ON THE RANGE OF THE Y-TRANSFORM

Vu Kim Tuan

The ranges of the Y-integral transform in some spaces of functions are described.

1. INTRODUCTION

The Y-transform $Y\nu f$ is defined by [8, 6]

$$f(x) = (Y\nu g)(x) = \int_0^\infty \sqrt{xy} Y\nu(xy)g(y)\,dy, \quad x \in \mathbb{R}^+ = (0, \infty),$$

if the integral converges in some sense (absolutely, improper, mean convergence), where $Y\nu(x)$ is the Bessel function of the second kind [1]. The Y-transform $Y\nu$ has been considered in $L^p_{\mu,p}$ in [3, 6, 7]. In particular, it follows that in $L_2(\mathbb{R}^+) = \mathbb{L}^2_{1/2,2}$ the Y-transform $Y\nu$ is bounded if $|\Re \nu| < 1$, and if, moreover, $0 < |\Re \nu| < 1$, then the range of the Y-transform $Y\nu$ is $L_2(\mathbb{R}^+)$.

$$\|Y\nu g\|_{L_2(\mathbb{R}^+)} \leq C \|g\|_{L_2(\mathbb{R}^+)}, \quad |\Re \nu| < 1,$$

$$\|g\|_{L_2(\mathbb{R}^+)} \leq C \|Y\nu g\|_{L_2(\mathbb{R}^+)}, \quad 0 < |\Re \nu| < 1,$$

where C is an independent constant, (but different in distinct inequalities). The H-transform $H\nu$ [8, 6] denoted by

$$g(x) = (H\nu f)(x) = \int_0^\infty \sqrt{xy} H\nu(xy)f(y)\,dy, \quad x \in \mathbb{R}^+,$$

is the inverse of Y-transform $Y\nu$ in $L_2(\mathbb{R}^+)$ if $-1 < \Re \nu < 0$. If $0 < \Re \nu < 1$ the inverse formula (4) should be replaced by formula (51) or, equivalently, (52). Here $H\nu(x)$ is the Struve function [1]. The Y- and H-transforms are of importance in many singular axially symmetric potential problems [6]. In this work we describe precisely the range of the Y-transform in some spaces of functions. The range of the Y-transform of functions with compact supports (analogous to the Paley-Wiener theorem for the Fourier transform [5]) is also considered. It is worth remarking that our Paley-Wiener

Received 22nd November, 1996
Supported by the Kuwait University research grant SM 112.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 $A2.00+0.00.$

329
theorem (Theorem 2) is different from the classical ones describing Fourier transform of compactly supported functions in terms of entire functions of exponential type [5]. (For the Hankel transform of compactly supported functions see [4].) The theorem stated here involves the spectral radius [12] of some differential operator obtained from the Bessel differential equation and having the kernel of the Y-transform as “eigenfunctions”, (similar ideas have been applied in [2, 11] to the Fourier transform). Nevertheless, its proof is straightforward, without referring to spectral theory. Since the H-transform \(H_\nu \) is the inverse of the Y-transform \(Y_\nu \) in all spaces we considered in this paper, corresponding theorems on the range of the H-transform can be easily derived.

2. Y-TRANSFORM OF POLYNOMIAL DECREASING FUNCTIONS

We describe the range of the Y-transform on the space of functions \(g(y) \) square integrable together with \(y^n g(y), n = 1,2,\ldots \) (polynomial decreasing functions):

Theorem 1. A function \(f(x) \) is the Y-transform \(Y_\nu, 0 < |\Re \nu| < 1/2, \) of a function \(g(y) \), square integrable together with \(y^n g(y), n = 1,2,\ldots \), if and only if

(i) \(f(x) \) is infinitely differentiable on \(R_+; \)

(ii) \((d^2/dx^2 + (1/x^2)((1/4) - \nu^2))^n f(x), n = 0,1,\ldots, \) belongs to \(L_2(R_+) \);

(iii) \((d^2/dx^2 + (1/x^2)((1/4) - \nu^2))^n f(x), n = 0,1,\ldots, \) tends to 0 as \(x \) tends both to 0 and to infinity;

(iv) \(x(d/dx)(d^2/dx^2 + (1/x^2)((1/4) - \nu^2))^n f(x), n = 0,1,\ldots, \) is bounded at 0;

(v) \((d/dx)(d^2/dx^2 + (1/x^2)((1/4) - \nu^2))^n f(x), n = 0,1,\ldots, \) tends to 0 as \(x \) tends to infinity;

(vi) The improper integrals

\[
\int_{-\infty}^{\infty} x^{\nu-1/2} \frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right)^n f(x) \, dx
\]

exist and vanish for all \(n = 1,2,\ldots, \) as well as for \(n = 0 \) if \(-1/2 < \Re \nu < 0. \)

Proof: (a) Let \(y^n g(y) \) belong to \(L_2(R_+) \) for all \(n = 0,1,2,\ldots, \) then \(y^n g(y) \) belongs to \(L_1(R_+) \) for all \(n = 0,1,2,\ldots. \) Let \(f(x) \) be the Y-transform \(Y_\nu, 0 < |\Re \nu| < 1/2, \) of \(g(y) \) (the Y-transform \(Y_\nu \) of \(g(y) \) with other values of \(\nu \) also appears in the proof, but it is not denoted by \(f(x) \)).

(a-i) We have [1]

\[
\left(\frac{d^n}{dx^n} Y_\nu(x) \right) = 2^{-n} \sum_{j=0}^{n} (-1)^j \binom{n}{j} Y_{\nu-n+2j}(x).
\]
Therefore,

\[\frac{\partial^n}{\partial x^n}(\sqrt{xy}Y_\nu(xy)) = \sum_{k=0}^{\infty} \sum_{j=0}^{k} (-1)^{n+j} 2^{-k} (-1/2)^{n-k} \binom{n}{k} \binom{k}{j} x^{1/2+k-n} y^{1/2+k} Y_{\nu - k + 2j}(xy), \]

(6)

where \((a)_n = \Gamma(a+n)/\Gamma(a)\) is the Pochhammer symbol \([1]\). The Bessel function of the second kind \(Y_\nu(y)\) has the asymptotics \([1]\)

\[Y_\nu(y) = \begin{cases} \sqrt{\frac{2}{\pi y}} \left[\sin \left(y - \frac{\nu \pi}{2} - \frac{\pi}{4} \right) + \frac{4\nu^2 - 1}{8y} \cos \left(y - \frac{\nu \pi}{2} - \frac{\pi}{4} \right) \right] + O(y^{-5/2}), \quad y \to \infty \\ O(y^{-|\Re\nu|}), \quad y \to 0. \end{cases} \]

(7)

Consequently, \(\frac{\partial^n}{\partial x^n}[\sqrt{xy}Y_\nu(xy)]\), \(|\Re\nu| < 1\), as a function of \(y\) has the asymptotics \(O(y^{1/2-|\Re\nu|})\) in the neighbourhood of 0 and \(O(y^n)\) at infinity. Hence, \(\frac{\partial^n}{\partial x^n}[\sqrt{xy}Y_\nu(xy)]g(y), \quad |\Re\nu| < 1, \) as a function of \(y\) belongs to \(L_1(R_+)\) for all \(n = 0, 1, 2, \ldots\), and therefore, \(f(x)\) is infinitely differentiable on \(R_+\).

(a-ii) Since \(Y_\nu(x)\) satisfies the Bessel differential equation \([1]\)

\[x^2 u'' + xu' + (x^2 - \nu^2)u = 0, \]

the function \(\sqrt{x}Y_\nu(x)\) is a solution of the equation

\[x^2 u'' + \left(x^2 + \frac{1}{4} - \nu^2 \right) u = 0. \]

Therefore, we have

\[\left[\frac{\partial^2}{\partial x^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n (\sqrt{xy}Y_\nu(xy)) = (-y^2)^n \sqrt{xy}Y_\nu(xy). \]

(10)

Consequently,

\[\left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) = (-1)^n \int_0^\infty \sqrt{xy}Y_\nu(xy)y^{2n}g(y) dy, \quad |\Re\nu| < 1/2. \]

(11)

By using inequality (2) for the Y-transform (11) of \(y^{2n}g(y) \in L_2(R_+)\), we obtain that \([d^2/dx^2 + (1/x^2)((1/4) - \nu^2)]^n f(x), \quad |\Re\nu| < 1/2, \quad n = 0, 1, \ldots, \) belongs to \(L_2(R_+).\)
(a-iii) From (7) we see that the function \(\sqrt{xy} Y_\nu(xy) \), \(|\Re \nu| < 1/2\), has the asymptotics \(x^{1/2-|\Re \nu|} \) as \(x \) tends to 0, and is uniformly bounded on \(R_+ \). Because \(y^{2n} g(y) \in L_1(R_+) \), by applying the dominated convergence theorem \([12]\) we have

\[
\lim_{x \to 0} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) = (-1)^n \int_0^\infty \lim_{x \to 0} [\sqrt{xy} Y_\nu(xy)] y^{2n} g(y) \, dy = 0,
\]

(12) \(|\Re \nu| < 1/2\).

Since \(\sqrt{xy} Y_\nu(xy) \), \(|\Re \nu| < 3/2\), is uniformly bounded for \(x, y \in [1, \infty) \) and \(y^n g(y) \in L_1(R_+) \), for every \(\epsilon > 0 \) and for every \(n, n = 0, 1, \ldots \), one can choose \(b \) large enough so that

\[
\int_0^\infty \sqrt{xy} Y_\nu(xy) y^n g(y) \, dy < \epsilon, \quad |\Re \nu| < 3/2,
\]

(13) uniformly with respect to \(x \in [1, \infty) \). On the other hand, from (7) one can conclude that the integral

\[
\int_{az}^{bz} \sqrt{y} Y_\nu(y) \, dy, \quad |\Re \nu| < 1/2,
\]

(14) is uniformly bounded for all non-negative \(a, b \) and \(x \). Hence,

\[
\int_a^b \sqrt{xy} Y_\nu(xy) \, dy = \frac{1}{x} \int_{az}^{bz} \sqrt{y} Y_\nu(y) \, dy, \quad |\Re \nu| < 1/2,
\]

(15) tends to 0 uniformly in \(a, b \) for \(0 \leq a < b < \infty \) as \(x \) tends to infinity. Consequently, applying the generalised Riemann-Lebesgue lemma \([8]\) we get

\[
\lim_{x \to \infty} \int_0^b \sqrt{xy} Y_\nu(xy) y^{2n} g(y) \, dy = 0, \quad 0 < b < \infty, \quad |\Re \nu| < 1/2.
\]

(16) Because \(\epsilon \) can be taken arbitrarily small, from (13) and (16) we obtain

\[
\lim_{x \to \infty} \int_0^\infty \sqrt{xy} Y_\nu(xy) y^{2n} g(y) \, dy = 0, \quad |\Re \nu| < 1/2.
\]

(17) Hence,

\[
\lim_{x \to \infty} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) = 0, \quad n = 0, 1, \ldots, \quad |\Re \nu| < 1/2.
\]

(18) (a-iv) Since \([1]\)

\[
2 \frac{d}{dx} (\sqrt{xy} \nu(x)) = \sqrt{xy} \nu_{-1}(x) - \sqrt{xy} \nu_1(x) + \frac{1}{\sqrt{x}} \nu(x),
\]

(19)
we have

\[
\begin{align*}
(20) \quad \frac{d}{dx} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) &= \frac{(-1)^n}{2} \int_0^\infty \sqrt{xy} Y_{n-1}(xy) y^{2n+1} g(y) \, dy \\
&\quad + \frac{(-1)^{n+1}}{2} \int_0^\infty \sqrt{xy} Y_n(xy) y^{2n+1} g(y) \, dy \\
&\quad + \frac{(-1)^n}{2} \int_0^\infty \sqrt{xy} Y_{n+1}(xy) y^{2n+1} g(y) \, dy.
\end{align*}
\]

The function \(\sqrt{x} Y_\nu(x) \) is uniformly bounded on \([1, \infty)\), and is of the order \(O(x^{1/2-|\Re \nu|}) \) on \((0,1)\). Therefore, for \(x \in (0,1) \),

\[
\left| \int_0^\infty \sqrt{xy} Y_\mu(xy) g(y) \, dy \right| \leq \left| \int_0^{1/x} \sqrt{xy} Y_\mu(xy) g(y) \, dy \right| + \left| \int_0^\infty \sqrt{xy} Y_\mu(xy) g(y) \, dy \right|
\]

\[
\leq C x^{1/2-|\Re \mu|} \int_0^{1/x} y^{1/2-|\Re \mu|} |g(y)| \, dy + C \int_0^\infty |g(y)| \, dy
\]

\[
(21)
\]

Hence, in the neighbourhood of 0 we have

\[
\frac{1}{x} \int_0^\infty \sqrt{xy} Y_\nu(xy) y^{2n} g(y) \, dy = O(x^{-1}),
\]

\[
\int_0^\infty \sqrt{xy} Y_{n-1}(xy) y^{2n+1} g(y) \, dy = O(x^{\Re \nu - 1/2}),
\]

\[
(22)
\]

\[
\int_0^\infty \sqrt{xy} Y_{n+1}(xy) y^{2n+1} g(y) \, dy = O(x^{-\Re \nu - 1/2}), \quad |\Re \nu| < 1/2.
\]

By combining (20) and (22), we obtain

\[
\frac{d}{dx} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) = O(1), \quad x \to 0;
\]

\[
(23)
\]

\[\]

(a-v) Let \(|\Re \nu| < 3/2 \). For every \(\varepsilon > 0 \) choose \(b \) so that the inequality (13) holds. Because \((xy)^{3/2} Y_\nu(xy), \ |\Re \nu| < 3/2 \), is uniformly bounded for \(x, y \in R_+, \ xy \leq 1 \), then

\[
(24)
\]

Hence,

\[
(25)
\]
Let
\[
\Phi(x, y) = \begin{cases}
\sqrt{xy} Y_\nu(xy) dy, & y > 1/x \\
0, & y \leq 1/x.
\end{cases}
\] (26)

Then \(\Phi(x, y)\) is uniformly bounded. The integral
\[
\int_{ax}^{bx} \sqrt{y} Y_\nu(y) dy, \quad |\Re \nu| < 3/2,
\] (27)
is uniformly bounded for all non-negative \(a, b\) and \(x\) such that \(ax \geq 1\). Hence,
\[
\int_{a}^{b} \Phi(x, y) dy = \frac{1}{x} \int_{\max\{1, ax\}}^{bx} \sqrt{y} Y_\nu(y) dy, \quad |\Re \nu| < 3/2,
\] (28)
tends to 0 uniformly in \(a, b\) for \(0 \leq a < b < \infty\) as \(x\) tends to infinity. Consequently, applying again the generalised Riemann-Lebesgue lemma [8] we get
\[
\lim_{z \to \infty} \int_{0}^{b} \Phi(x, y)y^n g(y) dy = 0, \quad 0 < b < \infty,
\] (29)
This means that
\[
\lim_{z \to \infty} \int_{1/x}^{b} \sqrt{xy} Y_\nu(xy)y^n g(y) dy = 0, \quad 0 < b < \infty, \quad |\Re \nu| < 3/2.
\] (30)
Because \(\varepsilon\) can be taken arbitrarily small, from (13), (25) and (30) we obtain
\[
\lim_{z \to \infty} \int_{0}^{\infty} \sqrt{xy} Y_\nu(xy)y^{n+1} g(y) dy = 0, \quad n = 0, 1, \ldots, \quad |\Re \nu| < 3/2.
\] (31)
If \(|\Re \nu| < 1/2\), then \(|\Re \nu + 1| < 3/2\). Hence,
\[
\lim_{z \to \infty} \int_{0}^{\infty} \sqrt{xy} Y_{\nu-1}(xy)y^{2n+1} g(y) dy = 0,
\] (32)
Applying now formulas (20), (31) and (32), we have
\[
\lim_{z \to \infty} \frac{d}{dx} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) = 0, \quad n = 0, 1, \ldots, \quad |\Re \nu| < 1/2.
\] (33)
(a-vi) The special case \(-1/2 < \Re \nu < 0\) has been proved in [3]. We give here a proof valid for all the range of \(\nu\). Integral (11) converges uniformly with respect to \(x\)

https://doi.org/10.1017/S0004972700017792 Published online by Cambridge University Press
on every compact subset of \(R_+ \). Therefore, one can interchange the order of integration in the following formula to obtain

\[
\int_{1/N}^N x^{-\nu/2} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) \, dx
= (-1)^n \int_{1/N}^N x^{-\nu/2} \int_0^\infty \sqrt{\pi} Y_\nu(xy)y^{2n}g(y) \, dy \, dx
\]

(34)

\[
= (-1)^n \int_0^\infty y^{2n-\nu-1/2}g(y) \int_{y/N}^y x^n Y_\nu(x) \, dx \, dy, \quad 0 < N < \infty.
\]

The last inner integral in (34) is uniformly bounded for all nonnegative \(N \) and \(y \), provided that \(\Re \nu < 1/2 \). For \(y^{2n-\nu-1/2}g(y) \in L_1(R_+) \) under the restriction \(\Re \nu < 0 \), and \(n \geq 1 \) otherwise, one can apply the dominated convergence theorem to obtain

\[
\lim_{N \to \infty} \int_{1/N}^N x^{-\nu/2} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) \, dx
= (-1)^n \int_0^\infty y^{2n-\nu-1/2}g(y) \int_0^y x^n Y_\nu(x) \, dx \, dy, \quad n = 0,1,\ldots; -1/2 < \Re \nu < 0,
\]

\[
= (n = 1,2,\ldots; 0 \leq \Re \nu < 1/2.
\]

Applying now the formula [1]

\[
\int_0^\infty x^\mu Y_\nu(x) \, dx = \frac{2^\mu}{\pi} \sin \frac{\pi}{2} (\mu - \nu) \Gamma \left(\frac{\mu + \nu + 1}{2} \right) \Gamma \left(\frac{\mu - \nu + 1}{2} \right),
\]

(36)

\[
\Re (\mu + \nu) > -1, \Re \mu < 1/2,
\]

with \(\mu = \nu \), we see that the inner integral on the right hand side of (35) equals 0. Hence,

\[
\int_{-\infty}^\infty x^{-\nu/2} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) \, dx = 0, \quad n = 0,1,\ldots; -1/2 < \Re \nu < 0,
\]

(37)

\[
= (n = 1,2,\ldots; 0 \leq \Re \nu < 1/2.
\]

(b) Suppose now that \(f \) satisfies conditions (i)-(vi) of Theorem 1. Then \([d^2/dx^2 + (1/x^2)((1/4) - \nu^2)]^n f(x), \quad n = 0,1,\ldots, \) belongs to \(L_2(R_+) \).

(b-i) Let \(-1/2 < \Re \nu < 0\) and \(g_n(y) \) be the H-transforms \(H_\nu, \quad -1/2 < \Re \nu < 0, \) of \([d^2/dx^2 + (1/x^2)((1/4) - \nu^2)]^n f(x), \quad n = 0,1,\ldots, \) Then

\[
g_n(y) = \int_0^\infty \sqrt{\pi} Y_\nu(xy) \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) \, dx, \quad n = 0,1,2,\ldots,
\]

(38)
where the integrals are understood in the $L_2(R_+)$ norm. Put

$$g_n^N(y) = \int_{1/N}^N \sqrt{xy} H_\nu(xy) \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(x) \, dx, \quad n = 0, 1, 2, \ldots$$

Then $g_n^N(y)$ tends to $g_n(y)$ in L_2 norm as $N \to \infty$. Let $n \geq 1$. Integrating (39) by parts twice, we obtain

$$g_n^N(y) = \left\{ \sqrt{xy} H_\nu(xy) \frac{d}{dx} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(x) \right\} \bigg|_{x=1/N}^{x=N}$$

$$- \left\{ \frac{\partial}{\partial x} \left(\sqrt{xy} H_\nu(xy) \right) \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(x) \right\} \bigg|_{x=1/N}^{x=N}$$

$$+ \int_{1/N}^N \left[\frac{\partial^2}{\partial x^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right] \left(\sqrt{xy} H_\nu(xy) \right) \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(x) \, dx.$$

Using formulas [1]

$$\frac{\partial}{\partial x} \left(\sqrt{xy} H_\nu(xy) \right) = \frac{1}{2} \nu \sqrt{xy} H_\nu(xy) + y \sqrt{xy} H_{\nu-1}(xy),$$

$$\left[\frac{\partial^2}{\partial x^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right] \left(\sqrt{xy} H_\nu(xy) \right) = \frac{2^{1-\nu} y^{\nu+3/2}}{\sqrt{\pi} \Gamma(\nu+1/2)} x^{\nu-1/2} - y^2 \sqrt{xy} H_\nu(xy),$$

we have

$$g_n^N(y) = \sqrt{Ny} H_\nu(Ny) \frac{d}{dx} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(N)$$

$$- \sqrt{Ny} H_\nu(Ny/N) \frac{d}{dx} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(1/N)$$

$$+ \left(\nu - \frac{1}{2} \right) \sqrt{Ny} H_{\nu}(Ny) \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(N)$$

$$- y \sqrt{Ny} H_{\nu-1}(Ny) \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(N)$$

$$+ \left(\frac{1}{2} - \nu \right) \sqrt{Ny} H_\nu(y/N) \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(1/N)$$
Here \(P(d/dx) f(N) \) means \(P(d/dx) f(x)|_{x=N} \). As \(N \) tends to infinity, integral (49) vanishes because of property (vi). Applying the asymptotic formula for the Struve function [1]

\[
H_\nu(y) = \begin{cases}
O(y^{-1/2}), & y \to \infty, \quad \Re \nu < 1/2, \\
O(y^{\Re \nu}), & y \to 0, \quad \forall \nu,
\end{cases}
\]

we obtain that \(\sqrt{N_y} H_\nu(N y) \), \(|\Re \nu| < 1/2 \), is uniformly bounded. The function \((d/dx) [d^2/dx^2 + (1/x^2) ((1/4) - \nu^2)]^{n-1} f(N) \) tends to 0 as \(N \) approaches infinity (property (v)), therefore, the expression on the right hand side of (42) tends to 0 as \(N \) approaches infinity. From (iv) we see that \((d/dx) [d^2/dx^2 + (1/x^2) ((1/4) - \nu^2)]^{n-1} f(1/N) \) has order \(O(N) \), whereas function \(\sqrt{y/N} H_\nu(y/N) \) has order \(O(N^{-3/2-\nu}) \).

Hence, expression (43) approaches 0 as \(N \) tends to infinity. Function \(\sqrt{y/N} H_\nu(y/N) \) has order \(O(N^{-1}) \), whereas the expression \([d^2/dx^2 + (1/x^2) ((1/4) - \nu^2)]^{n-1} f(N) \) is \(o(1) \) (property (iii)), therefore, expression (44) is \(o(1) \). The function \(y/\sqrt{N} H_\nu(1/N) \) is \(O(1) \), hence, property (iii) shows that (45) is \(o(1) \). Since \(\sqrt{N_y} H_\nu(y/N) \) has the order \(O(N^{-1/2-\nu}) \), and \([d^2/dx^2 + (1/x^2) ((1/4) - \nu^2)]^{n-1} f(1/N) \) is \(o(1) \) (property (iii)), expression (46) is also \(o(1) \). The function \(\sqrt{y/N} H_{\nu-1}(y/N) \) has the order \(O(N^{-1/2-\nu}) \), hence, property (iii) shows that (47) is \(o(1) \).

Therefore, the right hand side of (42), as well as all functions (43) - (49), except (48), vanish as \(N \) tends to infinity, whereas expression (48) converges to \(-y^2 g_{n-1}(y) \). Consequently, \(g_n(y) = -y^2 g_{n-1}(y) \), and therefore, \(g_n(y) = (-y^2)^n g_0(y) \), \(n = 0,1, \ldots \). Thus \(g(y) = g_0(y) \) such that \(y^n g(y) \in L_2(R_+) \), \(n = 0,1, \ldots \), is the H-transform \(H_\nu \) of the function \(f(x) \). But the H-transform \(H_\nu \) is the inverse of the Y-transform \(Y_\nu \) if \(-1/2 < \Re \nu < 0 \), so we obtain that and \(f \) is the Y-transform \(Y_\nu \), \(-1/2 < \Re \nu < 0 \), of a function \(g \) such that \(y^n g(y) \in L_2(R_+) \), \(n = 0,1, \ldots \).

(b-ii) Let now \(0 < \Re \nu < 1/2 \). The inverse of the Y-transform \(Y_\nu \) in the range \(0 < \Re \nu < 1 \) has the form [3]

\[
g(y) = y^{\nu+1/2} \int_0^\infty \sqrt{x y} \left[H_{\nu+1}(x y) - \frac{(x y)^\nu}{2^\nu \sqrt{\pi \Gamma(\nu + 3/2)} } \right] f(x) \, dx, \quad y \in R_+,
\]
that can be expressed in an equivalent form

$$
(52) \quad g(y) = \lim_{N \to \infty} \int_{1/N}^{N} \left[\sqrt{xy} H_\nu(xy) - \frac{(xy)^{\nu-1/2}}{2^{\nu-1} \sqrt{\pi \Gamma(\nu + 1/2)}} \right] f(x) \, dx, \quad y \in R_+,
$$

where the limit is understood in the $L_2(R_+)$ norm. Putting

$$
(53) \quad g_n^N(y) = \int_{1/N}^{N} \left[\sqrt{xy} H_\nu(xy) - \frac{(xy)^{\nu-1/2}}{2^{\nu-1} \sqrt{\pi \Gamma(\nu + 1/2)}} \right] \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) \, dx,
$$

we see that $g_n^N(y)$ tends to some functions $g_n(y)$ in the L_2 norm as $N \to \infty$. Let $n \geq 1$. Integrating (53) by parts twice and using formulae (40), (41) we obtain

$$
(54) \quad g_n^N(y) = \sqrt{Ny} H_\nu(Ny) \frac{d}{dx} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(N)
$$

$$
(55) \quad - \sqrt{N} H_\nu(y/N) \frac{d}{dx} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(1/N)
$$

$$
(56) \quad + \left(\nu - \frac{1}{2} \right) \sqrt{N} H_\nu(Ny) \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(N)
$$

$$
(57) \quad - y \sqrt{Ny} H_{\nu-1}(Ny) \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(N)
$$

$$
(58) \quad + \left(\frac{1}{2} - \nu \right) \sqrt{Ny} H_\nu(y/N) \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(1/N)
$$

$$
(59) \quad + y \sqrt{N} H_{\nu-1}(y/N) \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(1/N)
$$

$$
(60) \quad - y^2 \int_{1/N}^{N} \sqrt{xy} \left[H_\nu(xy) - \frac{2^{1-\nu} (xy)^{\nu-1}}{\sqrt{\pi \Gamma(\nu + 1/2)}} \right] \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^{n-1} f(x) \, dx
$$

$$
(61) \quad - \frac{2^{1-\nu} (N)^{\nu-1/2}}{\sqrt{\pi \Gamma(\nu + 1/2)}} \int_{1/N}^{N} x^{\nu-1/2} \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) \, dx.
$$

When N tends to infinity integral (61) vanishes because of property (vi) and $n \geq 1$. Reasoning the same as before, we can conclude that the right hand side of (54), as well as all functions (55)-(59), vanish as N tends to infinity, whereas the expression (60)
converges to \(-y^2g_{n-1}(y)\). Consequently, \(g_n(y) = -y^2g_{n-1}(y)\), and therefore, \(g_n(y) = (-y^2)^ng_0(y), \ n = 0, 1, \ldots\). Thus \(g(y) = g_0(y)\) such that \(y^{2n}g(y) \in L_2(R_+), \ n = 0, 1, \ldots\), is the transform (52) of function \(f(x)\). But transform (52) is the inverse of the Y-transform \(Y_{v}\) if \(0 < \Re v < 1/2\), so we obtain that and \(f\) is the Y-transform \(Y_{v}\), \(0 < \Re v < 1/2\), of a function \(g\) such that \(y^ng(y) \in L_2(R_+), \ n = 0, 1, \ldots\). Theorem 1 is thus proved.

Remark. The case \(\Re v = 0\) has been excluded from Theorem 1. It was proved in [3] that in this case the range of the Y-transform in \(L_2(R_+)\) is a proper subspace of \(L_2(R_+)\).

3. Y-T Transform of Square Integrable Functions with Compact Supports

Now we describe the Y-transform of square integrable functions with compact supports (the Paley-Wiener theorem for the Y-transform).

Theorem 2. A function \(f\) is the Y-transform \(Y_{v}\), \(0 < |\Re v| < 1/2\), of a square integrable function \(g\) with compact support on \([0, \infty)\) if and only if \(f\) satisfies conditions (i)-(vi) of Theorem 1 and moreover,

\[
\lim_{n \to \infty} \left\| \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) \right\|_2^{1/(2n)} = \sigma_g < \infty,
\]

where

\[
\sigma_g = \sup \{ y : y \in \text{supp} \ g \},
\]

and the support of a function is the smallest closed set outside which the function vanishes almost everywhere [12].

Proof: (a) Let \(f(x)\) be the Y-transform of \(g(y) \in L_2(R_+)\) and \(\sigma_g < \infty\):

\[
f(x) = \int_0^{\sigma_g} \sqrt{xy} Y_{\nu}(xy)g(y) dy, \ 0 < |\Re \nu| < 1/2.
\]

One can assume that \(\sigma_g > 0\), otherwise it is trivial. Since \(\sigma_g < \infty\) we have \(y^ng(y) \in L_2(R_+)\) for all \(n = 0, 1, 2, \ldots\). Therefore, \(f\) satisfies conditions (i)-(vi) of Theorem 1. Furthermore,

\[
\left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) = \int_0^{\sigma_g} \sqrt{xy} Y_{\nu}(xy)(-y^2)^ng(y) dy.
\]

Consequently, applying the inequality (2) for the Y-transform (65), we obtain

\[
\left\| \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) \right\|_2^2 \leq C \int_0^{\sigma_g} y^{4n} |g(y)|^2 dy \leq C\sigma_g^{4n} \int_0^{\sigma_g} |g(y)|^2 dy.
\]
Hence,

\begin{equation}
\lim_{n \to \infty} \left\| \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) \right\|_2^{1/(2n)} \leq \lim_{n \to \infty} C^{1/(4n)} \sigma_g \left\{ \int_0^{\sigma_g} |g(y)|^2 dy \right\}^{1/(4n)} = \sigma_g.
\end{equation}

On the other hand, since \(\sigma_g \) is the least upper bound of the support of \(g \), for every \(\epsilon, \ 0 < \epsilon < \sigma_g \), we have

\begin{equation}
\int_{\sigma_g - \epsilon}^{\sigma_g} |g(y)|^2 dy > 0.
\end{equation}

Consequently, using now inequality (3) for the Y-transform (65), we get

\begin{equation}
\lim_{n \to \infty} \left\| \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) \right\|_2^{1/(2n)} \geq \lim_{n \to \infty} C^{-1/(4n)} \left\{ \int_{\sigma_g - \epsilon}^{\sigma_g} y^n |g(y)|^2 dy \right\}^{1/(4n)} \geq (\sigma_g - \epsilon) \lim_{n \to \infty} C^{-1/(4n)} \left\{ \int_{\sigma_g - \epsilon}^{\sigma_g} |g(y)|^2 dy \right\}^{1/(4n)} = \sigma_g - \epsilon.
\end{equation}

Because \(\epsilon \) can be chosen arbitrarily small, from (69) and (67) we obtain (62).

(b) Suppose now that \(f \) satisfies the conditions of Theorem 1, and the limit in (62) exists and equals \(\sigma < \infty \). Applying Theorem 1 we see that \(f \) is the Y-transform \(Y_\nu \) of a function \(g \) with \(\sigma_g \) defined by (63) such that \(y^n g(y) \in L_2(R_+) \), \(n = 0,1,\ldots \). We prove that \(\sigma_g < \infty \) and moreover, \(\sigma = \sigma_g \). Theorem 1 implies that (11) holds. Therefore, using inequalities (2) and (3) we obtain

\begin{equation}
C^{-1} \left\| y^{2n} g(y) \right\|_2 \leq \left\| \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) \right\|_2 \leq C \left\| y^{2n} g(y) \right\|_2.
\end{equation}

Hence,

\begin{equation}
\lim_{n \to \infty} C^{-1/(2n)} \left\| y^{2n} g(y) \right\|_2^{1/(2n)} \leq \lim_{n \to \infty} \left\| \left[\frac{d^2}{dx^2} + \frac{1}{x^2} \left(\frac{1}{4} - \nu^2 \right) \right]^n f(x) \right\|_2^{1/(2n)} = \sigma
\end{equation}

\begin{equation}
\leq \lim_{n \to \infty} C^{1/(2n)} \left\| y^{2n} g(y) \right\|_2^{1/(2n)}.
\end{equation}

Consequently,

\begin{equation}
\lim_{n \to \infty} \left\| y^{2n} g(y) \right\|_2^{1/(2n)} = \sigma.
\end{equation}

Suppose that \(\sigma_g > \sigma \). Then there exists a positive \(\epsilon \) such that

\begin{equation}
\int_{\sigma_g + \epsilon}^{\infty} |g(y)|^2 dy > 0.
\end{equation}
We have
\[\sigma = \lim_{n \to \infty} \| y^{2n} g(y) \|_{2}^{1/(2n)} \geq \lim_{n \to \infty} \left\{ \int_{\sigma + \epsilon}^{\infty} y^{4n} |g(y)|^2 \, dy \right\}^{1/(4n)} \]
\[\geq (\sigma + \epsilon) \lim_{n \to \infty} \left\{ \int_{\sigma + \epsilon}^{\infty} |g(y)|^2 \, dy \right\}^{1/(4n)} = \sigma + \epsilon. \]
(74)
This is impossible. Hence, \(\sigma_g \leq \sigma \) and therefore, the function \(g \) has a compact support.

Suppose now that \(\sigma_g < \sigma \). Then there exists a positive \(\epsilon \) such that
\[\int_{\sigma - \epsilon}^{\infty} |g(y)|^2 \, dy = 0. \]
(75)
We have
\[\sigma = \lim_{n \to \infty} \| y^{2n} g(y) \|_{2}^{1/(2n)} \leq \lim_{n \to \infty} \left\{ \int_{0}^{\sigma - \epsilon} y^{4n} |g(y)|^2 \, dy \right\}^{1/(4n)} \]
\[\leq (\sigma - \epsilon) \lim_{n \to \infty} \left\{ \int_{0}^{\sigma - \epsilon} |g(y)|^2 \, dy \right\}^{1/(4n)} = \sigma - \epsilon. \]
(76)
This is also impossible. Hence, \(\sigma_g \geq \sigma \), and consequently, \(\sigma_g = \sigma < \infty \). Theorem 2 is thus proved.

REMARK. If a function \(f \) satisfies conditions of Theorem 1, then the limit (62) always exists. It equals to infinity if \(f \) is the Y-transform \(Y_{\nu} \) of a function \(g \) with unbounded support.

4. Y-TRANSFORM OF ANALYTIC FUNCTIONS

We consider now the Y-transform \(Y_{\nu} \) of functions analytic in some angle.

THEOREM 3. The Y-transform \(Y_{\nu} \), \(-1 < \Re \nu < 1\), maps the space of all functions \(g(z) \), regular in the angle \(-\alpha < \arg z < \beta\), where \(0 < \alpha, \beta \leq \pi \); of the order \(O\left(|z|^{-\alpha-\epsilon}\right) \) for small \(z \), and \(O\left(|z|^{-b+\epsilon}\right) \) for large \(z \), where \(a < 1/2 < b \), uniformly for any small positive \(\epsilon \) in any angle interior to the above; and satisfying conditions
\[\int_{0}^{\infty} y^{\nu+2n+1/2} g(y) \, dy = 0, \quad n \in (-b/2 - \Re \nu/2 - 1/4, -a/2 - \Re \nu/2 - 1/4), \]
\[\int_{0}^{\infty} y^{-\nu+2n+1/2} g(y) \, dy = 0, \quad n \in (-b/2 + \Re \nu/2 - 1/4, -a/2 + \Re \nu/2 - 1/4), \]
(77)
for all nonnegative integers \(n \), if there exists such \(n \), one-to-one onto the space of all functions \(f(z) \), regular in the angle \(-\beta < \arg z < \alpha\), of the order \(O\left(|z|^{1-b-\epsilon}\right) \) for
small z, and $O\left(|z|^{1-a+\varepsilon}\right)$ for large z, uniformly for any small positive ε in any angle interior to the above; and satisfying conditions

$$\int_{0}^{\infty} x^{\nu-2n-1/2} f(x) \, dx = 0, \quad n \in (a/2 + \Re \nu - 1/4, b/2 + \Re \nu - 1/4),$$

(78)

$$\int_{0}^{\infty} x^{\nu+2n+3/2} f(x) \, dx = 0, \quad n \in (-b/2 - \Re \nu - 3/4, -a/2 - \Re \nu - 3/4),$$

for all nonnegative integers n, if there exists such n. (For example, if $\Re \nu = 0$, then $n = 0$ always belongs to the interval $(a/2 - 1/4, b/2 - 1/4)$.)

Proof: Let $g(z)$ satisfy the conditions of Theorem 3. Then the function $g(z)$ on R_+ belongs to $L_2(R_+)$ and its Mellin transform $g^*(s)$

(79)

$$g^*(s) = \int_{0}^{\infty} x^{s-1} g(x) \, dx$$

is an analytic function of s, regular for $a < \Re s < b$; and

(80)

$$g^*(s) = \begin{cases} O\left(e^{-(\beta+\varepsilon)\Im s}\right), & \Im s \to \infty \\ O\left(e^{(\alpha-\varepsilon)\Im s}\right), & \Im s \to -\infty \end{cases}$$

for every positive ε, uniformly in any strip interior to $a < \Re s < b$ (see [8]). Let $f(x)$ be the Y-transform $Y_{\nu}^{-1} < \Re \nu < 1$, of $g(y)$. Since $g(y)$ belongs to $L_2(R_+)$, the Parseval identity for the Y-transform Y_{ν} holds on the line $\Re s = 1/2$ [6]:

(81)

$$f^*(s) = 2^{s-1} \frac{\Gamma \left(\frac{1}{4} + \frac{\nu}{2} + \frac{s}{2} \right) \Gamma \left(\frac{1}{4} - \frac{\nu}{2} + \frac{s}{2} \right)}{\Gamma \left(-\frac{1}{4} - \frac{\nu}{2} + \frac{s}{2} \right) \Gamma \left(\frac{5}{4} + \frac{\nu}{2} - \frac{s}{2} \right)} g^*(1-s).$$

Because of (77) the function $g^*(1-s)$ equals 0 at the poles of function $\Gamma(1/4 + \nu/2 + s/2)$ \newline $\Gamma(1/4 - \nu/2 + s/2)$ in the strip $1-b < \Re s < 1-a$, if there exists one. Hence, from (81) one can see that $f^*(s)$ is analytic in the strip $1-b < \Re s < 1-a$. Furthermore, since the function $2^{s-1/2} \left(\Gamma(1/4 + \nu/2 + s/2) \Gamma(1/4 - \nu/2 + s/2) \right)/\left(\Gamma(-1/4 - \nu/2 + s/2) \Gamma(5/4 + \nu/2 - s/2) \right)$ is uniformly bounded in any compact domain in the strip $1-b < \Re s < 1-a$, not containing the poles of function $\Gamma(1/4 + \nu/2 + s/2) \Gamma(1/4 - \nu/2 + s/2)$, and has at most only polynomial growth as $\Im s \to \pm\infty$, from (80) we see that function $f^*(s)$ decays exponentially

(82)

$$f^*(s) = \begin{cases} O\left(e^{(\beta+\varepsilon)\Im s}\right), & \Im s \to -\infty \\ O\left(e^{-(\alpha-\varepsilon)\Im s}\right), & \Im s \to \infty \end{cases}$$

https://doi.org/10.1017/S0004972700017792 Published online by Cambridge University Press
for every positive \(\varepsilon \), uniformly in any strip interior to \(1 - b < \Re s < 1 - a \). Hence, its inverse Mellin transform \(f(z) \) is regular for \(-\beta < \arg z < \alpha \), and of the order \(O \left(|z|^\beta - 1 - \varepsilon \right) \) for small \(z \), and \(O \left(|z|^\alpha - 1 + \varepsilon \right) \) for large \(z \), uniformly in any angle interior to the above angle for any small positive \(\varepsilon \) \[8\]. Moreover, \(f^*(s) \) has zeros at the poles of the function \(\Gamma(-1/4 - \nu/2 + s/2)\Gamma(5/4 + \nu/2 - s/2) \) in the strip \(1 - b < \Re s < 1 - a \), if there exists one. Hence (78) holds.

Conversely, let \(f(z) \) satisfy the conditions of Theorem 3. Then \(f(z) \) on \(R_+ \) belongs to \(L_2(R_+) \) and its Mellin transform (79) \(f^*(s) \) is analytic in the strip \(1 - b < \Re s < 1 - a \) and satisfies (82). Furthermore, because of (78) the function \(f^*(s) \) vanishes at the poles of the function \(\Gamma(-1/4 - \nu/2 + s/2)\Gamma(5/4 + \nu/2 - s/2) \) in the strip \(1 - b < \Re s < 1 - a \), if there exists one. Therefore, if we express \(f^*(s) \) in the form (81), function \(g^*(s) \) is analytic in the strip \(a < \Re s < b \); and has the asymptotics (80) for every positive \(\varepsilon \), uniformly in any strip interior to \(a < \Re s < b \). Furthermore, \(g^*(1 - s) \) has zeros at the poles of the function \(\Gamma(1/4 + \nu/2 + s/2)\Gamma(1/4 - \nu/2 + s/2) \) in the strip \(1 - b < \Re s < 1 - a \). Consequently, the inverse Mellin transform \(g(z) \) of \(g^*(s) \) satisfies the conditions of Theorem 3 and \(f \) is the Y-transform of \(g \).

If in Theorem 3 we take \(\alpha = \beta \) and \(0 < a < \min \{ |\nu|, |\nu + 1|, |\nu - 1| \} \), then in the strip \(1/2 - a < \Re s < 1/2 + a \) there are no poles or zeros of the function \(2^{s-1/2} \left(\Gamma\left(1/4 + \nu/2 + s/2\right)\Gamma\left(1/4 - \nu/2 + s/2\right) \right)/\left(\Gamma\left(-1/4 - \nu/2 + s/2\right)\Gamma\left(5/4 + \nu/2 - s/2\right) \right) \), hence, we have

Corollary 1. The Y-transform \(Y_\nu, 0 < |\Re \nu| < 1, \) is a bijection in the space of all functions, regular in the angle \(|\arg z| < \alpha \), where \(0 < \alpha \leq \pi \); of order \(O \left(|z|^\alpha - 1/2 - \varepsilon \right) \) for small \(z \), and \(O \left(|z|^{-\alpha - 1/2 + \varepsilon} \right) \) for large \(z \), uniformly for any small positive \(\varepsilon \), \(0 < \varepsilon < a \), in any angle interior to the above, where \(0 < a < \min \{ |\nu|, |\nu + 1|, |\nu - 1| \} \).

5. **Y-Transform in Some Other Spaces of Functions**

In [9, 10] the Y-transform is proved to be a bijection in some spaces of functions \(\mathcal{M}_c^\odot(L) \) introduced there. In this section the Y-transform in a space of functions including the spaces \(\mathcal{M}_c^{-1}(L) \) as special cases is considered.

Let \(\Phi \) be any linear subspace of either \(L_1(R) \) or \(L_2(R) \) having properties:

(i) if \(\varphi(t) \in \Phi \) then \(\varphi(-t) \in \Phi \);

(ii) functions \(\varphi(t) = 2^{it}\Gamma(1/2 + \nu/2 + it/2)\Gamma(1/2 - \nu/2 + it/2) \sin(\pi/2) \) \((it - \nu), 0 < |\Re \nu| < 1, \) and \(\varphi^{-1}(t) \) are multipliers of \(\Phi \).

It is easy to see that \(\varphi^{-1}(-t) \) is also a multiplier of \(\Phi \). The multipliers \(\varphi(t) \) and \(\varphi^{-1}(t) \) are infinitely differentiable and uniformly bounded on \(R \), and their derivatives
grow logarithmically. Therefore, many classical spaces on R are special cases of Φ (for example, any L_1 or L_2 space with L_∞-weights, the Schwartz space $S(R)$, and the space of infinitely differentiable functions with compact support [12]). On R_+ we define $\mathcal{M}^{-1}(\Phi)$ to be the space of all functions g that can be represented in the form

$$g(x) = \int_{-\infty}^{\infty} \phi(t)x^{it-1/2}dt,$$

almost everywhere, where $\phi \in \Phi$ (if $\phi \notin L_1(R)$ the integral should be understood as the inverse Mellin transform in L_2 [8]). The spaces $\mathcal{M}^{-1}_{\gamma,L}(L)$ [10] as well as the space of functions considered in Corollary 1 are special cases of $\mathcal{M}^{-1}(\Phi)$.

Theorem 4. The Y-transform $Y_{\nu}, 0 < |\Re \nu| < 1$, is a bijection in $\mathcal{M}^{-1}(\Phi)$.

Proof: From (83) we see that if $g \in \mathcal{M}^{-1}(\Phi)$ then g can be expressed in the form of the inverse Mellin transform

$$g(x) = \frac{1}{2\pi i} \int_{1/2-i\infty}^{1/2+i\infty} g^*(s)x^{-s}ds,$$

where $g^*(1/2 + it) \in \Phi$. Using formula (36) we obtain that the Mellin transform (79) of the function $k(x) = \sqrt{x}Y_{\nu}(x)$ is $k^*(s) = \varphi(i/2 - is)$. Applying the Parseval equation for the Mellin transform

$$\int_{0}^{\infty} k(xy)g(y)dy = \frac{1}{2\pi i} \int_{1/2-i\infty}^{1/2+i\infty} k^*(s)g^*(1-s)x^{-s}ds, \quad 0 < |\Re \nu| < 1,$$

that has been proved for $g^*(1/2 + it) \in L_2(R)$ in [8] and $g^*(1/2 + it) \in L_1(R)$ in [9], we obtain

$$\mathcal{Y}_\nu g(x) = \int_{0}^{\infty} \sqrt{xy}Y_{\nu}(xy)g(y)dy = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(t)g^*(1/2-it)x^{-it-1/2}dt.$$

Since $\varphi(t)$ and $\varphi^{-1}(-t)$ are multipliers of Φ, then $\varphi(t)g^*(1/2-it)$ belongs to Φ if and only if $g^*(1/2 + it)$ belongs to Φ. Therefore, $(\mathcal{Y}_\nu g)(x) \in \mathcal{M}^{-1}(\Phi)$ if and only if $g \in \mathcal{M}^{-1}(\Phi)$. Theorem 4 is thus proved.

References

