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Abstract

We prove that the modified Benjamin–Ono–Burgers equation is globally well-posed in H s for s > 0.
Moreover, we show that the solution of the modified Benjamin–Ono–Burgers equation converges to that
of the modified Benjamin–Ono equation in the natural space C([0, T ]; H s), s ≥ 1/2, as the dissipative
coefficient ε goes to zero, provided that the L2 norm of the initial data is sufficiently small.
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1. Introduction

The purpose of this paper is to study the global well-posedness and the inviscid limit
behaviour of the Cauchy problem for the modified Benjamin–Ono–Burgers (mBOB)
equation

ut +Huxx − εuxx = u2ux ,

u(x, 0)= φ(x),
(1.1)

where u(x, t) : R× R→ R, 0< ε ≤ 1 and H is the Hilbert transform:

Hu(x)=
1
π

p.v.
∫
+∞

−∞

u(y)

x − y
dy. (1.2)

When the nonlinearity in (1.1) is −u2ux , it can also be treated by our method.
Formally, letting ε = 0, then (1.1) becomes the modified Benjamin–Ono (mBO)

equation:
ut +Huxx = u2ux , u(x, 0)= φ(x). (1.3)

Thus it is natural to conjecture that the solution of (1.1) converges to that of (1.3) as ε
tends to zero in the natural space C([0, T ] : H s). The same problem for the Benjamin–
Ono–Burgers equation (with quadratic nonlinearity uux in (1.1)) was suggested by
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Tao [13], who proved that the Benjamin–Ono equation is globally well-posed in
H1(R). The inviscid limit problems are very interesting from the physical viewpoint
and have been studied by many authors [5, 15, 16]. The limit in the low regularity
space was first studied by Guo and Wang [5]where they used the l1-type X s,b structure.

In [2], Guo showed that (1.3) is globally well-posed for φ ∈ H s , s ≥ 1/2, and ‖φ‖L2

sufficiently small. In this paper, we show that (1.1) is globally well-posed for φ ∈ H s ,
s > 0. In [14], Vento considered the Cauchy problem for dissipative Benjamin–Ono
equations

ut +Huxx + |D|αu + uux = 0, t > 0, x ∈ R,

u(x, 0)= φ(x),
(1.4)

where |D|α is the Fourier multiplier with symbol |ξ |α , 0< α ≤ 2. When 0≤ α < 1,
the author gave the ill-posedness in H s(R), s ∈ R, in the sense that the flow map
u0 7→ u (if it exists) fails to be C2 at the origin. For 1< α ≤ 2, the author proved the
global well-posedness in H s(R), s >−α/4. Comparing to [14], we mainly consider
the situation α = 2 and with nonlinearity −u2ux . In [3], Guo considered the Cauchy
problem for the dispersion generalized Benjamin–Ono equation

∂t u + |D|1+α∂x u + uux = 0, (x, t) ∈ R2,

u(x, 0)= u0(x),
(1.5)

where 0≤ α ≤ 1, and showed that (1.5) is locally well-posed in H s for s > 1− α. The
α = 0 result of [3] follows from our estimates.

The main ingredients of our ideas are the methods in [5] combined with the new
observation in [2] for the modified Benjamin–Ono equation. However, there are some
new difficulties, since the resolution spaces are different from the one used in [5].
Fortunately, we can overcome these difficulties by using the ideas from [5, 6, 10] and
some new techniques.

We now give some notation. Let η0 : R→ [0, 1] denote an even smooth function
supported in [−8/5, 8/5] and equal to 1 in [−5/4, 5/4]. For k ∈ Z, let χk(ξ)=

η0(ξ/2k)− η0(ξ/2k−1), where χk is supported in {ξ : |ξ | ∈ [(5/8) · 2k, (8/5) · 2k
]}

and

χ[k1,k2] =

k2∑
k=k1

χk for any k1 ≤ k2 ∈ Z.

For simplicity of notation, let ηk = χk if k ≥ 1 and ηk ≡ 0 if k ≤−1. For k1 ≤ k2 ∈ Z,
let

η[k1,k2] =

k2∑
k=k1

ηk and η≤k2 =

k2∑
k=−∞

ηk .

For k ∈ Z, let Pk denote the operators on L2(R) defined by

P̂ku(ξ)= χk(ξ )̂u(ξ).
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By a slight abuse of notation, we also define the operators Pk on L2(R× R) by
formulas F(Pku)(ξ, τ )= χk(ξ)F(u)(ξ, τ ). For l ∈ Z, let

P≤l =
∑
k≤l

Pk, P≥l =
∑
k≥l

Pk .

For ξ ∈ R, let ω(ξ)=−|ξ |ξ . For k ∈ Z, let Ik = {ξ : |ξ | ∈ [2k−1, 2k+1
]}. For k ∈ Z+,

let Ĩk = [−2, 2] if k = 0 and Ĩk = Ik if k ≥ 1. For k ∈ Z+ and j ≥ 0, let

Dk, j = {(ξ, τ ) ∈ R× R : ξ ∈ Ĩk, τ − ω(ξ) ∈ Ĩ j }.

We introduce the space used in [2, 6]. First we define the X s,b-type Banach spaces
Xk(R× R) for k ∈ Z+ as follows:

Xk =

{
f ∈ L2(R2) : f is supported in Ĩk × R and

‖ f ‖Xk :=

∞∑
j=0

2 j/2βk, j‖η j (τ − w(ξ)) · f (ξ, τ )‖L2
ξ,τ
<∞

}
,

(1.6)

where
βk, j = 1+ 22( j−2k)/5. (1.7)

The coefficients βk, j are chosen to guarantee the trilinear estimates so that Lemma 4.1
holds. For k ≥ 100, we also define the Banach spaces Yk = Yk(R2):

Yk =

{
f ∈ L2(R2) : f is supported in

k−1⋃
j=0

Dk, j and

‖ f ‖Yk := 2−k/2
‖F−1

[(τ − ω(ξ)+ i) f (ξ, τ )]‖L1
x L2

t
<∞

}
.

(1.8)

Then for k ∈ Z+, we define

Zk := Xk if k ≤ 99 and Zk := Xk + Yk if k ≥ 100. (1.9)

The spaces Zk are our basic Banach spaces.
For s ≥ 0, we define the Banach spaces F s

= F s(R× R),

F s
=

{
u ∈ S ′(R× R) : ‖u‖2Fs =

∞∑
k=0

22sk
‖ηk(ξ)F(u)‖2Zk

<∞

}
; (1.10)

and N s
= N s(R× R),

N s
=

{
u ∈ S ′(R× R) : ‖u‖2N s

=

∞∑
k=0

22sk
‖ηk(ξ)(τ − ω(ξ)+ i)−1F(u)‖2Zk

<∞

}
.

(1.11)
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For T ≥ 0, we define the time-localized spaces F s(T ) and N s(T ) by

‖u‖Fs(T ) = inf
w∈Fs
{‖w‖Fs , w(t)= u(t) on [0, T ]},

‖u‖N s(T ) = inf
w∈N s
{‖w‖N s , w(t)= u(t) on [0, T ]}.

(1.12)

For φ ∈ L2(R), we denote by W0 the semigroup associated with the mBO equation

Fx (W0(t)φ)(ξ)= exp[iω(ξ)t]φ̂(ξ), ∀t ∈ R, φ ∈ S ′.

For 0< ε ≤ 1, we denote by Wε the semigroup associated with the free evolution
of (1.1),

Fx (Wε(t)φ)(ξ)= exp[−εξ2t + iξ |ξ |t]φ̂(ξ), ∀t ≥ 0, φ ∈ S ′.

We extend Wε to a linear operator defined on the whole real axis by setting

Fx (Wε(t)φ)(ξ)= exp[−εξ2
|t | + iξ |ξ |t]φ̂(ξ), ∀t ∈ R, φ ∈ S ′.

To study the low regularity of (1.1), we introduce a variant version of Bourgain’s space
with dissipation

‖u‖Xb,s,2 = ‖〈i(τ − ω(ξ))+ |ξ |2〉b〈ξ〉s û‖L2(R2), (1.13)

where 〈·〉 = (1+ | · |2)1/2. The time-localized spaces is similar to (1.12). This type of
space was introduced by Molinet and Ribaud in [9]. The standard Xb,s space used by
Bourgain [1] and Kenig et al. [7] is defined by

‖u‖Xb,s = ‖〈τ − ω(ξ)〉
b
〈ξ〉s û‖L2(R2).

The space X1/2,s,2 turns out to be very useful for capturing both dispersive and
dissipative effects. For global well-posedness, we follow the methods of Molinet
and Ribaud [9], by using Xb,s-type space combined with the dissipative structures.
Similar results were obtained by Vento [14] for the Benjamin–Ono-Burgers equation
(with nonlinearity uux in (1.1)).

THEOREM 1.1. Assume that 0< ε ≤ 1, s > 0 and φ ∈ H s(R). For any T > 0, there
exists a unique solution uε of (1.1) in

ZT = C([0, T ], H s) ∩ X1/2,s,2
T .

Moreover, the solution map 8εT : φ→ u is smooth from H s(R) to ZT and u belongs
to C((0,∞), H∞(R)).

We show the uniform global well-posedness for Equation (1.1) with respect to ε.

THEOREM 1.2. Assume that φ ∈ H1/2, 0< ε ≤ 1 and ‖φ‖2� 1.

(a) Existence. For any T > 0, there exists a solution u to the Cauchy problem (1.1)
satisfying

u ∈ F1/2(T )⊂ C([−T, T ] : H1/2).
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(b) Uniqueness. The solution mapping 8εT : φ→ u is the unique continuous
extension of the classical solution H∞→ C([−T, T ] : H∞).

(c) Lipschitz continuity. For any R > 0, the mapping 8εT : φ→ u is Lipschitz
continuous from {φ ∈ H1/2

: ‖φ‖H1/2 < R, ‖φ‖L2 � 1} to C([−T, T ] : H1/2).
(d) Persistence of regularity. If in addition φ ∈ H s for some s > 1/2, then the

solution u belongs to H s .

For the limit behaviour, we have the following theorem.

THEOREM 1.3. Assume that φ ∈ H1/2 and ‖φ‖2� 1. Then, for any T > 0, the
solution of (1.1) obtained in Theorem 1.2 converges to that of (1.3) in C([0, T ]; H s)

for s ≥ 1/2 if ε goes to 0.

In Sections 2–4 we give the proofs of Theorems 1.1–1.3.

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Comparing the procedure of [14, Section 4],
we can easily obtain Theorem 1.1 if the proposition below holds. In particular, the
proof that u belongs to C((0,∞), H∞(R)) is parallel to the proof in Section 4 in [14],
and so we omit it.

PROPOSITION 2.1. Let s > 0, 0< η� 1; then there exists Cs,η > 0 such that, for any
u1, u2, u3 on R× R,

‖∂x (u1u2u3)‖X−1/2+η,s,2 ≤ C‖u1‖X1/2,s,2‖u2‖X1/2,s,2‖u3‖X1/2,s,2 .

We now utilize Tao’s [k; Z ]-multiplier from [12] to prove Proposition 2.1. For
simplicity, We review some notation Tao used in [12]. We use A . B to denote the
statement that A ≤ C B for some large constant C which may vary from line to line and
depend on various parameters such as the dimension n, and we use A ∼ B to denote
the statement that A . B . A. Let Z be any abelian additive group with an invariant
measure dξ . For any integer k ≥ 2, we let 0k(Z) denote the hyperplane

0k(Z) := {(ξ1, . . . , ξk) ∈ Z k
: ξ1 + · · · + ξk = 0},

which is endowed with the measure∫
0k(Z)

f :=
∫

Zk−1
f (ξ1, . . . , ξk−1,−ξ1 − · · · − ξk−1) dξ1 · · · dξk−1.

A [k; Z ]-multiplier is defined to be any function m : 0k(Z)→ C, and the multiplier
norm ‖m‖[k;Z ] is defined to be the best constant such that the inequality∣∣∣∣∫

0k(Z)
m(ξ)

k∏
j=1

f j (ξ j )

∣∣∣∣≤ ‖m‖[k;Z ] k∏
j=1

‖ f j‖L2(Z)

holds for all test functions f j on Z . For given τ, ξ and h(·), we write

λ := τ − h(ξ).
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Similarly, we put λ j := τ j − h j (ξ j ) . The quantities N j and L j measure the spatial
frequency of the j th wave and how it resembles a free solution respectively, while the
quantity H measures the amount of resonance. In this paper, we consider

h(ξ)=−ξ1|ξ1| − ξ2|ξ2| − ξ3|ξ3| = −λ1 − λ2 − λ3,

which measures the extent to which the spatial frequencies ξ1, ξ2, ξ3 can resonate with
each other. By dyadic decomposition of the variables ξ j , λ j , as well as the function
h(ξ), one is led to consider

‖X N1,N2,N3;H ;L1,L2,L3‖[3,R×R], (2.1)

where X N1,N2,N3;H ;L1,L2,L3 is the following multiplier:

X N1,N2,N3;H ;L1,L2,L3(ξ, τ ) := χ|h(ξ)|∼H

3∏
j=1

χ|ξ j |∼N jχ|λ j |∼L j .

Define the quantities Nmax ≥ Nmed ≥ Nmin to be the maximum, median, and
minimum of N1, N2, N3 respectively. Lmax ≥ Lmed ≥ Lmin are similar. In this
paper, we always assume that N j , L j are dyadic numbers. From the identities
ξ1 + ξ2 + ξ3 = 0 and λ1 + λ2 + λ3 + h(ξ)= 0 on the support of the multiplier, we
see that X N1,N2,N3;H ;L1,L2,L3 vanishes unless

Nmax ∼ Nmed and Lmax ∼max(H, Lmed). (2.2)

From the estimate in [6],
|H | ∼ |ξ |max · |ξ |min, (2.3)

where
3∑

j=1

ξ j = 0, |ξ |max =max(|ξ1|, |ξ2|, |ξ3|),

and
|ξ |min =min(|ξ1|, |ξ2|, |ξ3|).

LEMMA 2.2 [3, Lemma 4.3]. Let H, N1, N2, N3, L1, L2, L3 > 0 obey (2.2) and (2.3).
Then:

(i) if Nmax ∼ Nmin and Lmax ∼ Nmax Nmin, then

(2.1) . L1/2
minL1/4

med; (2.4)

(ii) if N2 ∼ N3� N1 and Nmax Nmin ∼ L1 & L2, L3, then

(2.1) . L1/2
min N−1/2

max min
(

Nmax Nmin,
Nmax

Nmin
Lmed

)1/2

, (2.5)

and similarly for permutations;
(iii) in all other cases,

(2.1) . L1/2
min N−1/2

max min(Nmax Nmin, Lmed)
1/2. (2.6)
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We now prove Proposition 2.1. By duality and the Plancherel theorem, it suffices to
show that∥∥∥∥ (ξ1 + ξ2 + ξ3)〈ξ4〉

s

〈τ4 − ω(ξ4)+ iξ2
4 〉

1/2−η
∏3

j=1〈ξ j 〉
s〈τ j − ω(ξ j )+ iξ2

j 〉
1/2

∥∥∥∥
[4,R×R]

. 1.

We estimate |ξ1 + ξ2 + ξ3| by 〈ξ4〉. We then apply the inequality

〈ξ4〉
s+1 . 〈ξ4〉

1/2
3∑

j=1

〈ξ j 〉
s+1/2,

where we assume that s > 0. By symmetry it suffices to show that∥∥∥∥ 〈ξ1〉
−s
〈ξ3〉
−s
〈ξ2〉

1/2
〈ξ4〉

1/2

〈τ4 − ω(ξ4)+ iξ2
4 〉

1/2−η
∏3

j=1〈τ j − ω(ξ j )+ iξ2
j 〉

1/2

∥∥∥∥
[4,R×R]

. 1.

We may replace 〈τ2 − ω(ξ2)+ iξ2
2 〉

1/2 by 〈τ2 − ω(ξ2)+ iξ2
2 〉

1/2−η. By the T T ∗

identity [12, Lemma 3.7] this estimate is reduced to the bilinear estimate below.

LEMMA 2.3. Let s > 0; for all u, v on R× R and 0< η� 1,

‖uv‖L2(R×R) . ‖u‖X1/2−η,−1/2,2(R×R)‖v‖X1/2,s,2(R×R).

PROOF. By the Plancherel identity, it suffices to show that∥∥∥∥ 〈ξ1〉
−s
〈ξ2〉

1/2

〈τ1 − ω(ξ1)+ iξ2
1 〉

1/2〈τ2 − ω(ξ2)+ iξ2
2 〉

1/2−η

∥∥∥∥
[3,R×R]

. 1.

Observe that, by the translation invariance of the [k; Z ]-multiplier norm, we can
always restrict our estimate on λ j & 1 and max(N1, N2, N3)& 1. The comparison
principle and orthogonality [12, Lemmas 3.1, 3.11] reduce our estimate to show that

∑
Nmax∼Nmed∼N

∑
L1,L2,L3&1

〈N1〉
−s
〈N2〉

1/2

max(L1, 〈N1〉
2)1/2 max(L2, 〈N2〉

2)1/2−η

× ‖X N1,N2,N3;Lmax;L1,L2,L3‖[3;R×R] . 1

(2.7)

and ∑
Nmax∼Nmed∼N

∑
Lmax∼Lmed

∑
H�Lmax

〈N1〉
−s
〈N2〉

1/2

max(L1, 〈N1〉
2)1/2 max(L2, 〈N2〉

2)1/2−η

× ‖X N1,N2,N3;H ;L1,L2,L3‖[3;R×R] . 1

(2.8)

for all N & 1.
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First we prove (2.8). We may assume that (2.3) holds. By (2.6), it suffices to prove
that ∑

Nmax∼Nmed∼N

∑
Lmax∼Lmed&Nmin Nmax

L1/2
min N 1/2

min

×
〈N1〉

−s
〈N2〉

1/2

max(L1, 〈N1〉
2)1/2 max(L2, 〈N2〉

2)1/2−η
. 1.

(2.9)

Bounding

〈N1〉
−s
〈N2〉

1/2 .
N 1/2

〈Nmin〉
s ,

max(L1, 〈N1〉
2)1/2 max(L2, 〈N2〉

2)1/2−η & L1/2
min N 2(1/2−η)

and performing the L summations, it suffices to show that∑
Nmax∼Nmed∼N

〈Nmin〉
1/2−s

N 1/2−2η . 1,

which is true when s > 0.
We now prove (2.7). First we assume that (2.4) holds. In this case, we have N1, N2,

N3 ∼ N & 1. Therefore, it suffices to show that∑
Lmax∼N 2

N 1/2−s

max(L1, N 2)1/2 max(L2, N 2)1/2−η
L1/2

minL1/4
med . 1, (2.10)

and this is easily verified when s > 0 and Lmax ∼ Nmax Nmin.
Now we consider the case where (2.5) holds. We do not have perfect symmetry and

must consider three cases

N ∼ N1 ∼ N2� N3; H ∼ L3 & L1, L2, (2.11)

N ∼ N2 ∼ N3� N1; H ∼ L1 & L2, L3, (2.12)

N ∼ N1 ∼ N3� N2; H ∼ L2 & L1, L3, (2.13)

separately.
In the first case we reduce by (2.5) to∑

N3�N

∑
1.L1,L2.NN3

N 1/2−s

max(L1, N 2)1/2 max(L2, N 2)1/2−η

× L1/2
min N−1/2 min

(
NN3,

N

N3
Lmed

)1/2

. 1.

Performing the N3 summation, we reduce to∑
1.L1,L2.N 2

N 1/2−s

max(L1, N 2)1/2 max(L2, N 2)1/2−η
L1/2

min N−1/2 N 1/2L1/4
med . 1,

which is similar to (2.10).
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Considering the second and third cases, it suffices to deal with the worst case

N ∼ N2 ∼ N3� N1; H ∼ L1 & L2, L3.

Using the first part of (2.5),∑
Nmin�N

∑
1.Lmin,Lmed�NNmin

〈Nmin〉
−s N 1/2

L1/2
min N 2(1/2−η)

L1/2
min N 1/2

min . 1.

We may assume that Nmin & N−1 since the inner sum vanishes otherwise. Performing
the L summation, we reduce to∑

N−1.Nmin�N

〈Nmin〉
−s N 1/2 N 1/2

min

N 1−2η . 1,

which holds when s > 0.
To finish the proof of (2.7), it remains to deal with the case where (2.6) holds. This

reduces to∑
Nmax∼Nmed∼N

∑
Lmax∼Nmax Nmin

〈N1〉
−s
〈N2〉

1/2

max(L1, 〈N1〉
2)1/2 N 2(1/2−η)

L1/2
min N−1/2L1/2

med . 1.

Performing the L summations, we reduce to∑
Nmax∼Nmed∼N

N 1/2
min

〈N1〉
s N 1/2−2η . 1,

which is easily verified when s > 0. 2

3. Proof of Theorem 1.2

Observing that (1.1) is invariant under the scaling

u(x, t)→uλ =
1

λ1/2 u

(
x

λ
,

t

λ2

)
, ε→ε

1

λ1/2 , φλ =
1

λ1/2φ

(
x

λ

)
, (3.1)

we can see that ‖φ‖L2 is invariant under this scaling, and so we require that
‖φ‖L2 � 1. Before embarking on the proof of Theorem 1.2, we establish two results.
Let

L( f )(x, t)=W0(t)ψ(t)
∫

R2
ei xξ ei tτ ′

− e−ε|t |ξ
2

iτ ′ + εξ2 F(W0(−t) f )(ξ, τ ′) dξ dτ ′. (3.2)

Here we take ψ = η0, and it is easy to verify that

χR+(t)L( f )(x, t)= χR+(t)ψ(t)
∫ t

0
Wε(t − τ) f (τ ) dτ. (3.3)

LEMMA 3.1. If s ≥ 1/2 and φ ∈ H s , there exists C > 0 such that, for any 0< ε ≤ 1,

‖ψ(t) · (Wε(t)φ)‖Fs ≤ C‖φ‖H s .
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PROOF. We use an idea from [5] in our proof. In view of the definition, it suffices to
prove that if k ∈ Z+, then

‖ηk(ξ)F(ψ(t) · (Wε(t)φ))‖Zk ≤ C‖ηk(ξ)φ̂(ξ)‖L2 . (3.4)

First, we consider the case k = 0. Observing that |ξ | ≤ 2 in this case, and using
Taylor’s expansion,

‖η0(ξ)F(ψ(t)Wε(t)φ)‖X0

.
∞∑
j=0

2 j/2(1+ 22 j/5)

∥∥∥∥η0(ξ)φ̂(ξ)Ft

(
ψ(t)

∑
n≥0

(−1)nεnξ2

n!
|t |n

)
(τ )η j (τ )

∥∥∥∥
L2
ξ,τ

.
∑
n≥0

4n

n!
‖η0(ξ)φ̂(ξ)‖L2‖|t |nψ(t)‖H1

. ‖η0(ξ)φ̂(ξ)‖L2,

which is (3.4) as desired.
Secondly, we consider the case k ≥ 1. Observing that if |ξ | ∼ 2k , then for any j ≥ 0,

‖Pj (e
−εξ2

|t |)(t)‖L2 . ‖Pj (e
−ε22k

|t |)(t)‖L2,

which follows from Plancherel’s equality and the fact that

F(e−|t |)(τ )= C
1

1+ |τ |2
.

It follows from the definition that

‖ηk(ξ)F(ψ(t)Wε(t)φ)‖Xk

.
∞∑
j=0

2 j/2βk, j‖ηk(ξ)φ̂(ξ)η j (τ )Ft (ψ(t)e
−ε|t |ξ2

)(τ )‖L2
ξ,τ

.
∞∑
j=0

2 j/2βk, j‖ηk(ξ)φ̂(ξ)Pj (ψ(t)e
−ε|t |ξ2

)(t)‖L2
ξ,t

.
∞∑
j=0

2 j/2βk, j‖ηk(ξ)φ̂(ξ)‖L2 sup
|ξ |∼2k

‖Pj (ψ(t)e
−ε|t |ξ2

)(t)‖L2
t
.

Therefore, it suffices to show that
∞∑
j=0

2 j/2βk, j sup
|ξ |∼2k

‖Pj (ψ(t)e
−ε|t |ξ2

)(t)‖L2
t
. 1. (3.5)

We may assume that j ≥ 100 in the summation. Using the para-product
decomposition,

u1u2 =

∞∑
r=0

[(Pr+1u1)(P≤r+1u2)+ (P≤r u1)(Pr+1u2)] (3.6)
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and

Pj (u1u2) = Pj

( ∑
r≥ j−10

[(Pr+1u1)(P≤r+1u2)+ (P≤r u1)(Pr+1u2)]

)
= Pj (I + II).

(3.7)

Now we take u1 = ψ(t) and u2 = e−ε|t |ξ
2
.

When j ≤ 2k, we have βk, j ∼ 1, and the situation can be treated as in [5]. When
j > 2k, it suffices to bound∑

j≥100

2 j/222( j−2k)/5
‖Pj (II)‖L∞ξ L2

t

.
∑

j≥100

2 j−k
∑

r≥ j−10

‖Pr+1u2‖L∞ξ L2
t
‖P≤r+1u1‖L∞ξ,t

.
∑

j≥100

2 j−r
∑

r≥ j−10

2r−k
‖Pr+1u2‖L∞ξ L2

t

.
∑

r
2r−k
‖Pr+1(e

−ε|t |22k
)‖L2

t

. 2−1−k
∑

r
2r+1
‖Pr+1(e

−ε|t |22k
)‖L2

t

. 2−1−kε1/22k
‖e−|t |‖Ḃ1

2,1
. 1,

where we use the fact that e−|t | ∈ Ḃ1
2,1 and ‖e−ε22k

|t |
‖Ḃ1

2,1
∼ ε1/22k

‖e−|t |‖Ḃ1
2,1

.

The first term, Pj (I ), in (3.7) can be handled in an easier way. This completes the
proof of the proposition. 2

The next lemma provides an estimate for the retarded linear term.

LEMMA 3.2. For s ≥ 1/2 and u ∈ S(R× R), there exists C > 0 such that

‖ψ(t)L(v)‖Fs ≤ C‖v‖N s .

PROOF. In view of the definitions, it suffices to prove that if k ∈ Z+, then

‖ηk(ξ)F(L(v))‖Zk . ‖ηk(ξ)(i + τ − ω(ξ))
−1F(v)‖Zk .

Observe that

Fx (L(v)) = ψ(t)e
i tω(ξ)

∫
R

ei tτ ′
− e−ε|t |ξ

2

iτ ′ + εξ2 v̂(ξ, τ ′ + ω(ξ)) dτ ′

= ψ(t)ei tω(ξ)
∫

R

e−i tω(ξ)ei tτ ′
− e−ε|t |ξ

2

i(τ ′ − ω(ξ))+ εξ2 v̂(ξ, τ ′) dτ ′

= ψ(t)
∫

R

ei tτ ′
− ei tω(ξ)e−ε|t |ξ

2

i(τ ′ − ω(ξ))+ εξ2 v̂(ξ, τ
′) dτ ′
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and

F(L(v))(ξ, τ )=
∫

R

ψ̂(τ − τ ′)− Ft (ψ(t)e−ε|t |ξ
2
)(τ − ω(ξ))

i(τ ′ − ω(ξ))+ εξ2 v̂(ξ, τ ′) dτ ′.

For k ∈ Z+, let fk(ξ, τ
′)= F(v)(ξ, τ ′)ηk(ξ)(τ

′
− ω(ξ)+ i)−1.

For fk ∈ Zk , let

T ( fk)(ξ, τ ) =

∫
R

fk(ξ, τ
′)
ψ̂(τ − τ ′)− Ft (ψ(t)e−ε|t |ξ

2
)(τ − ω(ξ))

i(τ ′ − ω(ξ))+ εξ2

× (τ ′ − ω(ξ)+ i) dτ ′.

(3.8)

It suffices to show that

‖T ‖Zk→Zk ≤ C uniformly in k ∈ Z+. (3.9)

First, we consider the case k ∈ [0, 99], so fk = fk, j is a function supported in Dk, j .
Let

f #
k, j (ξ, µ

′)= fk, j (ξ, µ
′
+ ω(ξ)) and T #( fk, j )(ξ, µ)= T ( fk, j )(ξ, µ+ ω(ξ)).

Thus,

T #( fk)(ξ, τ )=

∫
R

f #
k (ξ, τ

′)
ψ̂(τ − τ ′)− Ft (ψ(t)e−ε|t |ξ

2
)(τ )

iτ ′ + εξ2 (i + τ ′) dτ ′. (3.10)

Let

w(τ)=W0(−τ)v(τ ), kξ (t)= ψ(t)
∫

R

ei tτ ′
− e−ε|t |ξ

2

iτ ′ + εξ2 ŵ(ξ, τ ′) dτ ′.

For (3.9), by definition, it suffices to prove that

∞∑
j=0

2 j/2βk, j‖ηk(ξ)η j (τ )Ft (kξ )(τ )‖L2
ξ,τ

.
∞∑
j=0

2− j/2βk, j‖ηk(ξ)η j (τ )ŵ(ξ, τ )‖L2
ξ,τ
.

(3.11)

We use an idea from [5] to decompose

kξ (t) = ψ(t)
∫
|τ |≤1

ei tτ
− 1

iτ + εξ2 ŵ(ξ, τ ) dτ + ψ(t)
∫
|τ |≤1

1− e−ε|t |ξ
2

iτ + εξ2 ŵ(ξ, τ ) dτ

+ ψ(t)
∫
|τ |≥1

ei tτ

iτ + εξ2 ŵ(ξ, τ ) dτ − ψ(t)
∫
|τ |≥1

e−ε|t |ξ
2

iτ + εξ2 ŵ(ξ, τ ) dτ

= I + II + III − IV.

We estimate each of the above four parts.

https://doi.org/10.1017/S0004972710001905 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710001905


[13] Modified Benjamin–Ono–Burgers equation 313

First, we consider the contribution of IV . Using the Taylor expansion for k = 0
and (3.5) for k ≥ 1, we get

∞∑
j=0

2 j/2βk, j‖ηk(ξ)Pj (IV)(t)‖L2
ξ,t
≤

∞∑
j=0

2 j/2βk, j

∫
|τ |≥1

‖ηk(ξ)ŵ(ξ, τ )‖L2
ξ

|τ |
dτ

× sup
ξ∈Ik

‖ηk(ξ)Pj (ψ(t)e
−ε|t |ξ2

)(t)‖L2
t

.
∞∑
j=0

2− j/2βk, j‖ηk(ξ)η j (τ )ŵ(ξ, τ )‖L2
ξ,τ
.

Secondly, we consider the contribution of III. Let

g(ξ, τ )=
|ŵ(ξ, τ )|

|iτ + εξ2|
χ|τ |≥1.

When j > 2k,

∞∑
j=0

2 j/2βk, j‖ηk(ξ)Pj (III)(t)‖L2
ξ,t

.
∞∑
j=0

2 j/222( j−2k)/5
‖ηk(ξ)η j (τ )ψ̂ ∗ g(ξ, τ )‖L2

ξ,τ

.
∞∑
j≥1

29 j/102−4k/5
∥∥∥∥η j (τ

′)‖ηk(ξ)ŵ(ξ, τ
′)‖L2

ξ

|iτ ′|
χ|τ ′|≥1

∥∥∥∥
L2
τ ′

.
∞∑
j=0

2− j/2βk, j‖ηk(ξ)η j (τ )ŵ(ξ, τ )‖L2
ξ,τ
,

where we used the fact that B9/10
2,1 is a multiplication algebra and F−1(|ψ̂ |) ∈ B9/10

2,1 .
When j ≤ 2k, we can get the desired result by the same estimate as in [5].

Thirdly, we consider the contribution of II. For εξ2
≥ 1, as for IV , we get

∑
j=0

2 j/2βk, j‖ηk(ξ)Pj (II)(t)‖L2
ξ,t

.
∑
j=0

2 j/2βk, j

∫ ‖ŵ(ξ, τ )‖L2
ξ

〈τ 〉
dτ

× sup
ξ∈Ik

‖ηk(ξ)Pj (ψ(1− e−ε|t |ξ
2
))(t)‖L2

t

.
∑
j=0

2− j/2βk, j‖ηk(ξ)η j (τ )ŵ(ξ, τ )‖L2
ξ,τ
.
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For εξ2
≤ 1, using Taylor’s expansion,∑

j=0

2 j/2βk, j‖ηk(ξ)Pj (II)(t)‖L2
ξ,t

.
∑
n≥1

∑
j=0

2 j/2βk, j

∥∥∥∥ηk(ξ)Pj (|t |
nψ(t))

εnξ2n

n!

∫
|τ |≤1

ŵ(ξ, τ )

iτ + εξ2 dτ

∥∥∥∥
L2
ξ,t

.

∥∥∥∥∫
|τ |≤1

εξ2
|ηk(ξ)ŵ(ξ, τ )|

|iτ + εξ2|
dτ

∥∥∥∥
L2
ξ

.
∑
j=0

2− j/2βk, j‖ηk(ξ)η j (τ )ŵ(ξ, τ )‖L2
ξ,τ
,

where we used the fact that

‖|t |nψ(t)‖
B9/10

2,1
. ‖|t |nψ(t)‖H1 ≤ C2n.

Finally, we consider the contribution of I . Using Taylor’s expansion,

I = ψ(t)
∫
|τ |≤1

∑
n≥1

(i tτ)n

n!(iτ + εξ2)
ŵ(τ ) dτ.

Thus, we get∑
j=0

2 j/2βk, j‖ηk(ξ)Pj (I )(t)‖L2
ξ,t

.
∑
n≥1

∥∥∥∥ tnψ(t)

n!

∥∥∥∥
B9/10

2,1

∥∥∥∥∫
|τ |≤1

|τ |

|iτ + εξ2|
|ηk(ξ)ŵ(ξ, τ )| dτ

∥∥∥∥
L2
ξ

.
∑
j=0

2− j/2βk, j‖ηk(ξ)η j (τ )ŵ(ξ, τ )‖L2
ξ,τ
.

From the definition of the spaces Xk , we get

‖T ‖Xk→Xk ≤ C uniformly in k ≥ 1, (3.12)

as desired.
We now consider fk ∈ Yk, k ≥ 100. As in [6], we can assume that fk is supported

in the set {(ξ, τ ′) : |τ ′ − ω(ξ)| ≤ 2k−20
}. We decompose

gk(ξ, τ
′)=

τ ′ − ω(ξ)

τ ′ − ω(ξ)+ i
gk(ξ, τ

′)+
i

τ ′ − ω(ξ)+ i
gk(ξ, τ

′).

By (3.12) and the fact that the result

‖i(τ ′ − ω(ξ)+ i)−1gk(ξ, τ
′)‖Xk ≤ C‖gk‖Yk
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in [6] also holds for our choice βk, j , it suffices to show that∥∥∥∥Ft (ψ(t)e
−ε|t |ξ2

)(τ − ω(ξ))

∫
R

gk(ξ, τ
′)

τ ′ − ω(ξ)

τ ′ − ω(ξ)+ iεξ2 dτ ′
∥∥∥∥

Xk

+

∥∥∥∥∫
R

gk(ξ, τ
′)

τ ′ − ω(ξ)

τ ′ − ω(ξ)+ iεξ2 ψ̂(τ − τ
′) dτ ′

∥∥∥∥
Zk

≤ C‖gk‖Yk .

(3.13)

The first term on the left-hand side of (3.13) can be treated by ideas similar to those
in [6]. For the second term, we decompose

gk(ξ, τ
′)=

τ ′ − ω(ξ)+ i

τ ′ − ω(ξ)+ i
gk(ξ, τ

′)+
τ − τ ′

τ ′ − ω(ξ)+ i
gk(ξ, τ

′).

The second term on the left-hand side of (3.13) is dominated by

C

∥∥∥∥η[0,k−1](τ − ω(ξ))

τ − ω(ξ)+ i

∫
R

gk(ξ, τ
′)(τ ′ − ω(ξ)+ i)

× ψ̂(τ − τ ′)
τ ′ − ω(ξ)

τ ′ − ω(ξ)+ iεξ2 dτ ′
∥∥∥∥

Yk

+ C
∑

j≥k−1

2 j/2βk, j

∥∥∥∥η j (τ − ω(ξ))

τ − ω(ξ)+ i

∫
R

gk(ξ, τ
′)

× ψ̂(τ − τ ′)
τ ′ − ω(ξ)

τ ′ − ω(ξ)+ iεξ2 dτ ′
∥∥∥∥

L2

+ C
∑
j≤k

2 j/2
∥∥∥∥η j (τ − ω(ξ))

τ − ω(ξ)+ i

∫
R

gk(ξ, τ
′)

× ψ̂(τ − τ ′)
(τ − τ ′)(τ ′ − ω(ξ))

τ ′ − ω(ξ)+ iεξ2 dτ ′
∥∥∥∥

L2
.

(3.14)

This concludes the proof. 2

We use the following lemma to bound the first term in (3.14); other terms are
similarly treated by the method in [6].

LEMMA 3.3. If k ≥ 1, 0≤ j ≤ k and gk is supported in Ik × R, then∥∥∥∥F−1
[

τ − ω(ξ)

τ − ω(ξ)+ iεξ2 η≤ j (τ − ω(ξ))gk(ξ, τ )

]∥∥∥∥
L1

x L2
t

. ‖F−1
[gk(ξ, τ )]‖L1

x L2
t
.

PROOF. Using Plancherel’s theorem, it suffices to prove that∥∥∥∥∫
R

ei xξ τ − ω(ξ)

τ − ω(ξ)+ iεξ2χ[k−1,k+1](ξ)η≤ j (τ − ω(ξ)) dξ

∥∥∥∥
L1

x L∞τ

≤ C. (3.15)
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In proving (3.15), we may assume that k ≥ 100. Observe that the function on the left-
hand side of (3.15) is not zero only if τ ≈ 22k . By symmetry, it suffices to consider
the case ξ ∈ [2k−2, 2k+2

]. Hence we have τ − ω(ξ)= τ + ξ2. Changing variable
τ + ξ2

= m, it suffices to show that∣∣∣∣∫
R

ei xξ m

m + iεξ2χ[k−1,k+1](ξ)η≤ j (m) dξ

∣∣∣∣≤ C. (3.16)

On twice integrating by parts the left-hand side of (3.16),∣∣∣∣∫
R

ei xξ m

m + iεξ2χ[k−1,k+1](ξ)η≤ j (m) dξ

∣∣∣∣
=

∣∣∣∣∫
R

ei xξ m

m + iεξ2χ[k−1,k+1](ξ)η≤ j (m)
1

2ξ
dm

∣∣∣∣
=

∣∣∣∣ 1

x2

∫
R

ei xξ d

dm

[
1
ξ ′

d

dm

(
m

m + iεξ2χ[k−1,k+1](ξ)η≤ j (m)

)]
dm

∣∣∣∣,
(3.17)

where we use the notation ξ ′ = dξ/dm and the fact that ξ ′ = 1/2ξ . To bound the
right-hand side of (3.17), it suffices to estimate

d

dm

[
1
ξ ′

d

dm

(
m

m + iεξ2χ[k−1,k+1](ξ)η≤ j (m)

)]
.

Let I = m/(m + iεξ2) and II = χ[k−1,k+1](ξ)η≤ j (m). It suffices to estimate

1
ξ ′

II
d2 I

dm
+

1
ξ ′

dI

dm

dII

dm
+ I

d

dm

(
1
ξ ′

dII

dm

)
+

dI

dm

d

dm

(
1
ξ ′

II

)
= L1 + L2 + L3 + L4.

Now we obtain an estimate for L1. After some calculation, we obtain

L1 .
1
ξ ′

II ×
2iεm(ξ ′)2 + 2iεmξξ ′′ + 4iεmξξ ′ − 8mε2ξ2(ξ ′)2 − 2iεξ2

+ 4ε2ξ3ξ ′

(m + iεξ2)3

. II,

where we use the notation ξ ′′ = d2ξ/dm2 and the fact that ξ ′′ = 1/4ξ3 and ξ ′ = 1/2ξ .
Similarly, for L2,

L2 .
1
ξ ′

dII

dm
×

iεξ2
− 2iεmξξ ′

m + iεξ2 . II.

Observing the uniform boundedness of I, dI/dm, the contributions of L3 and L4 have
been controlled in [6].

https://doi.org/10.1017/S0004972710001905 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710001905


[17] Modified Benjamin–Ono–Burgers equation 317

Collecting the estimates above and noticing the support of χ[k−1,k+1], η≤ j (m),∣∣∣∣∫
R

ei xξ m

m + iεξ2χ[k−1,k+1](ξ)η≤ j (m) dξ

∣∣∣∣
.

∣∣∣∣ 1

x2

∫
R

ei xξ
(

1
2ξ
+ 1+

1

4ξ3 + 2ξ
)
χ[k−1,k+1](ξ)η≤ j (m) dm

∣∣∣∣
.

∣∣∣∣ 1

x2

∫
R

ei xξ
(

1
2ξ
+ 1+

1

4ξ3 + 2ξ
)
χ[k−1,k+1](ξ)η≤ j (τ − ω(ξ))2ξ dξ

∣∣∣∣
.

2 j−k

1+ (2 j−k x)2
,

where we make a change of variable to m = τ − ω(ξ). If τ = 22k , we get the desired
result. 2

For later use, we recall the following trilinear estimate.

LEMMA 3.4 [2, Proposition 6.3]. For s ≥ 1/2,

‖∂x (ψ(t)
3uvw)‖N s . ‖u‖Fs‖v‖F1/2‖w‖F1/2 + ‖u‖F1/2‖v‖Fs‖w‖F1/2

+ ‖u‖F1/2‖v‖F1/2‖w‖Fs .

REMARK 3.5. In [2], the coefficients are βk, j = 1+ 2( j−2k)/2. Lemma 3.4 also holds
for our choice βk, j = 1+ 22( j−2k)/5; see [4] for details.

Noticing the assumption ‖φ‖L2 � 1 and the scaling (3.1), it suffices to consider
(1.1) with data φ satisfying

‖φ‖H s = r � 1.

Notice that F s
⊆ C(R; H s) for any s ≥ 0; see [2]. Collecting (4.3), Lemmas 3.1, 3.2,

3.4 and standard fixed-point machinery, we obtain part (a) of Theorem 1.2. The rest of
Theorem 1.2 follows from a standard argument.

4. Proof of Theorem 1.3

4.1. Uniform global well-posedness for mBOB. We now extend the local solution
obtained above to a global one. We use a conservation law to obtain our goal.
From [8, 11], we know that there are two conservation laws for the real-valued mBO
equation (1.3):

d

dt

∫
R

u2 dx = 0, (4.1)

d

dt

∫
R

1
2

uHux −
1
12

u4(x, t) dx = 0. (4.2)

Let u be a smooth solution of (1.1). Multiply by u and use partial integration to obtain

1
2
‖u(t)‖22 + ε

∫ t

0
‖3u(τ )‖22 dτ =

1
2
‖φ‖22,

where we use the notation 3= |∂x |.
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Turning to the conservation law for (1.1), let

H [u] =
∫

R

1
2

uHux −
1
12

u4 dx .

Noticing that (4.2) is a conserved quantity of (1.3),

d

dt
H [u] =

∫
R
∂t uHux −

1
3

u3ut dx

= ε

∫
R

uxx Hux −
1
3

u3uxx dx

= −ε‖33/2u‖22 + ε
∫

R
u2u2

x dx

≤ −ε‖33/2u‖22 + ε‖ux‖
2
2‖u‖

2
∞

. −ε‖33/2u‖22 +
ε

2
‖33/2u‖22,

where we use ‖u‖2 ≤ ‖φ‖2� 1, the Gagliardo–Nirenberg inequality and the
interpolation inequality

‖u‖∞ . ‖u‖1/22 ‖ux‖
1/2
2 , ‖ux‖2 . ‖u‖1/32 ‖3

3/2u‖2/32 .

Therefore,

sup
[0,T ]
‖u(t)‖H1/2 + ε

1/2
(∫ T

0
‖33/2u(τ )‖22 dτ

)1/2

≤ C(T, ‖φ‖H1/2), ∀T > 0.

(4.3)
Hence the solution is global.

4.2. Limit behaviour. From persistence of regularity of Theorem 1.2, it suffices to
show that s = 1/2. We reprise some ideas from [5, 15, 16] to obtain our result.

LEMMA 4.1 [4, Lemma 8.1]. Assume that δ > 0. If s ∈ R and u ∈ L2
t H s

x , then

‖u‖N s . ‖u‖L2
t H s

x
. (4.4)

Assume that u is an H1/2-strong solution of (1.1) obtained above, and that v is an
H1/2-strong solution to (1.3) in [2], with initial data φ1, φ2 ∈ H1/2 respectively. From
the scaling (3.1) and the assumption that ‖φi (x)‖2� 1, i = 1, 2, we may suppose that
‖φ1‖H1/2, ‖φ2‖H1/2 � 1. Let w = u − v and φ = φ1 − φ2. Then w solves

wt +Hwxx − εwxx = u2ux − v
2vx , (x, t) ∈ R2,

w(0)= φ(x).
(4.5)

We first view εuxx as a perturbation to the difference equation of the mBO equation.
Consider the integral equation of (4.5):

w(x, t)=W0(t)φ −
∫ t

0
W0(t − τ)[εuxx + u2ux − v

2vx ] dτ, t ≥ 0.
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For technical reasons, let

8εφ(w(x, t)) = ψ(t)

[
W0(t)φ − ε

∫ t

0
W0(t − τ)ψ(τ)uxx (τ ) dτ

−
1
3

∫ t

0
W0(t − τ)(w(v

2
+ u2

+ vu))x (τ ) dτ

]
.

Then 8εφ(w) solves the integral equation on t ∈ [0, 1]. By Lemmas 3.1, 3.2, 3.4
and 4.1,

‖8εφ(w)‖F1/2 . ‖φ‖H1/2 + ‖w‖F1/2‖u‖F1/2(‖v‖F1/2 + ‖u‖F1/2)

+ ε‖u‖
L2
[0,1] Ḣ

5/2
x
+ ‖w‖F1/2‖u‖F1/2‖v‖F1/2 .

Since from (3.1) and the assumption that ‖φi‖2� 1, i = 1, 2,

‖v‖F1/2 . ‖φ2‖H1/2 � 1, ‖u‖F1/2 . ‖φ1‖H1/2 � 1,

we obtain
‖w‖F1/2 . ‖φ‖H1/2 + ε‖u‖L2

[0,1] Ḣ
5/2
x
.

From the persistence of regularity of Theorem 1.2, we obtain

‖u − v‖C([0,1],H1/2) . ‖φ1 − φ2‖H1/2 + ε
1/2C(‖φ1‖H5/2, ‖φ2‖H1/2).

For general φ1 ∈ H5/2, φ2 ∈ H1/2, using the scaling (3.1), we can show that there
exists T = T (‖φ1‖H5/2, ‖φ2‖H1/2) > 0 such that

‖u − v‖C([0,T ],H1/2) . ‖φ1 − φ2‖H1/2 + ε
1/2C(T, ‖φ1‖H5/2, ‖φ2‖H1/2). (4.6)

Therefore, (4.6) automatically holds for any T > 0, due to (4.1) and (4.2). Let ST (φ)

be the solution mapping of (1.3) with initial data φ. For fixed T > 0, we need to prove
that for any η > 0, there exists σ > 0 such that if 0< ε < σ , then

‖8εT (φ)− ST (φ)‖C([0,T ];H1/2) < η. (4.7)

Denoting φK = P≤Kφ, we obtain

‖8εT (φ)− ST (φ)‖C([0,T ];H1/2) ≤ ‖8
ε
T (φ)−8

ε
T (φK )‖C([0,T ];H1/2)

+ ‖8εT (φK )− ST (φK )‖C([0,T ];H1/2)

+ ‖ST (φK )− ST (φ)‖C([0,T ];H1/2).

From Theorem 1.3 and (4.6), we get

‖8εT (φ)− ST (φ)‖C([0,T ];H1/2) . ‖φK − φ‖H1/2 + ε
1/2C(T, K , ‖φK ‖H5/2).

If we fix K large enough, then let ε go to zero, we get (4.7).
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