Socioeconomically disadvantaged groups and metabolic syndrome in European adolescents: The HELENA study

Isabel Iguacel1, Claudia Börnhorst2, Nathalie Michels3, Christina Breidenassel4, Jean Dallongeville5, Marcela González-Gross6, Frédéric Gottrand7, Anthony Kafatos8, Eva Karaglani9, Mathilde Kersting10, Stefaan de Henauw3, Christina-Paulina Lambrinou8, Lorenza Mistura11, Denes Molnár12, Esther Noya13, Marc J. Gunter14, Alejandro de la O. Puerta15, Azahara I. Rupérez1, Kurt Widhalm16, Inge Huybrechts14 and Luis A. Moreno1

1GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health Sciences; University of Zaragoza, Zaragoza, Spain,
2Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany,
3Department of Public Health, Ghent University, Ghent, Belgium,
4Department of Nutrition - Human nutrition, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany,
5Institut Pasteur de Lille, Lille, France,
6ImFine Research Group, Department of Health and Human Performance, Facultad de Ciencias de la Actividad Física y del Deporte-INEF, Universidad Politécnica de Madrid, Madrid, Spain,
7Inserm U995, IFR114, Faculty of medicine, Université de Lille2, Lille, France,
8Preventive Medicine and Nutrition Clinic, University of Crete, Heraklion, Greece,
9Department of Nutrition and Dietetics Harokopio University of Athens, Athens, Greece,
10Research Department of Child Nutrition, Pediatric University Clinic, Ruhr University Bochum, Bochum, Germany,
11Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Rome, Italy,
12Department of Paediatrics, Medical School, University of Pécs, Pécs, Hungary,
13Immunonutrition Group (Metabolism and Nutrition Department) – Institute of Food Science Technology and Nutrition, Spanish National Research Council (ICTAN-CSIC), Madrid, Spain,
14International Agency for Research on Cancer, World Health Organization, Lyon, France,
15Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain and
16University of Vienna, Vienna, Austria

Abstract

Introduction: Psychosocial stressors deriving from socioeconomic disadvantages in adolescents can result in higher metabolic syndrome (MetS) risk. We aimed to examine whether socioeconomic disadvantages were associated with MetS independent of lifestyle and whether there was a dose response relationship between the number of cumulated socioeconomic disadvantages and the risk of MetS.

Materials and Methods: The present study included 1,037 European adolescents (aged 12.5–17.5) of the 3,528 total HELENA participants. Sociodemographic variables and lifestyle were assessed through self-reported questionnaires. Disadvantaged groups included adolescents with low educated parents, low family affluence, migrant origin, unemployed parents, and from non-traditional families. MetS score was calculated as the sum of sex- and age-specific z-scores of waist circumference, HOMA-IR index, mean of z-scores of diastolic and systolic blood pressure and mean of z-score of HDL-C multiplied by -1 and z-score of TG. A higher score indicates poor metabolic health. Linear mixed-effects models were used to study the association between social disadvantages and MetS risk score. Models were adjusted for sex, age, pubertal status (Tanner stage) and lifestyle (diet quality, physical activity, alcohol consumption and smoking status).

Results: Adolescents with low educated mothers showed a higher MetS score (0.54 [0.09–0.98]; β [99% confidence interval]) compared to high-educated mothers. Adolescents who accumulated more than three disadvantages (0.69 [0.08–3.1]) or with missing information on disadvantages (0.72 [0.04–1.40]) had a higher MetS risk compared to non-socioeconomically disadvantaged groups. Stronger associations between socioeconomic disadvantages and MetS were found in male compared to female adolescents. Policy makers should focus on low educated families to tackle health disparities.

Discussion: Out of the studied socioeconomic disadvantages, maternal education is the most important determinant of adolescent’s MetS risk independently of sex, age, Tanner stage, smoking status, alcohol consumption, diet quality and physical activity. Social vulnerabilities (migrant background, unemployment status and belonging to a non-traditional family) were not associated with a higher MetS risk in European adolescents. However, we found a dose-response relationship between the number of factors related to social disadvantage and adolescents’ MetS risk with adolescents accumulating three or more socioeconomic disadvantages showing the highest risk. Stronger associations between socioeconomic disadvantages and MetS were found in male compared to female adolescents.

Conflict of Interest

There is no conflict of interest