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CHARLES FOX 

1. Introduction. In his work on Laplace and Stieltjes transforms Widder 
[6, ch. 8] has investigated relationships of the type 

(i) 

(2) 

(3) 

/ ( * ) = 

g(x) = 

/ ( * ) = 

'g(t)dt, 

e-xth(t)dt, 

h(t) 
•at. 

l o ï + i 

(l) and (2) are Laplace transforms and (3), which occurs in Stieltjes' [4] re
searches on continued fractions, is referred to by Widder as a Stieltjes transform. 
Widder also considers (3) in the more general form of a Stieltjes integral 

m = 
ldk(t) 
x + t' 

These formulae bear a close resemblance to special cases of Chain transforms 
[1], whose theory I have developed in a previous paper. My object here is to 
investigate and generalize the relationships above by the methods used in Chain 
transform theory. For example, we prove that the factors e~xt in (1) and (2) 
can be replaced by Laplace transforms of Fourier kernels and then show that 
this result can be generalized still further. In order to make use of the mean 
square theory of convergence we shall define a Laplace transform which is some
what more general than the one in common use. 

2. The Mellin transform. The Mellin transform [5, ch. 3], which is our main 
instrument of analysis, is given by 

(4) 

(5) 

F(s) 

/ («) = 

f(u)us ldu, 

1 
2iri. 

h+iao 

h—iœ 
F(s)u~sds. 

Pairs of functions related in the manner of (4) and (5) are known as Mellin 
transforms of each .other and will always be written in the iormf(u) and F(s), 
g(u) and G(s), etc. Their main properties [5; §§ 3.17, 7.7, 7.8] are as follows: 

2.1. If f(u) belongs to L2(0, oo ), i.e., 
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\f(u) \2du 

converges, then as a tends to infinity 

2.11 f(u)us xdu 
l/a 

converges in mean square to F (s), where F (s) belongs to L 2 ( | — i o° , | + i <» )> 

2.12 1 
2 iri \— ia 

F(s)u~sds 

converges in mean square to f(u). 
Conversely if F (s) belongs to L2(\ — i oo , J + i oo) then 2.12 holds, / («) 

belongs to JL2(0, OO ) and is related to F (s) by (4). 

2.2 ( T H E PARSEVAL THEOREM). If/(#) and g(#) both belong to L2(0, °° ), or 
JF(S) and G (s) both belong to L2{\ — i oo , | + i oo ), then 

(6) f(u)g(u)du = •=—. 
0 ^ 7 T ^ 

è+ïoo 

è—fco 
F($)G(1 - s)ds. 

2.3 Hf(u) and F(s) are Mellin transforms then so are 

f(au) and F(s)d~\ 

uaf(u) and JF(S + a), 

/(wa) and 

2.4 A pair of Mellin transforms is given by the equations f(u) = 1 
(0 < u < y),f(u) = 0 (u > y\ and F(s) = ys/s. 

To illustrate these results if y is real then, treated as a function of s, ys/s 
belongs to L 2 ( | — i oo , i -f- i oo ). Hence if M(s) also belongs to L2{\ — i oo , 
i 4- i oo ) we have from (6) and 2.4, 

(7) m(u)du = -—: 
0 ATI, § — l o o •*-

•ds. 

We shall, in future, write 

(8) m(u)du = mi(y) 

and all pairs of functions written in this way, e.g. n(y), if it exists, and tii(y)f 

will be related as in (8). Thus (7) becomes 

(9) 7Ui{y) = 
1 H-ioo , 1 - s 

M(s) 
1 

-ds, 

where M(s) belongs to L2(f — i °° , \ -f- i oo ). 
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The function M(s) plays a fundamental part in the theory of Fourier kernels. 
For all of these kernels, M(s) is bounded on the line s = \ + ir, where r is real, 
but in general does not belong to L2(J — i co , | + i » ). However, since M(s) 
is bounded, M(s)/(1 — s) belongs to L 2 ( | — i oo , \ + i oo ). We can therefore 
deduce from 2.12 and (9) that mi(y)/y belongs to L2(0, oo ) and that its Mellin 
transform is M(s)/(1 — s). This may be true even if m(y) does not exist, as 
the following example illustrates. 

Let M{s) = 1, then 
i fè+fa» 

^~.\ M{s)y~sds 

oscillates finitely and does not converge. But from (9) we have mi(y) = 0 if 
0 < y < 1 and m\(y) = 1 if y > 1. Thus Wi(y), defined by (9) instead of by 
(8), exists although m(y) does not exist. 

Partly for this reason and partly because mi(y)/y belongs to L2(0, oo ) it is 
much more convenient to formulate Fourier transform theory in terms of m\(u) 
rather than m (u). For these reasons we shall also define our Laplace transform 
of §4 in terms of mi(u) rather than in terms of m(u). 

3. The general Fourier transform. If 

(10) M(s)N(l - s) = 1, 

and M(s) and N(s) are both bounded on the line 5 = \ + ir, where r is real, 
and A(x) belongs to L2(0, oo ), then we have the general Fourier transform 

(ID dyj 
A (x)—^-^-dx, 

0 X 

'œ
B{x)^ûdXt 

o x 

In the course of the proof, it is shown that B(x) also belongs to L2(0, oo ). 
The theory is given in Titchmarsh [5, p. 226]. The functions nti(x)/x and 
n\(x)fx are known as general Fourier kernels and are called symmetrical if 
m\{x) — ni{x) and asymmetrical otherwise. 

4. The general Laplace transform of Fourier kernels. From the asymptotic 
expansion of r(s) we know that on the line s = J + ir, where r is real, 
TO) = 0(eT-*T|Ti) and so belongs to L2(0, oo ). Also the Mellin transform of 
e-xu *s Y(S) x~s. Hence, if M (s) belongs to L2(J — i oo , \ -(- { oo ) we have 
by (6), 

r§+ioo Too 

T(s)M(l - s)x~sds = é^m(u)du. 
' h—iœ J 0 

The right hand side is evidently the Laplace transform of m(u). 
Suppose that, as in Fourier transform theory, we know only that M(s) is 

bounded. In this case M(s)/(1 — s) belongs to L2(J — i oo, | + % oo) and, 
from (9), is the Mellin transform of nti(u)/u. Hence from (6) and 2.3 we have 

w h. 

https://doi.org/10.4153/CJM-1952-015-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-015-4


152 CHARLES FOX 

(13) 

1 
2 Tri 

fffîoo 

è-ioo 
T(s)M(l s)x Sds = -—: T(s + 1)— -x as 

xé~xumi{u)du. 

We shall call the right-hand side of (13) the general Laplace transform and 

write 

(14) m{x) xe xumi{u)du. 

All pairs of functions related in the manner defined by (14) will be writ ten in 
the form m ( x ) and mi(x) , n(x) and rii(u), etc. 

T h e definition (14) has two impor tan t advantages over the s tandard Laplace 
transform (12). First, it exists if M(s) is bounded, whether m{x) exists or not , 
and, secondly, it lends itself readily to the application of mean square arguments . 
(14) bears much the same relation to (12) as the general Fourier kernel bears 
to the ordinary Fourier kernel. T o illustrate these remarks take M{s) = 1, 
then, from §2, m(u) does not exist. Bu t m\{u) = 0 when 0 < u < 1 and 
m\(u) = 1 when u > 1. From (14) it follows t ha t m ( x ) = e~x so tha t any 
general theorems proved for general Laplace transforms will also be t rue for e~x. 

In most cases when m(u) exists it can be shown, on integrating by par ts , t h a t 
the right-hand sides of (12) and (14) are equal. Integration by par ts also shows 
t ha t (14) can frequently be expressed as the Stieltjes integral 

e~xudmi{u)y 

which by many writers is considered to be a natural generalization of the La
place transform. B u t for our purposes it is much more convenient to use the 
form (14) than the Stieltjes integral. This is because of the advantage gained 
by using M(s) in the s tudy of Laplace transforms of Fourier kernels (see (9) ). 

From (13) and (14) we have 

T(s)M{\ - s)x~sds, (14a) m(x) 
1 

2iri -ioo 

where Y(s) M(l — s) belongs to U-{\ — i oo , | + i œ ). Hence, from 2.12, 
m ( x ) belongs to L2(0, oo ) and its Mellin transform is T(s) M(\ — s). 

If M (s) and N(s) satisfy (10) and are both bounded on the line 5 + ir 
then m ( x ) and n ( x ) are the general Laplace transforms of a pair of conjugate 
Fourier kernels. We then have, from (6), 

m(ux)n(u)du 

(15) 

1 
2iri, 

1 
2-KI. 

1 

1 +x 

i-ioo 

H-ico 

T(s)M(l - s ) x ~ s r ( l - s)N(s)ds 

i_ t o o s in ITS 

sds 
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That Laplace transforms of Fourier kernels satisfy an integral equation of the 
type (15) was conjectured by Ramanujan [3, ch. 11(F) ] and proved recently 
by Goodspeed [2]. 

5. Iteration formulae. If M (s) is the Mellin transform of a symmetrical 
Fourier kernel then (10) becomes 

(16) M{s)M{\ - s) = 1. 

THEOREM 1. If (i) M(s) satisfies (16) and is bounded on the line s = \ + irt 

(ii) the general Laplace transform m(x) is defined by (14), (iii) h{x) belongs to 
L2(0, oo ),and 

(17) 

and 

(18) 

then 

(19) 

and 

(20) 

g(«) = 

/ («) = 

f(ut)h(t)dt = 

m(ut)h(t)dt, 

TOi(ut)g(t)dtt 

Ht) 
u + t 

•dt 

g(ut)g{t)dt. 

To prove (19) we note that m(ut), as a function of /, and h(t) both belong to 
L2(0, oo ) and have Mellin transforms T(s) M{\ — 5) u~s and 2J(s) respectively 
((14a) and §2). Hence, from (6) and (17), we have 

(21) iiu) = hi 
H-*co 

\— ioo 
T(s)M(l - s)u"sH(l - s)ds. 

Now on the line s = f + ir, | T(^) ilf (1 — s)| is bounded, say with upper 
bound K, and H(s) belongs to L 2 ( | — i &> , | + % œ ) (from condition (iii) and 
2.11). Hence, on integrating along the line s = \ + ir, we have 

| r (5)M(l - s)H{\ - s)\2dr <K2 \H(l - s)\2dr 

and so T(s) M(l — s) H(l — s) belongs to L2(J — i 00 , J + i 00 ). Hence, 
from 2.12 and (21), g(u) belongs to L2(0, œ ) and its Mellin transform G (s) is 
given by 

(22) G(s) = T(s)M(l - s)H(l - s). 

Since g{u) belongs to L2(0, 00 ) we may similarly deduce from (18) that 

(23) F{s) = T(s)M(l - s)G(l - s). 

On substituting 1 — s for s in (22) and eliminating G(l — s) from (23) we have 
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F(s) V(s)M(l s )r ( l - s)M(s)H(s) 

from (16). Hence 
s in ITS m*) 

/ (*) = 2 iri j - i » s in TT(1 - s) 
•ds. 

But 7r/(sin ws) belongs to L 2 ( | — i oo , i -f- i oo ) and its Mellin transform 
[5, p. 192 (7.7.8) ] is 1/(1 + u). From (6) we may then conclude that 

/ («) = 
1 

(24) 

o 1 +t 
œ Ht) ^ 
o w + /' 

h(ut)dt 

•dt (u> 0) 

by a slight change of variable. This completes the proof of (19). 
For the proof of (20) we see from (22) and (23) that 

(25) ^(5)^(1 - s) = G(s)G(l - 5). 

Condition (iii) shows that h(u) belongs to L2(0, œ ) and in the course of the 
proof of (24) it was shown that/(w) and g(u) also belong to Z,2(0, » ). Hence, 
from 2.11, F(s), G(s), and H(s) all belong to L\\ - i oo , \ + i œ ). On 
multiplying (25) by u~s and integrating along the line s = J + ir from J — i oo 
it follows from (6) that 

f(ut)h(t)di g{ut)g(t)dt. 

This completes the proof of Theorem 1. We have already noted that we can 
take m(x) = e~x and then (17) and (18) reduce to known forms [6, p. 325]. 

Theorem 2 deals with the case of the asymmetrical kernels. If M(s) and 
N(s) are the Mellin transforms of a pair of conjugate Fourier kernels then the 
functional equation (10) is satisfied. This is dealt with in 

THEOREM 2. If (i) M(s) and N(s) satisfy (10) and are both bounded on the line 
s — \ + ir> (ii) the general Laplace transforms m(x) andn(x) are defined by (14), 
(iii) h{x) belongs to L2(0, oo ), and 

and 

then 

g(u) = 

f(u) = 

m 

m(ut)h(t)dt, 

n(ut)g(t)dtf 

h(t) 
u + i •dt. 
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To prove this we use the same arguments as for Theorem 1. Equation (22) 
can be established as before, but instead of (23) we now prove 

(26) F(s) = T(s)N(l - s)G(l - s). 

On eliminating G (s) between (22) and (26), by the method of Theorem 1, and 
using (10) we establish once again 

F(s) = 
s in ITS 

-H(s). 

From this we deduce (24), as in Theorem 1, and so complete the proof of 
Theorem 2. But if M (s) is not equal to N(s) then We cannot, from (22) and (26), 
establish a relation such as (25). Consequently, under the conditions of 
Theorem 2 the Parseval equation (20) does not in general exist. 

6. Formal analysis. In this section I am concerned mainly with the methods 
by which iterated relationships such as (1), (2), and (3) can be obtained. The 
analysis is purely formal and difficulties, such as arise in changing the order of 
integration, etc., are for the moment ignored. 

Consider the two equations 

(27) 

and 

(28) 

/ (* ) = 

g(x) = 

p(xt)g(t)dt 

q(xt)h{t)dt. 

On multiplying (27) by xs~l we have formally 

F(*) = 
0 J 

0 J 

p(xt)xs~lg(i)dtdx 

p(u)u'~g(t)rsdtdu 

s). (29) = P(s)G(l 

Similarly from (28) we have 

(30) 67(5) = Q(s)H(l - s). 

On substituting 1 — s for 5 in (30) we can eliminate G(l — s) from (29) and 
obtain 

F(s) = P(s)Q(l - s)H(s). 

Hence a relation exists between/(x) and h(x) which, in general, is independent 
of g(x) but which depends largely upon the nature of the quantity P(s) Q{\ — s) 
and its Mellin transform. This observation is illustrated by the following 
examples: 

If 

(31) / (*) = e~xt{xt)ag{t)dt 
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and 

(32) 

then 

{33) 

(*) = e~"(xt)ah(t)dt, 

f{x) = T(2a + 1) 
h{t){xt)a 

dt, 
o (x + tfa+1 

where 2a + 1 > 0 and x > 0. By the method just outlined we have, from (31), 

F(s) = T(s + a)G(l - s) 

and from (32), 

G(s) = r(5 + a)ff(l - s). 

Hence 

(34) F(s) = T(s + a)T(a + 1 - s)H(s). 

But the Mellin transform [5, p. 195] of T(a + 1 - s) T(a + s) is 

Y {2a + \)u 

(1 + u)2a+l ' 

Hence from (34) and (6) we may deduce that 

/ (* ) = T ( 2 a + 1 ) 
h(xt)f 

2o+l' 0 (1 + t) 
dt. 

This is finally reduced to (33) by a simple change of variable. 
This analysis can be made rigorous by assuming that h(x) belongs to L2(0, <» ). 

By the methods of Theorem 1 we can prove the following result: 

THEOREM 3. Iff(x) and g(x) are related as in (31) and g{x) and h(x) as in (32), 
where 2a + 1 > 0, and h{u) belongs to L2(0, °° ) then g(u) andfiu) also belong to 
L2(0, co ),f(x) and h(x) are related by (33) and also 

(35) f(ut)h(t)dt = g(ut)g(t)dt. 

The equations (31), (32), and (33) reduce to (1), (2), and (3) in the special 
case a = 0. 

It is not difficult to generalize Theorem 3 still further. For, write 

and 

M(0 = 

»(0 = 

e x\xt)am{x)dx 

'(xt)an(x)dx, 
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where m(x) and n(x) are a pair of conjugate Fourier kernels, so that (10) is 
satisfied. Then we may, in general, replace (31) and (32) by 

and 

/ (*) 

gix) 

fi(xt)g(t)dt 

v{xt)h(t)dt, 

and the relationship between/(x) and h(x) is still given by (S3). Um(x) = n(x) 
then we also have the Parseval equation (35), but not otherwise. This can be 
proved, on assuming suitable conditions, by the same arguments as are used in 
the proof of Theorem 1. But since this is a special case of Theorem 5, we shall 
omit the proof. 

A second example is given by the following result: if 

and 

where a > 0, then 

f(x) = a 

g(x) = a 

fix) = aT\ 

atgit)dt 

atah(t)dt, 

h(t) 

o (xa + f)1 •A 

and in addition (35) is true. This system reduces to (1), (2), and (3) when 
a = 1. 

This set of transforms can be justified by the arguments used in Theorem 1 
if we assume that h(u) belongs to L2(0, °° ). The Mellin transforms required 
for the proof are 

iT(l/a) 
and 

l-rU), ± 
a W (i (i + uay 

and rl 0r(l-4. 
\a/ \a a/ 

7. General iteration formulae. For the rest of this paper we shall find it 
convenient to use the following terminology. We write p for p(x) or p(u), 
Mel p for the Mellin transform of p(u), P for P(s), and P for P ( l - s). Thus 

Mel p = P and Mel p = P. 

We shall also write 

(36) [p,q]{u\ = [p,q] = p(ut)q(t)dt. 

The form [p,q]{u) will be used only when it is necessary to specify the variable u. 
If p(x) and q(x) both belong to L2(0, °° ) then from (6) and 2.3 we have 

\P, <Zl = 

rH~*oo 

2 Tri J è-ioo 
Pu~sQds} 
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where P and Q both belong to L2(\ — i oo , \ -f i oo ). If, in addition, either 
P or Q is bounded on the line 5 = | + ir then, as in the proof of Theorem 1, we 
can infer that PQ belongs to L2{\ — i oo , } -f i » ), hence that [£,g] belongs 
to L2(0, oo ) and, finally, that 

(37) Mel \p, q] = PQ = Mel p Mel q. 

We can now prove 

THEOREM 4. If (i) p(x), q(x), and h(x) all belong to L2(0, oo ), (ii) p a^d (? 
are bounded on the line s = | + *V, aw^ 

(38) g(u) = 

(39) / (« ) = 

(40) / (« ) = 

0 
p(ut)h(t)dt 

o 
q(ut)g(t)dt} 

[p,q]{t}h(ut)dt. 
J o 

7/, iw addition, p(u) = q(u), then we also have 

(41) g{ut)g{t)dL f(ut)h(t)dt = ! o 

In the terminology just described conditions (38) and (39) become g = [pM 
a n d / = [g,g] and we are required to prove t h a t / = [h\p,q] ]. Equation (41) 
can also be written in the form [f,h] = [g,g]. 

To prove (40), apply the arguments preceding (37) to (38), using conditions 
(i) and (ii). We then deduce first that G = PH and secondly that g(u) belongs 
to Z,2(0, oo ). We may further deduce from (39) that F = QG and tha t / (« ) 
also belongs to L2(0, oo ). 

We now have 

F= QG = QPS = QPH. 

From the conditions of integrable square, some of which have been assumed and 
some proved, we may apply (6) and (37) to this result and rewrite it in the form 
M e l / = Mel [A,r], where Mel r = PQ = Mel \p,q]. Hence / = [h,\p,q] ], which 
is equivalent to (40). 

If p = q then P = Q and from G = PH and F = QG we deduce that 
FS = GG. From (37) this may be written in the form Mel \f,h] = Mel [g,g]. 
Hence \f,h] = [g,g], which is equivalent to (41). 

Theorem 4 contains the following results as special cases. When 

p{x) = q(x) = e~x 

it reduces to equations (1), (2), and (3). When 

p{x) = g(x) = e~V 
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it reduces to Theorem 3. When 

p(x) = q{x) = aé~^ 

it reduces to the system of equations at the end of §6. 

8. The Fourier kernel transform. In Theorem 1 it was shown that the factors 
e~xt'm (1) and (2) could be replaced by the Laplace transforms of Fourier kernels. 
In this section we shall show that Theorem 4 is capable of an analogous 
generalization. 

For this purpose we shall introduce two operators Ti and T2. Let M = M (s) 
and N = N(s) be two functions which are bounded on the line s = % + ir and 
which satisfy the functional equation 

(42) MN = 1. 

Then by using (9) we can find functions mi{x) and n\(x) which form the basis 
of general Fourier transforms of the type (11) [5, p. 226]. We define the oper
ators as follows: 

1 m-*co 
(43) r, p{x\ = Txp = "ïïd% 

Px' 
Ji-feo 

-°Mds 

and 
1 1 'h+ioo 

(44) T2 q{x) = T2q = Jwl] Qx~ sNds. Jwl] $—*oo 

The forms JTI£{#} and 7Vz{#} will be used only when it is necessary to specify 
the variable x. 

As an illustration, when M = N = 1 and P = Q = T(s) then Tip 
= T2q = er*. 

The Parse val equation (6) is often true even when the conditions of 2.2 are 
not fulfilled. Assuming that it is true for (43) and (44) we should then have 

Txp 

(45) 

o 
p(xt)rn(i)dt> 

T2q = q(xt)n(t)dt. 

If, for example, p{x) = q(x) = e~x then Tip and T2q reduce to the Laplace 
transforms of m(x) and n(x) respectively. 

Again, since M and N are bounded on s = | + ir, M/s and N/s both belong 
to £ 2 ( | — i °° , J + i °° ). Hence if sP belongs to L2{\ — i oo , \ -f % oo ) 
we may write sPx~s M/s for the right-hand integrand of (43) and use (6). We 
can then deduce in general that 

(46) TiP = — xpf(xt)mi(t)dty 

where m\($) is defined by (9) and the prime denotes differentiation. Similarly, 
if sQ belongs to L 2 ( | — i <*> , ^ -f i œ ) then we have, in general, 
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(47) T2q = xqf (xt)ni(t)dL 

These bear the same relation to (45) as the general Laplace transform (14) bears 
to the ordinary Laplace transform (12). When m(x) and n(x) exist it is usually 
possible to prove that (46) and (47) reduce to (45) (on integrating by parts). 

The advantage of defining T\ and T2 by (43) and (44) instead of by (45) or by 
(46) and (47) lies in the great generality of (43) and (44). Thus if M = N = 1, 
mit) and n(t) do not exist; but if p(x) and q(x) belong to L2(0, °° ) then, from 
2.12 and (43), (44), we have Tip = p and T2q = q. 

Another advantage lies in the fact that important deductions can be made 
from (43) and (44) with the help of reasonably simple assumptions. The most 
useful one from our point of view is as follows : 

If p(x) and q(x) both belong to L2(0, °° ) and M and N are bounded on the 
line s = \ + ir then Tip and T2q also belong to L2(0, °° ) and 

(48) 
Mel Tip = PM, 
Mel T2q = QN. 

For p{x) belongs to L2(0, °° ) and so, from 2.11, P belongs to L2(^ — i 
i -|- i oo ). Hence, since M is bounded, PM also belongs to L2{\ — i 
| -\- i oo ). The results stated then follow from 2.12. 

We now prove our final theorem. 

THEOREM 5. If (i) p(x), q(x), and h(x) all belong to L2(0, «̂  ), (ii) p and Q 
are bounded on the line s = \ + ir, (iii) M and N are bounded on the line s — \ + ir 
and satisfy the equation MN = 1, and 

(49) 

and 

(50) 

then 

(51) 

gW = Tip{ut}h(t)dt 

T2q[ut}g(t)dt1 

[p,q]{t)h(ut)dt. 

If, in addition, p{u) — q(u) and M = N, then we also have 

(52) f(ut)h(t)dt = g{ut)g{t)dt. 

We first prove (51) by means of Theorem 4. Since p(x) belongs to L2(0, oo ) 
it follows from (48) that Tip belongs to L2(0, oo ) and that Mel Tip = PM. 
Also from conditions (ii) and (iii) it is evident that PM is bounded on the line 
s = \ + ir. Similar remarks apply to T2q and to Mel T2q = QN, Hence con
ditions (i) and (ii) of Theorem 4 are satisfied. On applying the results of that 
theorem to (49) and (50) we find that 
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Too 

(53) f(u) = I [Tip, T2q]{t}h(ut)dt. 

The proof is then completed if we can show that [Tip,T2q] = [p, q]. 

Since p(x), q(x), Tip, and T2q all belong to L2(0, oo ) it follows from (37) that 

Mel [Ti p, T2 q] = Mel Tx p . Mel T2 q 

= PM . QN from (48) 

= PQ from condition (iii) above 

= Mel [p, q] 
from (37) again. Hence 

[Tip,T2q] = [p,q] 

and the proof of (51) is completed. 

To prove (52), from (6) and (49) we have 

G = Mel Tip . H = PUS 

and from (6) and (50) we have 

F = Mel T2q. G = QNG. 

But we now have two extra conditions: p(x) = q(x), from which we derive 
P = Q, and M = N. Hence FH = GG. From (37) this may be written in the 
form Mel [/, h] = Mel [g, g] and so [/, h] = \g, g]. Finally, from (36) this is 
equivalent to (52). 

Theorem 5 contains most of the other theorems as special cases. When 
p(x) = q{x) = e~x, it reduces to Theorem 1, and when M = N = 1 it reduces 
to Theorem 4. 
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