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ON THE RANGE OF THE Y-TRANSFORM

Vu KiMm TuaN

The ranges of the Y-integral transform in some spaces of functions are described.

1. INTRODUCTION

The Y-transform Y, is defined by [8, 6]

) fa) = (Yeg)e) = | " A (e)ew) dy, @ € Ry = (0,00),

if the integral converges in some sense (absolutely, improper, mean convergence), where
Y,(z) is the Bessel function of the second kind [1]. The Y-transform Y, has been
considered in L, in [3, 6, 7]. In particular, it follows that in Ly(Ry) = Ly/2,2 the
Y-transform Y, is bounded if |Re v| < 1, and if, moreover, 0 < |Re v| < 1, then the
range of the Y-transform Y, is La(Ry):

(2) ”ng||L,(n+) <C l‘gllL,(R+) ) |Re V| <1,
(3) lgllz,(ry) S CIYeglliy(ry ) O <IRev| <1,

where C is an independent constant, (but different in distinct inequalities). The H-
transform H, [8, 6] denoted by

(4) o(=) = (HNE) = | ~ V() f(W) dy, @€ Ry,

is the inverse of Y-transform Y, in Ly(Ry) f —~1 < Rev < 0. 0 < Rev <1
the inverse formula (4) should be replaced by formula (51) or, equivalently, (52). Here
H, (z) is the Struve function [1]. The Y- and H-transforms are of importance in many
singular axially symmetric potential problems [6). In this work we describe precisely
the range of the Y-transform in some spaces of functions. The range of the Y-transform
of functions with compact supports (analogous to the Paley-Wiener theorem for the
Fourier transform [5]) is also considered. It is worth remarking that our Paley-Wiener
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theorem (Theorem 2) is different from the classical ones describing Fourier transform
of compactly supported functions in terms of entire functions of exponential type [5].
(For the Hankel transform of compactly supported functions see [4].) The theorem
stated here involves the spectral radius [12] of some differential operator obtained from
the Bessel differential equation and having the kernel of the Y-transform as “eigen-
functions”, (similar ideas have been applied in [2, 11] to the Fourier transform). Nev-
ertheless, its proof is straightforward, without referring to spectral theory. Since the
H-transform H, is the inverse of the Y-transform Y, in all spaces we considered in this
paper, corresponding theorems on the range of the H-transform can be easily derived.

2. Y-TRANSFORM OF POLYNOMIAL DECREASING FUNCTIONS

We describe the range of the Y-transform on the space of functions g{y) square

integrable together with y"g(y), n = 1,2,... (polynomial decreasing functions):

THEOREM 1. A function f(z) is the Y-transform Y,, 0 < |Rev| < 1/2, of a
function g(y), square integrable together with y"g(y), n=1,2,..., if and only if
(i) f(2) is infinitely differentiable on R, ;

(i) (d?/dz? + (1/2%)((1/4) — v?))"f(z), n=0,1,..., belongs to Ly(R+);

(iil) (d?/dz® + (1/2%)((1/4) = v?))"f(z), m» = 0,1,..., tends to 0 as z
tends both to 0 and to infinity;

(iv) z(d/dz)(d?/dz* + (1/=®)((1/4) = v*))"f(z), n = 0,1,..., s
bounded at 0;

(v) (d/dz)(d?/dz® + (1/22)((1/4) — v*))"f(z), n=0,1,..., tends to 0 as
z tends to infinity;

(vi) The improper integrals

—ee &2 11 "
/0 z 1/2E+3_Z(Z_V2> f(z)dz

exist and vanish for all n = 1,2,..., as well as for n = 0 if -1/2 <
Rev <O0.

PROOF: (a) Let y™g(y) belong to Ly(R4) for all n = 0,1,2,..., then y™g(y)
belongs to Li(R4) for all » = 0,1,2,.... Let f(z) be the Y-transform Y,, 0 <
[Re v] < 1/2, of g(y) (the Y-transform Y, of g(y) with other values of v also appears
in the proof, but it is not denoted by f(z)).

(a-i) We have [1]

n

(5) i_nﬂyu(z) =2" Z (—l)j (:';) Y, —nt2;().

j=0
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Therefore,

an n k n . _ n k
Z wemten =353 ot ama (7) ()
k=0 j=0
(6) zl/2+k—ny1/2+kYV_k+2j($y),

where (a),, = I'(a + n)/I'(a) is the Pochhammer symbol [1]. The Bessel function of the
second kind Y, (y) has the asymptotics [1]

(7) 2
Yu(y):{ E[Sin(y_%_g)+4u8y 1COS( —?_Z)] +0(y™*?),y > o0

O(y~IRevl), y— 0.

n

Consequently, %[, /zyY,(zy)l, |Rev| < 1, as a function of y has the asymp-
z

totics O(yl/z_mE "‘) in the neighbourhood of 0 and O(y™) at infinity. Hence,

:?[, /zyY.(zy)l9(y), |Rev| < 1, as a function of y belongs to L,(R+) for all
n=20,1,2,..., and therefore, f(z) is infinitely differentiable on R, .
(a-ii) Since Y, (z) satisfies the Bessel differential equation [1]

(8) 22" + zu' + (22 —v})u =0,

the function /zY,(z) is a solution of the equation

1
(9) u' + (:L‘2 1~ Vz) u=0.

Therefore, we have

(10) 2+ 5 (1)) Wanrta = ()" vaaniten).

72

Consequently,
(11)
d2 n oo
[m e (}1. _.,2)] #(z) = (1) / VETY(2y)y*"e(y) dy, [Rev| < 1/2.

By using inequality (2) for the Y-transform (11) of y*"g(y) € Ly(R4), we obtain that
[d?/de? + (1/22)((1/4) — v¥)]"f(z), |Rev| <1/2, n =0,1,..., belongs to Ly(Ry).
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(a-1ii) From (7) we see that the function ,/zyY,(zy), |[Rev] < 1/2, has the
asymptotics z1/2-1R¢ ¥l a5 z tends to 0, and is uniformly bounded on R, . Because
y?"g(y) € L1(R4), by applying the dominated convergence theorem {12] we have

i [+ L (3-0)] s = o [T impvamm aninat s =o,

z—0
(12) [Rewv| <1/2.
Since /ZyY,(zy), |Re v| < 3/2 , is uniformly bounded for z,y € [1,00) and y™g(y) €
Li(R4), for every € > 0 and for every n, n =0,1,..., one can choose b large enough
so that

(13) <e, |[Rev|<3/2,

/b ~ VzyY. (zy)y"g(y) dy

uniformly with respect to z € {1,00). On the other hand, from (7) one can conclude
that the integral

bz
(14) VIYu(y)dy, [Rev|<1/2,

a

is uniformly bounded for all non-negative @,b and z. Hence,

z

b 1 bz
(15) | vavaen = [ v, Rev<iyz,

tends to 0 uniformly in a,b for 0 € ¢ < b < 00 as z tends to infinity. Consequently,
applying the generalised Riemann-Lebesgue lemma. [8] we get

&
(16) zlim / VEuY (zy)y*"9(y)dy =0, 0<b< oo, |Rev|<1/2.

Because € can be taken arbitrarily small, from (13} and (16) we obtain

T 00

(17) i [ " Y ey o) dy =0, (Reuvl<1/2

Hence,

z—oo | dz? 22 \ 4

(18) lim [ﬁi + L <1 —uz)] f(z)=0, n=0,1,..., [Rev| < 1/2.
(a-iv) Since {1}

(19) 25 (VEY,(0)) = Va¥imals) ~ Vons(a) + —=Yu(a),

https://doi.org/10.1017/50004972700017792 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700017792

(5] Y-transform 333

we have

@ £+ 5(G-7)] 0= 58 [T v

72

_ n+1 co 1" had
+ (1_;_[) \/aTyY,,+1($y)y2n+lg(y) dy + ( 2.1) /; VZyY, (zy)y*"g(y) dy.

The function /zY,(z) is uniformly bounded on [1,00), and is of the order O (z1/2~1Re #I)
on (0,1). Therefore, for z € (0,1),

1/z

\ /0 ” VZyYu(zy)g(y) dy\ < VeyYu(zy)g(y) dy| + _/1 :o VayYu(zy)g(y) dy

1/z *®
< Cgif2-IRe ;4/ yi/2=IRe bl |g(y)|dy+0/ l9(y)| dy
0 /=

(21) < Cail-1Re / Y2 1Re B o) dy + C / lo(w)| dy.

0

Hence, in the neighbourhood of 0 we have
%/Ow VEyY. (2y)y*"9(y) dy = O(=71),
/Om VeEyY, 1 (zy)y*"tig(y) dy = O(a:"Ze "‘1/2),
(22) /Ooo VEYYur1(zy)y* " g(y) dy = O(a:"Ze ”"‘/2), [Re v| < 1/2.

By combining (20) and (22), we obtain

d [ & 1 /1 ™
iz ()] sw=ow. -0

z
(23) n=0,1,...; [Rev| < 1/2.

(a-v) Let |Re v| < 3/2. For every £ > 0 choose b so that the inequality (13) holds.
Because (zy)ale,,(:cy), [Re v| < 3/2 , is uniformly bounded for z,y € Ry, zy < 1,

then
1/z e C 1/z
(24) / VZyY,(zy)y™ " e(y) dy| < Z / y" |9(y)| dy.
(1} 0
Hence,
1/z
(25) Jim VEuYu(zy)y"He(y)dy =0, [Rev|<3/2.
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Let
VeEyY,(zy)dy, y>1/z

0, y<1/ez.

(26) ®(z,y) = {
Then ®(z,y) is uniformly bounded. The integral

bz

(27) VyY.(y)dy, [Rev|<3/2,

is uniformly bounded for all non-negative a,b and z such that az > 1. Hence,
b 1 bz

(28) [eena=3 [ @ Rev <z,

maz{l,az}

tends to 0 uniformly in a,b for 0 € @ < b < 0o as z tends to infinity. Consequently,
applying again the generalised Riemann-Lebesgue lemma [8] we get

b

(29) Iirxgo ®(z,y)y"9(y)dy =0, 0<b< oo,
z— 0
This means that
b
(30) lim / VZyY,(zy)y"g(y)dy =0, 0<b < oo, |Rev|<3/2.
01 /z

Because ¢ can be taken arbitrarily small, from (13), (25) and (30) we obtain

T—00

(31) lim / VZyY,(zy)y™ g(y)dy =0, n=0,1,..., |Rev|< 3/2.
0
If |Rev| < 1/2, then |Re v F 1| < 3/2. Hence,

lim / VY, —1(zy)y*" M g(y) dy = 0,
0

z—0o0

oo

(32) lim VEyY, 11(zy)y* " g(y) dy =0, [Rev] < 1/2.

T—00

Applying now formulas (20), (31) and (32), we have

(33) lim i[dz +l(l—u2)] fle)=0, n=0,1,..., [Rev| <1/2.

z—oo dz | dz? | z2 \ 4

(a-vi) The special case —1/2 < Re v < 0 has been proved in [3]. We give here a
proof valid for all the range of v. Integral (11) converges uniformly with respect to z

https://doi.org/10.1017/50004972700017792 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700017792

(7] Y-transform 335

on every compact subset of Ry . Therefore, one can interchange the order of integration
in the following formula to obtain

N d2 1 /1 ™
/I/N :l:u_ll2 [EE + m—z (Z - V2>] .f(il:) dz
N oo
= [ N / JEY.(oy)y"g(y) dyda

oo yN
(34) = (—1)"/ y2""’-1/2g(y)/ z"Y,(z) dz dy, 0< N < oo.
0 y/N
The last inner integral in (34) is uniformly bounded for all nonnegative N and y,
provided that |Re v| < 1/2. For y?*~*~1/2g(y) € L1(R,) under the restriction Re v <
0, and n > 1 otherwise, one can apply the dominated convergence theorem to obtain

(35)
N &2 1 (1 "
: v—1/2 | © {2 _ .2
N N [dzz T o (4 v )} f(z)dz
= (—1)"/ yz"_"_l/zg(y)/ z'Y,(z)dzdy, n=0,1,...; ~1/2<Rev <0,
0 0

n=12,...; 0 < Rev < 1/2.

Applying now the formula [1]

e 28w p+v+1 p—v+1
z*Y. (z)dr = — sin — p—v T r
/o (=) o 2( ) ( 2 ) ( 2 >’

(36) Re{p+v)>—-1, Rep<1/2,

with p = v, we see that the inner integral on the right hand side of (35) equals 0.

Hence,

/ ;.,"‘1/2[‘12 +l2(l—u2)] f(z)dz =0, n=0,1,...,~-1/2 < Rev <0,
z

dz?

37 n=1,2,...,0{ Rev <1/2.

—0

(b) Suppose now that f satisfies conditions (i)-(vi) of Theorem 1. Then [d?/dz? +
(1/23)((1/4) — )" f(2), n=0,1,..., belongs to Ly(R;).

(b-1) Let —1/2 < Re v < 0 and g.(y) be the H-transforms H,, -1/2< Rev <
0, of [d?/dz? + (1/22)((1/4) —v*)]*f(=), n=0,1,.... Then

@ o= [ v [+ 5 (5-2)] few n=ora.,
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where the integrals are understood in the Ly{R{) norm. Put

N N £ 11 N\
(39) 9. (y)= I/N\/wau(zy) E-Fz—z 1Y f(z)de, n=0,1,2....

Then gJY(y) tends to gn(y) in L normas N — oco. Let n > 1. Integrating (39) by

parts twice, we obtain

e {m g (a5 G-)] f(z)} .
2=1/N
(g | £e 3 () ol
z=1/N

(40)
+/1:v[5%+$(1 )] wamten 1+ 5 (5-07)] e

Using formulas [1]

2 (Vartuten)) = (1/2 - )y LB a0) + BT, -1 o),

(a1)
2+ 5 (5-)] Ve = e - e,
we have
(42)
w=vim [+ L (3-2)]
(43) Srmemg [+ L (G- sam
A
(45) - WWRTHA(V) [ + (;}—)] 5V
(46) v (L) vEmem [+ L (5-)] sam)
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(47) +y[LHL /M) i+ (i) " rm)
(48) 2 :v Ve [+ 5 (3-))] " feyds
(49) + %’{% 1:zu_1/2 [Ed;z— + ;}5 (}Z - u2>r—l f(z)dz.

Here P (d/dz) f(N) means P(d/dz) f(z)|,_n- As N tends to infinity, integral (49)
vanishes because of property (vi). Applying the asymptotic formula for the Struve

function [1]

(50) H,(y) = { O(y_llz)’ y oo, Rev<1/2,
O(y’R.e u+1), y— 0, VV,

we obtain that /NyH,(Ny), |Rev| < 1/2, is uniformly bounded. The function
(d/dz) [d*/d=? + (1/2%) ((1/4) — uz)]n—l f(N) tends to 0 as N approaches infinity
(property (v)), therefore, the expression on the right hand side of (42) tends to 0 as N
approaches infinity. From (iv) we see that (d/dz) [d?/dz? + (1/?) ((1/4) — uz)]"_1
f(1/N) has order O(N), whereas function 1/y/NH,(y/N) has order O(N—3/2-v).
Hence, expression (43) approaches 0 as N tends to infinity. Function /y/NH,(Ny)
has order O(N~!), whereas the expression [d?/dz? + (1/2?) ((1/4) — uz)]n_l f(N)is
o(1) (property (iii)), therefore, expression (44) is o(1). The function y+/NyH,_;(Ny)
is O(1), hence, property (iii) shows that (45) is o(1). Since /NyH,(y/N) has the
order O(N~1/2=%) and [d?/dz? + (1/=2) ((1/4) — uz)]n_l f(1/N) is o(1) (property
(iii)), expression (46) is also o(1). The function y+/y/NH,_; (y/N) has the order
O(N~1/2-%), hence, property (iii) shows that (47) is o(1).

Therefore, the right hand side of (42), as well as all functions (43) - (49), except
(48), vanish as N tends to infinity, whereas expression (48) converges to —y%g,_1(3).
Consequently, gn(y) = —y?gn-1(y), and therefore, g,(y) = (—yz)ngo(y), n =
0,1,.... Thus g(y) = go(y) such that y®"g(y) € L:(R+), n =0,1,..., is the H-
transform H, of the function f(z) . But the H-transform H, is the inverse of the
Y-transform Y, if —1/2 < Re v < 0, so we obtain that and f is the Y-transform
Y,, —1/2<Rev <0, of a function g such that y"g(y) € L2(R+), n=0,1,... .

(b-ii) Let now 0 < Re v < 1/2. The inverse of the Y-transform Y, in the range
0 < Re v < 1 has the form [3]

(51)
gly) =y %y"“/z/o Vzy [Hu+1(zy) - ﬁ)-l-—w_ﬂ f(z)dz, y€ Ry,
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that can be expressed in an equivalent form

v—1/2

N
62 o= Jm [ [««Tyny(zy)— )

2v 1\/771‘(u+1/2)] fle)dz, y € R,

where the limit is understood in the L,(R4) norm. Putting

(53)

2= [ [\/Eanu(zy) - /2)] i+ 5 (-] 1@,

we see that gN(y) tends to some functions g,(y) in the L; norm as N — oo. Let
2 1. Integrating (53) by parts twice and using formulae (40), (41) we obtain

(54)  of(w) = \/—Hu(Ny)—[—+1(l—:ﬂ)]n—lf(N)

(55) SSmemE [ L (G- ram
o ol el () o
(57) —y/FYH (V) [+ +3(3- )] W)
(58) + (=) vRmem [+ 5 (-] am
(59) oy Taoom [+ & (5-2)] sam)
(60) - [ v [H,(zy) - }Tﬂm]
23 G- e
(61) - e [ B (3] e

When N tends to infinity integral (61) vanishes because of property (vi) and n > 1
Reasoning the same as before, we can conclude that the right hand side of (54), as well
as all functions (55)—(59), vanish as N tends to infinity, whereas the expression (60)
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converges to —y?gn—_1(y). Consequently, gn(y) = —y*gn-1(¥y), and therefore, g,(y) =
(-¥%)"g90(y), n =0,1,... . Thus g(y) = go(y) such that y*"g(y) € Lo(Ry), n=
0,1,..., is the transform (52) of function f(z) . But transform (52) is the inverse of
the Y-transform Y, if 0 < Re v < 1/2, so we obtain that and f is the Y-transform
Y,, 0 < Rev < 1/2, of a function g such that y"g(y) € L2(R+), n = 0,1,....
Theorem 1 is thus proved. 0

REMARK. The case Re v = 0 has been excluded from Theorem 1. It was proved in
[3] that in this case the range of the Y-transform in L;(R4) is a proper subspace of
L:(Ry).

3. Y-TRANSFORM OF SQUARE INTEGRABLE FUNCTIONS WITH COMPACT SUPPORTS

Now we describe the Y-transform of square integrable functions with compact
supports (the Paley-Wiener theorem for the Y-transform).

THEOREM 2. A function f is the Y-transform Y,, 0 < |Rev| < 1/2, of a
square integrable function g with compact support on [0,00) if and only if f satisfies
conditions (i)-(vi) of Theorem 1 and moreover,

. 42 1 1 , n 1/(2n)
(62) ,,Engo”[ﬁt?(r”)] f@)),  =es<co
where
(63) oy =sup{y: y€ suppg},

and the support of a function is the smallest closed set outside which the function
vanishes almost everywhere [12].

Proo¥F: (a) Let f(z) be the Y-transform of g(y) € L,(R4+) and oy < 0o:

g
(64) f(z) = / VzyYu(zy)g(y)dy, 0<|Rev|<1/2.
0
One can assume that o, > 0, otherwise it is trivial. Since o, < co we have y"g(y) €

Ly(Ry) for all n =0,1,2,.... Therefore, f satisfies conditions (i)-(vi) of Theorem 1.

Furthermore,

dz? ' 22 \ 4

6 | (G-0)] 1@ [ e .

Consequently, applying the inequality (2) for the Y-transform (65), we obtain
2 1/1 N\
@ ||+ (i)
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Hence,
(67)
1/(2n)

1 1 2 ™ < T o1/(4m) og 2 1/(4n)
| mmG-)] o <mmeree { [Muoral T =

On the other hand, since o, is the least upper bound of the support of g, for every

g, 0 <e <oy, we have

(68) /dg lo(w)I* dy > 0.

g—¢

Consequently, using now inequality (3) for the Y-transform (65), we get

2 1 /1 n 1/(2m) og 1/(4n)
3 el — - _,"*2 > | —1/(4n) 4in 2
nh—an;o ” [dml’ + z2 (4 v )] f(z) 5 - nh—>n;o ¢ {/ag—e Y Ig(y)l dy}

1/(4n)
Tg
(69) > (0, —€) lim ¢~/ {/ la@))? dy} =0, — €.
ag—e

n—00

Because ¢ can be chosen arbitrarily small, from (69) and (67) we obtain (62).

(b) Suppose now that f satisfies the conditions of Theorem 1, and the limit in (62)
exists and equals o < co. Applying Theorem 1 we see that f is the Y-transform Y,
of a function g with o, defined by (63) such that y"g(y) € L;(R+), n» =0,1,....
We prove that oy < oo and moreover, ¢ = 0,. Theorem 1 implies that (11) holds.
Therefore, using inequalities (2) and (3) we obtain

d? 1 n
(70) c v a)ll, < ' [dz + = (Z - u"’)] @) <cly*aw), -
2

Hence,

1/(2n) {[, 2n 1/(2'n.) ) n 1/(2n)

Jim C~ lv*"9 (), n_m”[dzz _( —v )] (=) o =o

(71) < li’ngocl/@n) ”yzng(y)”:/(Zn) ]
Consequently,
(72) hm ”y ”1/(2n)

7L 00

Suppose that o, > . Then there exists a positive £ such that

(73) / j @) dy > 0.
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We have
1/(4n)
. 1/(2n) o .. ® an
o= lim |ly*"g()|;* 22@_{ / y*" lg(y)|? dy}
n—oe n—oo ote

oo 2 1/(4'n)
(74) >+ tm{ [ W) =ote
n—00 o+te

This is impossible. Hence, 04 < o and therefore, the function g has a compact support.

Suppose now that o, < o. Then there exists a positive ¢ such that

(75) / " low) dy =o.

-

We have
y@n) _w— [ [77° A
o= lim [ly""g(y)|,"" < hm { /0 y*" lg(y)| dy}

o~e 1/(4n)
(76) <(o—¢)Em {/ l9(9)I2 dy} —
n—oo 0

This is also impossible. Hence, 4 > o, and consequently, 6 = ¢ < 0c0o. Theorem 2 is
thus proved. 1]

REMARK. If a function f satisfies conditions of Theorem 1, then the limit (62) always
exists. It equals to infinity if f is the Y-transform Y, of a function g with unbounded
support.

4. Y-TRANSFORM OF ANALYTIC FUNCTIONS
We consider now the Y-transform Y, of functions analytic in some angle.

THEOREM 3. The Y-transform Y,, —~1 < Re v < 1, maps the space of all func-
tions g(z), regular in the angle —a < argz < 8, where 0 < a,8 < =; of the order

O(|z|_“_‘) for small z, and O(|z|_b+‘) for large z, where a < 1/2 < b, uniformly

for any small positive € in any angle interior to the above; and satisfying conditions

[ ]
/ gt 290 dy = 0, n € (—b/2—~Rev/2—-1/4,—a/2 — Rev/2-1/4),
0

(77)
/ Yyt g()dy =0, ne(-b/2+Rev/2—1/4,-a/2+Rev/2—1/4),
0

for all nonnegative integers n, if there exists such n, one-to-one onto the space of all

functions f(z), regular in the angle —B < argz < a, of the order O<|z|l-b—¢) for
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small z, and 0(|z|1~°+°) for large z, uniformly for any small positive ¢ in any angle

interior to the above; and satisfying conditions

/ 2" 212 f(2)dz =0, n€(a/2+Rev/2—1/4,b/2+Rev/2—1/4),
0

(78)
/ ¥ 3/2f(3)de =0, n € (—b/2—Rev/2—-3/4,~a/2 — Rev/2—3/4),
0

for all nonnegative integers n, if there exists such n. (For example, if Re v = 0, then
n = 0 always belongs to the interval (a/2 —1/4,b/2 —1/4).)

ProOOF: Let g(z) satisfy the conditions of Theorem 3. Then the function g(z) on
R, belongs to Ly(R) and its Mellin transform g*(s)

(79) s'(s) = | " et g(e) de

is an analytic function of s, regular for ¢ < Re s < b; and

O(eB-9Ims)  Tms— oo
(80) g'(s) = { ( )

o) (e("‘_‘)zm ') , Ims— -

for every positive €, uniformly in any strip interior to a < Re s < b (see {8]). Let f(z)
be the Y-transform V,, ~1 < Re v < 1, of g(y). Since g{y) belongs to Ly(R+), the
Parseval identity for the Y-transform Y, holds on the line Re s =1/2 [6]:
DGe3enrogey)

JE SR CRa )

(81) fls) =27 (1-2).

Because of (77) the function g*(1 — s) equals 0 at the poles of function I'(1/4 + v/2 + 5/2)
I'(1/4 — v/2 + s/2) in the strip 1—b < Re s < 1—a, if there exists one. Hence, from (81)
one can see that f*(s) is analytic in the strip 1—b < Re s < 1—a. Furthermore, since

the function 2°~1/2 (r(1/4 Yu/248/2)T(1/4—-v/2 + 3/2))/(1“ (=1/4—v/2 + 5/2)
rs/4+v/2- 3/2)) is uniformly bounded in any compact domain in the strip 1 —b <
Re s < 1—a, not containing the poles of function I'(1/4 + v/2 + s/2)T(1/4 — v /2 + 5/2),
and has at most only polynomial growth as Tm s — +oo, from (80) we see that function

f*(s) decays exponentially

O (elf~9Ime)  Tms— —oc0
(82) fr(s) = { ( )

(0] (e”(a—e)zm ') , Ims— oo
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for every positive £, uniformly in any strip interior to 1 — b < Re s < 1 — a. Hence,
its inverse Mellin transform f(z) is regular for —8 < argz < a, and of the order
O(|z|b_1_‘) for small z, and O(Izl"_1+°) for large z, uniformly in any angle interior
to the above angle for any small positive ¢ [8]. Moreover, f*(s) has zeros at the poles of
the function I'(—1/4 —v/2 4+ s/2)[(5/4 + v/2 — 5/2) in the strip 1 -b < Re s < 1—a,
if there exists one. Hence (78) holds.

Conversely, let f(z) satisfy the conditions of Theorem 3. Then f(z) on R belongs
to Ly(R4) and its Mellin transform (79) f*(s) is analytic in the strip 1 ~b < Re s <
1 — @ and satisfies (82). Furthermore, because of (78) the function f*(s) vanishes at
the poles of the function I'(-1/4 ~v/2 + s/2)[(5/4 + v/2 — 3/2) in the strip 1 — b <
Re s < 1 — a, if there exists one. Therefore, if we express f*(s) in the form (81),
function g*(s) is analytic in the strip @ < Re s < b; and has the asymptotics (80)
for every positive €, uniformly in any strip interior to a < Re s < . Furthermore,
g*(1 — s) has zeros at the poles of the function I'(1/4 + v/2 + s/2)T(1/4 — v/2 + 5/2)
in the strip 1 — b < Re s < 1 — a. Consequently, the inverse Mellin transform g(z) of
9*(3) satisfies the conditions of Theorem 3 and f is the Y-transform of g.

If in Theorem 3 we take @ = # and 0 < a < min{|y|,|v +1],|v — 1|}, then
in the strip 1/2 —a < Re s < 1/2 + a there are no poles or zeros of the function

90-1/2 (r(1/4 +v/2+5/2)T(1/4—v/2+ 5/2))/(r(_1/4 —v)2+5/2)T(5/4+ v/2—
.9/2)) , hence, we have

CoROLLARY 1. The Y-transform Y,, 0 < |Rev| < 1, is a bijection in the
space of all functions, regular in the angle |argz| < a, where 0 < o < m; of or-
der O(lzl“_l/"’“’) for small z, and O(lzl_a_l/z"") for large z, uniformly for any
small positive €, 0 < € < a, in any angle interior to the above, where 0 < a <
min {|v|, [v + 1|, v = 1]}.

5. Y-TRANSFORM IN SOME OTHER SPACES OF FUNCTIONS

In {9, 10] the Y-transform is proved to be a bijection in some spaces of functions
MZ2(L) introduced there. In this section the Y-transform in a space of functions
including the spaces M;;(L) as special cases is considered.

Let ® be any linear subspace of either Li(R) or Ly(R) having properties:

(i) if #(t) € ® then ¢(-t) € P;
(i) functions ¢(t) = 2%T(1/2+v/2+it/2)T(1/2 - v/2 +it/2)sin (7 /2)
(it —v),0 < |Rev| < 1, and ¢ ~}(t) are multipliers of ®.
It is easy to see that ¢~!(—t) is also a multiplier of ®. The multipliers ¢(t) and
¢~}(t) are infinitely differentiable and uniformly bounded on R, and their derivatives
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grow logarithmically. Therefore, many classical spaces on R are special cases of ®
(for example, any L; or L; space with L., -weights, the Schwartz space S(R), and
the space of infinitely differentiable functions with compact support [12]). On R, we
define M~1(®) to be the space of all functions g that can be represented in the form

(83) g(z) = /_00 $(t)z* /2 dt,

almost everywhere, where ¢ € & (if ¢ ¢ L;(R) the integral should be understood as
the inverse Mellin transform in Lz [8]). The spaces M_2(L) [10] as well as the space
of functions considered in Corollary 1 are special cases of M~1(®).

THEOREM 4. The Y-transform Y,, 0 < |Re v| <1, is a bijection in M~1(®).

PROOF: From (83) we see that if § € M~!(®) then g can be expressed in the
form of the inverse Mellin transform

1 1/2+‘I'OO
(84) 9(z) = ;= g*(s)z~ds,

2mi 1/2—ico

where g*(1/2 +it) € ®. Using formula (36) we obtain that the Mellin transform (79) of
the function k(z) = /zY,(z) is k*(s) = p(i/2 — is). Applying the Parseval equation
for the Mellin transform

oo 1 [+
(85) / k(zy)g(y) dy = —/ k*(s)g*(1 — 8)z™%ds, 0 < |Rev| <1,
0 1

2m 2—i00

that has been proved for g*(1/2 +it) € Ly(R) in [8] and ¢*(1/2 +it) € Li(R) in [9],
we obtain

(86) (Yug)(‘”) = /0°° \/@Yu(zy)g(y)dy = %r. /_: w(t)g*(1/2 - it)z—“‘l/zdt_

Since ¢(t) and ¢~!(~t) are multipliers of &, then ¢(t)g*(1/2 — it) belongs to @ if
and only if g*(1/2 + it) belongs to ®. Therefore, (Y, g)(z) € M~1(®) if and only if
g € M™1(®). Theorem 4 is thus proved.
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