle φi is computed for each vortex i = 1, 2, where
φi is the angle between the peak–peak axis and epk,i, the unit vector corresponding to
the direction of principal extensional strain evaluated at the vorticity peak. The angle
φi serves as an instantaneous indicator of the vortex’s response to the net directional
influence of the strain rate fields induced by the shear and the other vortex as their relative
prevalence and direction vary in time. The time variations of cos2(φi) for each vortex for
no-shear cases having Λ0 = 0.90 and Λ0 = 0.70 are presented in figures 9(a,b), and it is
seen that cos2(φi) ≈ 0.5 is maintained (i.e. φi ≈ 45◦, after the initial adjustment period)
until detrainment begins, after which cos2(φi) decreases (i.e. φi increases); this occurs
for both vortices in the Λ0 = 0.90 case – a merger – and only for the weaker vortex
in the Λ0 = 0.70 case – a straining out. It can therefore be said that cos2(φi) < 0.5 is
associated with core detrainment. When shear is present (shown for the illustrative cases
in figures 9c,d), its principal extensional strain rate remains fixed in the Eulerian frame
(oriented 45◦ from the background flow direction), which initially causes cos2(φi) of both
vortices to oscillate about 0.5 as they revolve; this occurs such that the bumps in (S/ω)i

correspond to maximum cos2(φi), i.e. when the directional effects are unfavourable for
detrainment. This may explain why little evident detrainment occurs even when (S/ω)i >

(S/ω)cr during a bump. After t∗start, one vortex (at least) maintains (S/ω)i > (S/ω)cr and
cos2(φi) < 0.5 simultaneously, thereby undergoing detrainment and causing hendition
to occur. These observations suggest that in order for core detrainment to occur, the
vortex must maintain both sufficient relative straining ((S/ω)i > (S/ω)cr) and conducive
directionality (cos2(φi) < 0.5) of its straining response.

It is critical to note that accelerating/delaying t∗start and shortening/prolonging Δdt∗ are
not necessarily associated with ‘favourable’ or ‘adverse’ shear. If the vortices are initially
oriented along the shear direction, then the favourable shear delays/prolongs while adverse
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Figure 9. Time development of cos2(φi), where φi is the angle between the peak–peak axis and the principal
extensional strain eigenvector at each peak, epk,i (left-hand axis; solid red line shows vortex 1, dashed blue line
shows vortex 2), for no-shear cases having (a) Λ0 = 0.90 and (b) Λ0 = 0.70; and the illustrative shear UPEA
cases having (c) ζ0 = 0.0167, Λ0 = 0.90 and (d) ζ0 = −0.0073, Λ0 = 0.70. In all cases, ReΓ = 5000. In (c,d),
the time development of b/b0 is also included for reference (right-hand axis; solid black line), and � (and �)
indicate times of first (and, in (c), second) local S/ω peak (see figures 5 and 7).

shear accelerates/shortens (since, in this orientation, the vortices are initially located at
minimum b in the favourable case and maximum b in the adverse). This can be seen
in table 2, which shows t∗start and Δdt∗ for equivalent cases having each initial orientation
(i.e. maintaining all pair parameters described in § 3). A full exploration of the relationship
between the initial orientation, the flow development, and outcomes is beyond the scope
of this study, but it can be concluded that the observed effects of shear on timing derive
primarily from the relative motion of the vortices that it engenders, and not, strictly
speaking, the shear’s relative sense.

5.3. Results for ε and η

It has been seen that shear affects the timing and duration of core detrainment, and it is
known that the outcome of an asymmetric pair interaction derives from the relative timing
of detrainment and destruction of the vortices (Brandt & Nomura 2010). The influence of
the shear on interaction outcomes is therefore most significant when the outcome of the
case is particularly sensitive to changes in this timing. To examine this, and the influence
of shear on interaction outcomes overall, ε and η are computed for every case using (5.1)
and (5.2).

Figure 10 shows each hendition case, with ε indicated via colour, for both UPEA
and EPUA cases (similar trends are observed for η). Linear interpolation has also been
employed to estimate ε values between the simulated cases, in order to better visualize
the overall trends. In the broadest sense, the variation of ε is similar to that of the
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Horiz Vert Horiz Vert Horiz Vert
ζ0 Λ0 t∗start t∗start Δdt∗ Δdt∗ ε ε

0.0073 1.0 0.95 1.79 0.58 0.58 2.19 1.96
0.0073 0.9 0.90 1.50 0.55 1.10 1.81 1.81
0.0073 0.7 0.49 0.98 0.94 1.43 1.02 1.04
−0.0073 1.0 2.16 1.05 0.58 0.42 2.09 2.09
−0.0073 0.9 1.75 0.75 1.00 0.90 1.81 1.78
−0.0073 0.7 1.56 0.27 1.39 1.07 1.01 1.00
0.0167 1.0 0.71 2.07 0.44 0.55 1.94 2.05
0.0167 0.9 0.66 1.84 0.43 0.79 1.80 1.81
0.0167 0.7 0.35 1.37 0.70 1.33 1.03 1.06

Table 2. Time of start of core detrainment, t∗start, and duration of detrainment, Δdt∗ ≡ t∗det − t∗start, for
equivalent UPEA cases initially oriented horizontally (Horiz) and vertically (Vert) (ReΓ = 5000).
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Figure 10. Interaction outcomes for vortex-dominated henditions for (a) UPEA and (b) EPUA cases. Symbols
indicate the outcomes of the cases included in figure 8, categorized: � indicates merger; + indicates straining
out (see § 5.1). Colours indicate enhancement factor ε: values for each denoted case are exact, while those in
between are produced by linear interpolation (both plots use same colour map, indicated in (b)). The solid black
line indicates ζ0 = 0, the dashed line indicates ζsep,p (see § 2), and the dash-dotted line indicates ζadj (see §§ 3
and 4). The data for the no-shear (ζ0 = 0) cases were presented previously in Folz & Nomura (2017). Note
that ε inherently declines with decreasing Λ0, since the theoretical maximum is εmax = 1 + Λ0. In all cases,
ReΓ = 5000.

no-shear case: ε is maximal (ε ≈ 2) for symmetric pairs, and minimal (ε ≈ 1) for highly
disparate ones (approximately Λ0 < 0.70 for UPEA, and Λ0 < 0.60 for EPUA). The Λ0,cr
value at which this minimum ε is reached is seen to vary with ζ0, particularly in the
transitional range (approximately 0.80 � Λ0 � 0.70 for UPEA, and 0.80 � Λ0 � 0.60
for EPUA), being generally lower for higher |ζ0| (with the notable exception of the ζ0 � 0,
0.75 � Λ0 � 0.70 subregion). More generally, the variation of ε with ζ0 is not always
monotonic, for Λ0 > Λ0,cr.

Also indicated in figure 10, via the symbols, is the occurrence of mutual entrainment
(i.e. merger) or not (i.e. straining out) in each case (as ascertained from the presence of one
or more spikes post-t∗det in the ΓII time development; see § 5.1). It is seen that the presence
of shear can engender entrainment in some cases where it does not occur in the equivalent
no-shear case, and that this typically occurs for more disparate pairs when shear is stronger
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Figure 11. For vortex-dominated henditions: (a) ε and (b) η, as functions of Λ0. See figure 8 for meanings of
symbol shapes, colours and outlines. In all cases, ReΓ = 5000.

(again there are notable exceptions, particularly in the EPUA ζ0 � 0, 0.75 � Λ0 � 0.70
subregion). This promotion of merger is attributed to the shear – of either sense – altering
the rate of increase of (S/ω)i of each vortex, making detrainment of the second vortex
more likely prior to the destruction of the first.

The variations of ε and η with ζ0 and Λ0 for all hendition cases are presented in
figure 11. It is seen that, within the transition region, cases with ζ0 /= 0 typically have
higher ε and η than the no-shear case with the same Λ0, and that increasingly favourable
shear generally (though not universally) results in greater enhancement and more efficient
merger for EPUA cases. (Note that the variation for the symmetric case results largely from
the use of IIt in conjunction with its uniquely reciprocal mutual strain.) The handful of
cases with lower ε and η than in the no-shear case have ζ0 < 0: the weaker ζ0 = −0.0045
cases always produce ε < ε(ζ0 = 0) for a given Λ0, while the stronger ζ0 = −0.0073
begins to produce ε > ε(ζ0 = 0) for more disparate pairs (Λ0 � 0.75 for EPUA) only until
the straining out regime is reached, i.e. stronger adverse shear better enables entrainment to
occur. Similar trends are observed in the ε−Λ and η−Λ variations, where Λ is evaluated
at t∗start (not shown). It is noted that the initially vertical cases considered in § 5.2 produce
ε and η similar to those for their initially horizontal counterparts (table 2; not otherwise
included in the present results or discussion).

An example of shear of either sense promoting merger is presented in figures 12(a,b,c),
which show the time development of (S/ω)i for EPUA Λ0 = 0.70 cases having
ζ0 = 0.033, no shear and ζ0 = −0.0073, respectively. In these cases, entrainment does not
occur for the no-shear case, but it does occur for ζ0 = 0.033 (ε = 1.46; vorticity contours
for this case are shown in figure 6), and to a small degree for ζ = −0.0073 (ε = 1.11;
vorticity contours not shown). It is seen that the influence of the shear causes (S/ω)2 to
surpass (S/ω)cr in both ζ0 /= 0 cases, allowing detrainment of the second vortex to occur.
For the ζ0 = 0.033 case, this is done primarily by accelerating the rate of increase of
(S/ω)2 (i.e. reducing t∗start); for the ζ = −0.0073 case, this is done primarily by prolonging
the detrainment of vortex 1 (i.e. increasing Δdt∗), allowing (S/ω)2 to increase sufficiently
to surpass (S/ω)cr prior to the end of the interaction.
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Figure 12. Time development of (S/ω)1 and (S/ω)2 (red solid and blue dashed lines, respectively; right-hand
axis), along with b/b0 (thick dotted line; left-hand axis), for EPUA cases having ReΓ = 5000 and Λ0 = 0.70,
with (a) ζ0 = 0.0167, (b) ζ0 = 0 (no shear), and (c) ζ0 = −0.0073. In all plots, the horizontal thin dotted line
indicates (S/ω)cr = 0.135. The ζ0 /= 0 cases are mergers (ε > 1), whereas the no-shear case is a straining out
(ε ≈ 1).

5.3.1. Mutuality and the fundamental characterization of henditions in shear
Fundamentally, the outcome of the interaction of two like-signed vortices derives from
the degree of mutuality of the interaction. In the no-shear case, Folz & Nomura (2017)
introduced a mutuality parameter MP = (S/ω)1/(S/ω)2, which compares the relative
straining of each vortex at t∗start, and thereby captures the degree of mutuality of the
interaction. When the relative straining of both vortices is similar at t∗start (approximately
1 � MP < 1.8 for ReΓ = 5000), the second vortex can begin to detrain before the first is
destroyed, enabling mutual entrainment (i.e. merger occurs); when the disparity is greater
(approximately MP > 1.8), it cannot, and the first detraining vortex is simply destroyed
(i.e. straining out occurs). In the vortex-dominated regime, MP is computed for the shear
cases in the same manner.

Figure 13 shows the variations of ε and η with MP. A generally monotonic relationship
is observed between ε and MP (likewise η and MP), with ε ≈ 2 (and η ≈ 1) near MP = 1,
then generally declining as MP increases until MP ≈ 2, at which point ε ≈ 1 is reached
and thereafter maintained (recall that η ceases to be a meaningful quantity for strainings
out). However, significantly more scatter is observed in the shear case (as compared with
figure 9 in Folz & Nomura 2017). This is attributed to MP being a pointwise quantity, and
therefore sensitive to significant and rapid variations as the vortices revolve.

However, MP is related closely to the vortex enstrophy ratio, an integrated quantity less
susceptible to fluctuations:

Z2

Z1
=

∫
II>IIt,2

ω2
2 dA2∫

II>IIt,1

ω2
1 dA1

, (5.5)

where the integral is evaluated for each vortex at t∗start. This quantity was also seen to
effectively characterize the variation of ε and η in the no-shear case (Folz & Nomura
2017).

Figure 14 shows the variations of ε and η with Z2/Z1. It is seen that the scatter is
greatly reduced (even for high |ζ0|), such that the variation is essentially monotonic
outside of a transition region, reached at 1.65 ± 0.01 and extending to 1.91 ± 0.02 (where
the margins of error for each are found from the extremal midpoint between a merger
and a straining out case). In this region, cases having similar Z2/Z1 but different ζ0,

969 A21-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

52
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.525


P.J.R. Folz and K.K. Nomura

1 2 3
MP

0

0.5

1.0

ε η

1.5

2.0

1 2 3
MP

0

0.5

1.0

(b)(a)

Figure 13. For vortex-dominated henditions: (a) ε and (b) η as functions of MP = (S/ω)1/(S/ω)2. See figure 8
for meanings of symbol shapes, colours and outlines. The dotted line indicates MP = 1. In all cases, ReΓ =
5000.

0.5 1.0 1.5 2.0 2.5 3.0

Z2/Z1

0

0.5

1.0

ε η

1.5

2.0

0.5 1.0 1.5 2.0 2.5 3.0

Z2/Z1

0

0.5

1.0

(b)(a)

Figure 14. For vortex-dominated henditions: (a) ε and (b) η as functions of Z2/Z1. See figure 8 for meanings
of symbol shapes, colours and outlines. The dotted line indicates Z2/Z1 = 1. In all cases, ReΓ = 5000.

Λ0 and/or UPEA/EPUA status can produce significantly different ε and η, with higher
|ζ0| generally (though not universally) corresponding to higher ε and η. The consistently
lesser enhancement and less efficient merging when weak adverse shear is present (ζ0 =
−0.0045) are attributed to greater dissipation of detrained fluid due to the increase of b,
while the greater enhancement and more efficient merging produced by stronger adverse
shear (ζ0 = −0.0073) are attributed to the interaction being sufficiently prolonged to
enable entrainment. The lower bound of the transition region is comparable to the critical
(Z2/Z1)cr ≈ 1.63 ± 0.03 for straining out observed in the no-shear case, and merger cases
having greater Z2/Z1 correspond to higher |ζ0|.

As such, it can be concluded that favourable and sufficiently strong adverse shear
(approximately ζ0 < −0.0045) promote enhancement and merger for interactions that are
moderately disparate (i.e. having approximately 1.65 < Z2/Z1 < 1.9). Efficient merger
occurs in interactions with a high degree of mutuality, regardless of shear strength
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(typically η > 0.85 for Z2/Z1 < 1.65), while more disparate ones always result in straining
out of the weaker vortex (ε ≈ 1 for Z2/Z1 > 1.9).

The fact that the variations of ε and η with Z2/Z1 are generally monotonic is taken as
evidence that the choice of t∗start ((S/ω)1 > (S/ω)cr = 0.135 terminally) does effectively
characterize the start of convective detrainment (see § 5.2). These trends are also observed
when only the relative vorticity is considered (not shown), indicating that they reflect
the shear’s effect on the physical mechanisms of vortex interaction and not spurious
consequences of the use of IIt.

6. Summary and discussion

This study considers the interaction of a pair of unequal vortices in background shear
with finite viscosity. In these cases, the flow development is determined by the relative
significance of the vortices’ mutual influence and that of the shear. Sufficiently adverse
shear causes the vortices to separate; the critical adverse shear strength for separation,
ζsep, varies with the pair’s circulation ratio Λ0 (and aspect ratio), and its empirical values
are well-predicted by point-vortex analysis. Otherwise, the interaction between the vortices
is a hendition (§ 1.1), resulting in a single vortex.

In henditions occurring in background shear, the flow development is essentially
governed by three constituent external influences occurring simultaneously, whose relative
significance varies in time: the shear causes the peak–peak distance b between the
vortices to vary as they revolve; the vortices influence each other through their mutually
induced strain, which depends on b; and the strain induced by the constant shear acts
directly on each vortex. When the shear is strongly favourable, it causes such significant
reduction of b and amplified deformation of the vortices that it is the principal cause of
hendition; otherwise, when the shear is weakly favourable or weakly adverse, the flow is
vortex-dominated.

In vortex-dominated henditions in shear, viscous diffusion causes the vortices’ mutually
induced strain to become predominant, which enables sufficient persistence of straining for
one vortex to begin detraining core fluid: the relative straining remains sufficiently strong
in magnitude ((S/ω)i > (S/ω)cr = 0.135 for detraining vortex i), and the directionality of
the vortex’s response to the external strain field maintains a conducive relative orientation
(cos2(φi) < 0.5) for sustained detrainment despite the continuing influence of shear on
b and on each vortex directly. The flow development then proceeds similarly to the
no-shear case: if the second vortex is induced to detrain before the first is destroyed, then
a two-way interaction leads to a mutual entrainment process that produces an enhanced
resulting vortex i.e. merger occurs; otherwise, the interaction is essentially one-way and
the detraining vortex is broken up, leaving the other largely unaffected, i.e. straining out
occurs.

The post-interaction vortex is assessed quantitatively in terms of an enhancement factor
ε and a merging efficiency η, using a method adapted from one utilized in the no-shear
case (Folz & Nomura 2017). It is found that all vortex-dominated hendition outcomes
across the parameter range considered are effectively characterized by the pair’s core
enstrophy ratio at the start of detrainment, Z2/Z1, which encapsulates the mutuality of the
interaction similarly to MP = (S/ω)1/(S/ω)2 (utilized previously in the no-shear case)
but is less sensitive to the time variation caused by the shear. For Z2/Z1 near unity,
merger essentially conserves circulation, while mergers between more disparate vortices
become less efficient until straining out occurs. Within the transition region, approximately
1.65 < Z2/Z1 < 1.9, weak adverse shear reduces enhancement; otherwise, the presence of
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shear of either sense generally promotes enhancement and merger relative to the no-shear
case (in which straining out occurs for Z2/Z1 > (Z2/Z1)cr ≈ 1.63 for ReΓ = 5000, similar
to the value at which it first occurs with shear present). In favourable shear, this results
from more rapid increase of (S/ω)2 due to reduction of b, while in adverse shear,
this results from prolonging the interaction due to a combination of increase of b and
periodic detrainment-inhibiting orientation effects allowing (S/ω)2 to reach (S/ω)cr (with
simultaneous cos2(φi) < 0.5) before the first vortex is destroyed.

Additional study must examine vortex pair parameters beyond those considered here.
In particular, it is possible that the boundary values of the Z2/Z1 transition region may
vary with parameters such as the Reynolds number or initial aspect ratio, either of which
would be expected to affect the rate of increase of (S/ω)i and therefore promote or inhibit
detrainment of the second vortex. It has also been seen that the initial orientation of the
vortices relative to the shear is significant: certain effects can be associated with the
opposite sense of shear in the orthogonal initial orientation (e.g. when the vortices are
initially oriented along the shear direction, favourable shear increases b and prolongs the
interaction, while adverse shear reduces and shortens). Moreover, it would be desirable to
consider a time-varying background flow, which might better reflect that experienced by a
vortex pair in turbulence (the concept of persistence of straining leading to detrainment
may be a particularly significant concept in such flows). It is hoped that the current
study may provide a step towards a more all-encompassing characterization of vortex
interactions in background flow that incorporates these additional parameters, and others
(the influence of an opposite-signed vortex would be another priority for consideration).
Such studies remain for future work.

Supplementary material. Supplementary material and movies are available at https://doi.org/10.1017/jfm.
2023.525.
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