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In labscale Faraday experiments, meniscus waves respond harmonically to small-amplitude
forcing without threshold, hence potentially cloaking the instability onset of parametric
waves. Their suppression can be achieved by imposing a contact line pinned at the
container brim with static contact angle 6; = 90° (brimful condition). However, tunable
meniscus waves are desired in some applications as those of liquid-based biosensors,
where they can be controlled adjusting the shape of the static meniscus by slightly
underfilling/overfilling the vessel (6y #=90°) while keeping the contact line fixed at the
brim. Here, we refer to this wetting condition as nearly brimful. Although classic inviscid
theories based on Floquet analysis have been reformulated for the case of a pinned contact
line (Kidambi, J. Fluid Mech., vol. 724, 2013, pp. 671-694), accounting for (i) viscous
dissipation and (ii) static contact angle effects, including meniscus waves, makes such
analyses practically intractable and a comprehensive theoretical framework is still lacking.
Aiming at filling this gap, in this work we formalize a weakly nonlinear analysis via
multiple time scale method capable of predicting the impact of (i) and (ii) on the instability
onset of viscous subharmonic standing waves in both brimful and nearly brimful circular
cylinders. Notwithstanding that the form of the resulting amplitude equation is in fact
analogous to that obtained by symmetry arguments (Douady, J. Fluid Mech., vol. 221,
1990, pp. 383—409), the normal form coefficients are here computed numerically from first
principles, thus allowing us to rationalize and systematically quantify the modifications on
the Faraday tongues and on the associated bifurcation diagrams induced by the interaction
of meniscus and subharmonic parametric waves.
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1. Introduction

When a vessel containing liquid undergoes periodic vertical oscillations, the free liquid
surface may be parametrically destabilized with excitation of standing waves depending
on the combination of forcing amplitude and frequency. The threshold at which the
instability appears is a function of the corresponding mode dissipation and the excited
wavelength is generally specified by the wave whose natural frequency is half that of the
parametric excitation, as first noticed by Faraday (1831), who observed experimentally
that the resonance was typically of a subharmonic nature. This observation was later
confirmed by Rayleigh (1883a,b), in contrast with Matthiessen (1868, 1870), who observed
synchronous vibrations of the free surface with the vertical shaking. The pioneering work
of Benjamin & Ursell (1954) gave momentum to the theoretical investigations of the
Faraday instability. Using first principles, Benjamin & Ursell (1954) determined the linear
stability of the flat free surface of an ideal fluid within a vertically vibrating container
displaying a sliding contact line which intersects orthogonally the container sidewalls.
The stability is governed by a system of uncoupled Mathieu equations, which predict
that standing capillary—gravity waves appear inside the so-called Faraday tongues in the
driving frequency—amplitude space, with the wave response that can be subharmonic,
harmonic or superharmonic, hence reconciling previous observations.

The effect of viscous dissipation, taken to be linear and sufficiently small, was initially
introduced heuristically (Lamb 1932; Landau & Lifshitz 1959) in the inviscid solution,
resulting in a semiphenomenological damped Mathieu equation, which was later proved
by the viscous linear Floquet theory of Kumar & Tuckerman (1994) to be inaccurate, even
at small viscosities. An improved version of the damped Mathieu equation, accounting
in a more rigorous manner for the dissipation taking place in the free surface and
bottom boundary layer, was proposed by Miiller et al. (1997), who also noticed in their
experiments that the fluid depth can affect the Faraday threshold, with harmonic responses
most likely to be triggered for thin fluid layers. The viscous theory of Kumar & Tuckerman
(1994), formulated for a horizontally infinite domain, was found to give good agreement
with the small-depth large-aspect-ratio experiments of Edwards & Fauve (1994), where
the influence of lateral walls was negligible. If indeed, at large excitation frequencies,
where the excited wavelength is much smaller than the container characteristic length, the
accessible range of spatial wavenumber is nearly continuous, in the low-frequency regime
of single-mode excitation the mode quantization owing to the container sidewall becomes
a dominant factor, leading to a discrete spectrum of resonances.

A generalization of the viscous Floquet theory to spatially finite systems can be readily
obtained by analogy with the inviscid formulation of Benjamin & Ursell (1954), as Batson,
Zoueshtiagh & Narayanan (2013) recently proposed. It has, however, intrinsic limitations
as it relies on ideal lateral wall conditions, i.e. the unperturbed free surface is assumed to
be flat, the contact line is ideally free to slip with a constant zero slope and the stress-free
sidewall boundary condition is required for mathematical tractability, since it allows for
convenient Bessel-eigenfunctions representation. With the noticeable exception of the
sophisticated experiments by Batson et al. (2013) and Ward, Zoueshtiagh & Narayanan
(2019) using a gliding liquid coating, these assumptions, by overlooking the contact line
dynamics, lead in most experimental cases to a considerable underestimation of the actual
overall dissipation, resulting in many cases in an inaccurate prediction of the linear Faraday
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thresholds in small-container experiments (Benjamin & Ursell 1954; Dodge, Kana &
Abramson 1965; Ciliberto & Gollub 1985; Henderson & Miles 1990; Tipton & Mullin
2004; Das & Hopfinger 2008). The complexity of the region in the neighbourhood of
a moving contact line, where molecular, boundary layer and macroscopic scales are
intrinsically connected, is indeed of extreme importance and, despite the significant efforts
devoted by several authors to its theoretical understanding (Case & Parkinson 1957,
Keulegan 1959; Miles 1967; Davis 1974; Hocking 1987; Miles 1990, 1991; Cocciaro, Faetti
& Nobili 1991; Cocciaro, Faetti & Festa 1993; Ting & Perlin 1995; Perlin & Schultz 2000;
Jiang, Perlin & Schultz 2004), the comparison with moving-contact-line experiments,
due to unavoidable sources of uncertainty in the meniscus dynamics, remained mostly
qualitative, rather than quantitative, requiring often the use of fitting parameters, e.g. a
larger effective fluid viscosity (Henderson & Miles 1990).

A natural means to get rid of the extra dissipation produced by the contact line dynamics
is to simply pin the free surface at the edge of the sidewall, i.e. the container is filled to
the brim. In such a condition, the overall dissipation is ruled by that occurring in the fluid
bulk and in the Stokes boundary layers at the bottom and at the solid lateral walls, where
the fluid obeys the classic no-slip boundary condition, relaxing the stress-singularity at the
contact line (Navier 1823; Huh & Scriven 1971; Davis 1974; Miles 1990; Ting & Perlin
1995; Lauga, Brenner & Stone 2007). Even in the inviscid context, the problem of a pinned
contact line boundary condition is well-posed, as shown by the seminal works of Benjamin
& Scott (1979) and Graham-Eagle (1983), who first solved the resulting dispersion relation
for inviscid capillary—gravity waves with a free surface pinned at the container brim using a
variational approach and a suitable Lagrange multiplier. Since then, several semianalytical
techniques, often combining an inviscid solution with boundary layer approximations and
asymptotic expansions accounting for viscous dissipation, have therefore been developed
to solve the pinned contact line problem, for example in cylindrical containers (Henderson
& Miles 1994; Martel, Nicolas & Vega 1998; Miles & Henderson 1998; Nicolds 2002,
2005; Kidambi 2009). The resulting predictions of natural frequencies and damping
coefficients of these capillary—gravity waves, in contradistinction with the case of a
moving contact line, showed a remarkable agreement with experimental measurements
(Henderson & Miles 1994; Howell ef al. 2000).

Within the framework of the Faraday instabilities, this pinned contact line condition
can be reached by carefully filling up the vessel up to the brimful condition, as done by
Douady (1990) and Edwards & Fauve (1994), among others. Nevertheless, as noticed by
Bechhoefer et al. (1995), these delicate experimental conditions are not always perfectly
achieved, leading to the presence of a minute meniscus. As mentioned for instance by
Douady (1990), the meniscus cannot remain steady upon the oscillating vertical motion
of the vessel, which results in the emission of travelling waves from the sidewall to the
interior. Irrespective of the pinned or free-edge nature of the contact line, these so-called
meniscus waves are synchronized with the excitation frequency. They are not generated by
the parametric resonance, but rather by the modulation of the gravitational acceleration
resulting in an oscillating capillary length. They do not need to overcome a minimal
threshold in forcing amplitude to appear, are therefore observable in the whole driving
frequency-amplitude space and are well described by a purely linear response, i.e. at
sufficiently small forcing amplitude, the meniscus-wave amplitude is proportional to the
external forcing amplitude. As stated by Douady (1990), edge waves constitute a new
time-dependent base state on which the instability of parametric waves may develop,
possibly blurring the experimental detection of the true Faraday thresholds. This has led
researchers to attempt to suppress edge waves by selecting large-aspect-ratio containers
where sidewall effects are negligible, using sloping sides or shelf conditions to mitigate
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edge waves by impedance matching (Bechhoefer et al. 1995), or employing highly viscous
fluid which damp out these waves (Douady 1990; Bechhoefer et al. 1995).

With interests in pattern formation, pure meniscus-wave-patterns were investigated for
themselves by Torres ef al. (1995), while complex patterns originating by the coupling
of meniscus and Faraday waves were recently described by Shao et al. (2021a,b) for
small circular cylinder experiments. A discussion about harmonic Faraday waves disturbed
by harmonic meniscus waves (MW) is also outlined in Batson et al. (2013), where
the presence of edge waves in a small circular cylinder bilayer experiment leads to an
imperfect bifurcation diagram, also referred to as a tailing effect by Virnig, Berman
& Sethna (1988), who analysed subharmonic responses only. Interestingly, in some
cases, e.g. liquid-based biosensors for DNA detection (Picard & Davoust 2007), tunable
small-amplitude stationary waves as MW are actually desired and preferred to saturated
larger-amplitude Faraday waves. In such applications, a starting brimful condition, having
a contact line fixed at the brim, is ideal since the effective static contact angle at the wall
and hence the size and shape of the static meniscus, which will emit edge waves under
vertical excitations, can be adjusted simply by increasing or decreasing the bulk volume
(nearly brimful condition).

Although the non-conventional eigenvalue problem for natural frequencies and damping
coefficients of pinned-contact-line capillary—gravity waves was tackled by several authors
mentioned above and in spite of the vastness of literature focused on Faraday waves,
there is lack of a comprehensive theoretical framework for the investigation of such a
configuration within the context of Faraday instability. An important exception is the work
of Kidambi (2013). Assuming inviscid Faraday waves in a brimful cylinder with an ideally
flat static free surface, Kidambi represented the problem using appropriate modal solutions
followed by a projection on a test function space and showed that the pinned contact line
condition resulted in an infinite system of coupled Mathieu equations, unlike the classic
case of an ideal moving contact line (Benjamin & Ursell 1954). Nevertheless, viscosity,
crucial for an accurate prediction of the Faraday threshold, was not included in the analysis,
nor was the presence of a static meniscus and its consequent emission of MW. Some
attempts to include meniscus modifications to the Faraday thresholds have been made by
several authors by including periodic inhomogeneities (Ito, Tsuji & Kukita 1999; Tipton
2003) and ad hoc phenomenological terms (Lam & Caps 2011) to an ad hoc damped
Mathieu equation.

The purpose of this work is to take one more step in the direction undertaken by Kidambi
(2013), by rigorously accounting for (i) viscous damping, (ii) a pinned contact line and (iii)
the presence of a static meniscus at rest. As mentioned above, a contact angle different
from 90° not only results in a static meniscus, but also induces the emission of meniscus
waves as the static meniscus shape is no longer a solution of the forced problem, even
below the Faraday threshold. A Floquet-inspired linear theory a la Kumar & Tuckerman
(1994) cannot be pursued, as perturbations develop around an oscillating base-flow. In
contrast, we propose to use the weakly nonlinear (WNL) approach to approximate the
linear Faraday bifurcations, although it is expected to involve cumbersome calculations.

Weakly nonlinear analyses (Miles 1984; Meron & Procaccia 1986; Nayfeh 1987; Nagata
1989; Douady 1990; Henderson & Miles 1990; Milner 1991; Zhang & Vinals 1997; Chen
& Vinals 1999; Jian & Xuequan 2005; Skeldon & Guidoboni 2007; Rajchenbach &
Clamond 2015) have indeed been widely used in the context of Faraday instabilities to
study the wave amplitude saturation via super and subcritical bifurcations, as well as to
investigate pattern and quasipattern formation (Stuart & Fauve 1993; Edwards & Fauve
1994) or spatiotemporal chaos (Ciliberto & Gollub 1985; Gluckman et al. 1993), arising
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when two modes with nearly the same frequency share the same unstable region in the
parameter space and strongly interact. In contradistinction with these previous studies,
the presence of a static meniscus calls for a WNL approach not only to estimate the
wave amplitude saturation in the WNL regime, but also to predict the Faraday threshold.
Hence, with regard to cylindrical straight sidewalls and sharp-edged containers, as the one
considered by Shao et al. (2021b), we derive a WNL model capable of simultaneously
accounting of viscous dissipation, static meniscus and MW, thus allowing us to predict
their influence on the linear Faraday threshold for standing capillary—gravity waves with
pinned contact line as well as their saturation to finite amplitude. Following the recent
experimental evidence of Shao et al. (2021b), we focus on single-mode subharmonic
resonances. To this end, the full system of equations governing the fluid motion is solved
asymptotically by means of the method of multiple time scales, involving a series of linear
problems, which are solved numerically. The theoretical model results in a final amplitude
equation for the wave amplitude, B, whose form corresponds to that derived by Douady
(1990) using symmetry arguments solely and keeping only low-order terms,

dB . * 2
5 = (0 +iA/DB+(FB + x|BI'B. (1.1)

This equation correctly predicts the existence of a so-called subharmonic Faraday tongue
in the forcing frequency-amplitude (i.e. the §£2,—F) plane. Within the tongue the forced
response driven at §2 is linearly unstable and a solution oscillating w (which is sufficiently
close to £24/2) emerges. The form of (1.1) is indeed valid whatever the shape of the static
surface, mode structure and the boundary condition are, but the normal form coefficients,
which account for the effect of the static contact angle and which are complex values
owing to the presence of viscosity, are here formally determined in closed form from first
principles and computed numerically.

The paper is organized as follows. In §2 the flow configuration and governing
equations are introduced, while the numerical methods and tools employed in the work
are presented in § 3. In §4 we formulate a linear eigenvalue problem for the damping
and natural frequency of viscous capillary—gravity waves with pinned contact line,
whose numerical solution is compared with several previous experiments and theories
in Appendix A. The WNL model for subharmonic Faraday resonances is formalized
in §5. A vis-a-vis comparison with recent experiments by Shao et al. (2021b) with a
pure brimful configuration are discussed before moving to a systematic investigation of
meniscus effects. Lastly, for validation purposes, in § 6 the modified bifurcation diagram
presented in § 5 is compared for a specific case, i.e. pure axisymmetric dynamics, with
fully nonlinear direct numerical simulations (DNS). Final comments and conclusions are
outlined in § 7.

2. Flow configuration and governing equations

We consider a cylindrical vessel of radius R and filled to a depth 4 with a liquid
of density p and dynamic viscosity u (see figure 1). The vessel undergoes a vertical
periodic acceleration Fy = AdQ‘%, where A and £2; = 27tf; are the driving amplitude and
angular frequency, respectively. In a non-inertial reference frame, the fluid experiences
a vertical acceleration due to the unsteady apparent gravitational acceleration ggp,(f) =
gll — (Fg/g) cos §24t]. The viscous fluid motion is thus governed by the incompressible
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(a) (b)

R——

F,cos (£2,1)

Figure 1. Sketch of a straight sidewalls sharp-edged cylindrical container of radius R and filled to a depth &
with a liquid of density p and dynamic viscosity p. The air-liquid surface tension is denoted by y. (a) The free
surface, 1, is represented in a generic static configuration characterized by a static contact angle 6;. (b) Generic
dynamic configuration under the external vertical periodic forcing of amplitude F; and angular frequency £24.
The contact line is pinned and the dynamic angle, oscillating around its static value, 0;, is denoted by 6. Here
(rz)-plane is the reference working plane.

Navier—Stokes equations,

ou

V-u=0,
ot

1 F,
+(u-V)u+Vp—R—Au=—<l——dcos.(2dt>éz, 2.1
e g

where u(r, ¢, z,0) = {u,(r, ¢, z, 1), up(r, ¢, z, 1), u(r, ¢, z, t)}T is the velocity field and
p(r, ¢, z, t) is the pressure field. Equations (2.1) are made non-dimensional by using the
container’s characteristic length R, the characteristic velocity 4/gR and the time scale
V/R/g. The pressure gauge is set to pgR. Consequently, the Reynolds number is defined as
Re = pg'/?R3/? /i and the term on the right-hand side represents the time modulation
of the non-dimensional gravity acceleration. The domains of validity for r, ¢ and z
are, respectively, r € [0, 1], ¢ € [0, 2n] and z € [—h/R, n], with n(r, ¢, t) the interface
coordinate. Then, at z = n we impose the kinematic and dynamic boundary conditions,

on an “¢|,7 on
gr Tl g T g T M =0 (220
L vugvT _ 1 2.2b
= plyn () + o (Vu+Viu)|, - n@) = o=k @, (2.2b)

where « (1) is the free surface curvature, n(7) is unit vector locally normal to the interface
and Bo is the Bond number defined as Bo = pgR?/y, with y air-liquid surface tension.
At the solid bottom, z = —h/R = —H and at the sidewall, r = 1; we impose the no-slip
boundary condition, u = 0. Lastly, the dynamic pinned (or fixed) contact line condition is
enforced as

an

=0. 2.3
31|, (2.3)

3. Numerical methods and tools

Different numerical approaches are adopted in the present paper. The numerical scheme
used in the eigenvalue calculation, §4, and in the WNL analysis, §5, is a staggered
Chebyshev collocation method implemented in MATLAB. The three velocity components
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are discretized using a Gauss—Lobatto—Chebyshev (GLC) grid, whereas the pressure is
staggered on a Gauss—Chebyshev (GC) grid. Accordingly, the momentum equation is
collocated at the GLC nodes and the pressure is interpolated from the GC to the GLC grid,
while the continuity equation is collocated at the GC nodes and the velocity components
are interpolated from the GLC to the GC grid. This results in the classical Py-Py—_2
formulation, which automatically suppresses spurious pressure modes in the discretized
problem (Viola, Arratia & Gallaire 2016; Viola & Gallaire 2018). A two-dimensional
mapping is then used to map the computational space onto the physical space, that has,
in general, a curved boundary due to the presence of concave or convex static meniscus.
Lastly, the partial derivatives in the computational space are mapped onto the derivatives in
the physical space, which depend on the mapping function. For other details see Heinrichs
(2004), Canuto et al. (2007), Sommariva (2013) and Viola, Brun & Gallaire (2018).

Mesh convergence was tested for different refinements, starting from a grid size of
N, = N; =20 up to N, = N, = 90 with a progressive increment of 10 GLC nodes in both
directions. Here N, and N, denote the number of radial and axial nodes, respectively.
A mesh size of N, = N, = 40 was seen to be sufficient to ensure a convergence of the
natural frequencies and damping coefficients (see § A), up to the third digit. However, a
mesh N, = N, = 80 was required to ensure the same convergence for the normal form
coefficients in the WNL model (see § 5).

The WNL model presented in §5 involves a third-order asymptotic expansion of
the full hydrodynamic system introduced in §2, that turns out to be very tedious
to derive analytically. Therefore, the linearization and expansion procedures have
been fully automated using the software Wolfram Mathematica, a powerful tool for
symbolic calculus, which has then been integrated within the main MATLAB code. The
Mathematica codes are provided in the supplementary material available at https://doi.org/
10.1017/jfm.2022.600 as a support to the reader.

In § 6, the results obtained from the WNL analysis are compared and validated for a
specific case, i.e. axisymmetric dynamics, with axisymmetric and fully nonlinear DNS,
which have been performed using the finite-element software COMSOL Multiphysics
v5.6. Further details about the specific DNS setting will be given in § 6.

4. Natural oscillations with pinned contact line and static meniscus

Assuming at first the case with zero external forcing, in this section we provide the
framework for the numerical study of the damping coefficients and natural frequencies
of viscous capillary—gravity waves with fixed contact line and in the presence of
a static meniscus. The flow field q(r, ¢, z, 1) = {u(r, ¢,z 1), p(r, ¢, z, t)}T and the
interface 1 (r, ¢, t) are decomposed in a static axisymmetric base flow, g,(z) = {0, p()(z)}T
and no(r), and a small perturbation, q,(r, ¢, z,1) = {u1(r, ¢,z 1), p1(r, .z, £)}T and
n(r, ¢, z, t), of infinitesimal amplitude €, i.e. ¢ = gy + €q; and n = no + €n;.

4.1. Static meniscus

Atrest, the velocity field ug is null everywhere and the pressure is hydrostatic, i.e. pg = —z.
Therefore, the static configuration is obtained by solving the nonlinear equation associated
with the shape of the axisymmetric static meniscus, 1o(r),

_ k(o) _
0 Bo

0, 4.1)
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with «(n0) = (o, + 10,1 + 13 ,)/r) (1 +n3 )~3/?. At the centreline, r =0, the
regularity condition 7, = 0 holds due to axisymmetry. The shape of the meniscus is
obtained by imposing the geometric relation at the contact line, r = 1,

om

= cot b, 4.2)
ar

r=1

where 6, is a prescribed static contact angle (see also figure 1a). When 6; is set to /2,
then the static interface appears flat.

4.2. Linear eigenvalue problem
Governing equations (2.1) and their boundary conditions (2.2) are then linearized around
the static base-flow. It follows that at order € the velocity and pressure fields satisfy the
Stokes equations

v 0, My L au =0 4.3)
Ul = s —_— _— Uy = . .
1 1 P1— oo Al
with the linearized kinematic and dynamic free surface boundary conditions (at z = ng)
an 9o
T Tl 5~ ey, =0, @4
= Pilyy 1 000) + M (o) + = (Vay + VTar)|, - n o) = — S g
P1ly, 1 (no) + nin (1o Re 1 o no Bo o %771 no)
4.5)
where n(no) = {—no., 0, 1YT(1 + g ,)~"/* and
2
i () (1 + ’70,r) = 3r10./M0.rr 1 3, . 1 3%
a 5/2 9 3/2 9,2
lng (1 + ”(%,r) ror (1 + n%’r) d
1 1 8%
+ ; 22 392 (4.6)
(1)

is the first-order variation of the curvature associated with the small perturbation €1;. The
azimuthal coordinate is denoted by ¢. The no-slip boundary condition is imposed at the
solid walls, u; = 0, while the pinned contact line condition is enforced at the contact line,
z=noandr =1,

ad
an =, 4.7)
ot r=1
Hence, the linear system can be written in compact form as
: 1 0 Re™'A -V
(Bds — A)q; =0, WlthB:(O 0), A=( vT 0). 4.8)

We note that the kinematic and the dynamic boundary conditions (4.4) and (4.5) do
not explicitly appear in (4.8), but they are imposed as conditions at the interface (Viola
& Gallaire 2018). More precisely, in the numerical scheme, the kinematic condition
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governing the state variable n is implemented as an additional equation dynamically
coupled with #; and pp in (4.8) (this is better clarified in Appendix B of Bongarzone,
Viola & Gallaire (20215)), whereas the three stress components of the dynamic condition
are enforced as standard boundary conditions in the corresponding components of the
momentum equation. The solution can be then expanded in terms of normal modes in
time and in the azimuthal direction as

g1 (¢, 2.0 =§, (r,2)eYe™ +c.c.
= ity (r ) dig (1, 2) 1z (1, 2) 1 (1, D)) eVe™ tec.,  (49)
m(r, ¢, 1) = i (N eYe™ +c.c. (4.10)

Substituting the normal form (4.9)—(4.10) in system (4.8), we obtain a generalized linear
eigenvalue problem,

(1B — Ap) é] =0, (4.11)

where the linear operator A, depends on the azimuthal wavenumber m and g, is the
global mode associated with the eigenvalue 4 = —o + iw, with o0 and o the damping
coefficient and the natural frequency, respectively, of the (m, n) global mode. Here the
indices (m, n) represent the number of nodal circles and nodal diameters, respectively.
Owing to the normal mode expansion (4.9), we notice that the operator A,, is complex,
since ¢ derivatives produce im terms. A complete expansion of the complex operator can
be found in Meliga, Chomaz & Sipp (2009) and Viola & Gallaire (2018).

In order to regularize the problem at the axis, depending on the selected azimuthal
wavenumber m, different regularity conditions must be imposed at r = 0 (Liu & Liu 2012;
Viola & Gallaire 2018),

. . o,  9p1
0 dy =iy = oMz P 412
|m]| upr = g oy oy (4.12a)
ol ot R R
m =1 S e _p b =0, (4.12b)
ar ar
|m| > 0: 1wy, = ft1¢ =a;,=p; =0. (4.12¢)

Lastly, due to the symmetries of the problem, system (4.11) with its boundary conditions
is invariant under the

(i\lllﬁ i’\tltﬁa ﬁlZ’ﬁI? ﬁlv +ma —0 + la)) — (i\tllﬁ _i’\tl(f)v &127]319 ﬁla —m, —0 + 16()) ) (413)

transformation, so in this section, § 4, we consider only the case with m > 0. Furthermore,
the following relations hold:

@1, 71, +m, —0 +i0) — (L, 77, —m, —0 — i), (4.14)
(q1. 01, —m, —0 +iw) — (4], 0}, +m, —0 — iw), (4.15)

(where the star designates the complex conjugate), i.e. the eigenvalues are complex
conjugates and all spectra (£m) in the (o, w)-plane are symmetric with respect to the
real axis (w = 0), but the complex conjugates of the corresponding eigenvectors, except
for the axisymmetric dynamics (m = 0), are not eigenmodes of the same spectrum. The
damping coefficients and natural frequencies of viscous capillary—gravity waves with fixed
contact line in both the meniscus-free and with-meniscus configuration are thus computed
by solving numerically the generalized eigenvalue problem (4.11), as described in § 3.
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Literature survey Meniscus-free (05 = 90°) Acr. With-meniscus (65 # 90°) Acr.
Experimental Henderson & Miles (1994) HM94 Cocciaro et al. (1993) C93
campaigns Howell et al. (2000) H2000 Picard & Davoust (2007) PDO7
Viscous Henderson & Miles (1994) HM94
analyses Martel et al. (1998) M98
Miles & Henderson (1998) MH98 Kidambi (2009) K09
Nicolds (2002) NO02
Kidambi (2009) K09
Inviscid Graham-Eagle (1983) GE&83 —
analyses Henderson & Miles (1994) HM94 —
Kidambi (2013) K13 Nicolds (2005) NO5
Shao et al. (2021b) S21 —

Table 1. Literature survey on the natural frequencies and damping coefficients of small-amplitude
capillary—gravity waves in labscale upright cylindrical containers with pinned contact line and in both
meniscus-free and with-meniscus configurations. The present work lies within the conditions highlighted by
the shaded frames. The case examined by K13 and S21 will be discussed afterwards in § 5 within the context
of subharmonic Faraday waves.

With regard to the literature survey outlined in table 1, in Appendix A we propose
a thorough validation of our numerical tools via comparison with several pre-existing
experiments and theoretical/semianalytical predictions focusing on both brimful and
nearly brimful circular cylinders.

5. Weakly nonlinear model for subharmonic Faraday thresholds with contact angle
effects

In this section, the numerical tools presented and validated in § 4 are employed to formalize
a WNL model accounting for contact angle effects, i.e. static meniscus and harmonic
meniscus capillary waves, on the subharmonic Faraday instability with pinned contact
line.

5.1. Presentation

Here, the full system (2.1)—(2.3) is solved through a WNL analysis based on the multiple
scale method that is valid in the regime of small perturbations of the static configuration
and small external control parameters, namely the driving amplitude and detuning from
the parametric resonance. Let us thus introduce the following asymptotic expansion for the
flow quantities:

qg={u.p}  =qy+eq+qg+e'q+0 (64), (5.1)
— 2 3 4
1 =1n0+en + e +eny+0(e). (5:2)

In the spirit of the multiple scale technique, we introduce the slow time scale T = €21,
with 7 being the fast time scale at which the free surface oscillates. For subharmonic
resonances the system is expected to respond with a frequency equal to half the driving
frequency. In order to determine the boundaries of the instability tongues, we assume the
external forcing angular frequency to be £2; = 2w + A, where w is the natural frequency
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associated with the generic (m, n) capillary—gravity wave considered and A is the detuning
parameter. As, by construction, the WNL analysis is valid close to the instability threshold
only, we assume a departure from criticality to be of order €2. In terms of control
parameters, this assumption translates to the following scalings for the external forcing
amplitude, F;/g, and detuning A:

Fi/lg=F=¢’F, A=¢E’A. (5.3)

It should be noted that the presence of viscosity leads to a damped e-order solution g
(as discussed in § 4), whereas standard multiple scale methods apply to marginally stable
systems (Nayfeh 2008). Nevertheless, as the Reynolds number is typically high enough,
the damping coefficient results in a slow damping process over fast wave oscillations (see
§4). In such a regime, a multiple scale analysis can still be applied by postulating that the
damping coefficient of the (m, n) wave is of order €2, ie. o0 = €26, therefore the (m, n)
eigenvalue reads 1 = —e26 + iw. A simple way to account for this second-order departure
from neutrality consists in replacing the leading-order operator A,, = A,;(Re) defined
in (4.11), for which g, is not neutral, but rather stable, by the shifted operator (Meliga
et al. 2009), A,, = A,, + €28,,, where S,, is the shift operator defined as S,,g; = —6¢;.
The shifted operator A, is characterized by the same spectra of A,,, except that the (m, n)
eigenmode g, associated with & is now marginally stable, and hence the WNL formalism
can be applied. For a thorough discussion about the formalism of the shift operator see
Meliga et al. (2009) and Meliga, Gallaire & Chomaz (2012). Although a different approach
to account for a damped first-order solution was followed by Viola & Gallaire (2018),
leading to a different (but equivalent) asymptotic expansion, we use in this paper the shift
operator approach.

Finally, substituting the asymptotic expansions and scalings above in the governing
equations (2.1)—(2.3) with their boundary conditions, a series of problems at the different
orders in € are obtained.

As anticipated in § 3, when contact angle effects are included in the analysis, i.e.
the initial static interface is not flat, the third-order asymptotic expansion of the full
viscous hydrodynamic system introduced in § 2 turns out to be very complex to derive
analytically. Particularly tedious is the dynamic boundary condition, as it involves free
surface boundary terms, which, within the linearization process, must be flattened at
the static interface, no, as well as the full nonlinear curvature. In order to overcome
these practical difficulties, the linearization and expansion procedures have been fully
automated using symbolic calculus within the software Wolfram Mathematica, which has
been then integrated within the main code implemented in MATLAB. The corresponding
Mathematica codes are provided as supplementary material.

5.2. Order €°: static meniscus

At order €” the system reduces to the nonlinear equation associated with the shape of
the axisymmetric static meniscus. The velocity field is null, up = 0 and the pressure
is hydrostatic, po = —z. As described in § 4.1, the static interface, 19(r), is obtained by
prescribing a static contact angle, 6;, which enters through the geometrical relation (4.2)
imposed at the contact line.

5.3. Order €: capillary—gravity waves

At leading order in € the system is represented by the unsteady Stokes equations (4.3),
together with the kinematic and dynamic boundary conditions (4.4)—(4.5), linearized
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around the static base flow g = {uo. p0}T = {0, —z}T and 9, and subjected to the no-slip
boundary condition at the solid walls, regularity conditions at the axis (4.12a)—(4.12¢) and
to the pinned contact line condition (4.7),

(B3, — Ay) g, = 0. (5.4)

Within the framework of the Faraday instability, we are interested in a standing waveform
of the solution, which can be seen as a result of the balance of two counter-rotating waves.
Hence, we look for a first-order solution of the form

g1 = AT (M@ exp (i (@i + mg)) + AT (D) & exp (i (wt — m@)) +c.c.,  (5.5)
m =AT (D)7} exp (i (wf + m$)) + AT (T) it exp (i (0t — m@)) +c.c.,  (5.6)
(1 takes the same form) that destabilizes the static configuration. A single azimuthal

wavenumber m is considered at a time. In (5.5), AT and A|, unknown at this stage of the

expansion, are the complex amplitudes of the oscillating mode z}’iﬁ and g, respectively,
and they are functions of the slow time scale 7. The eigensolution of (5.4) has been
widely discussed in §4 for m > 0. We note in addition that the eigenmode for the —m
perturbation is similar to that of the +m perturbation; more precisely, it oscillates with the
same frequency w, but it has the opposite pitch and it rotates in the opposite direction.

5.4. Order €*: MW, second harmonics and mean-flow corrections
At order €2 we obtain the linearized Stokes equations and boundary conditions applied to
9> = {uz, p2}" and 2,
(Bo; — Ay) g, = F, (5.7

and forced by a term F, depending only on zero-, first-order solutions and on the external
forcing

Fp = |ATPFSAY L AT RFEAAT (ﬁj-'g exp (i <2a)t + AT)) + c.c.)
+ (A7 FS A exp i Qon + 2mp) + AT FS A exp (i oot — 2mg)) +c.c.)
+ (ATAI_.’%E‘JFA_ el2et +ATA1_*.7A:‘24+A_ el2me 4 c.c.) . (5.8)
All terms contributing to the forcing vector F 7 were extracted using symbolic calculus in
Wolfram Mathematica (see supplementary material). The first-order solution is made of
four different contributions of amplitude AT, Af*, A} and Al_*, and therefore it generates

10 different second-order forcing terms, F g exp(i(w’j t + mY¢)), which exhibit a certain

frequency and spatial periodicity, gathered in table 2. The two additional terms, j—"g ,
appearing in the forcing expression (5.8), come from the spatially uniform axisymmetric
e)2(terna1 forcing typical of Faraday waves, whose amplitude was assumed to be of order
€”.

All these forcing terms are non-resonant, as their oscillation frequencies and their spatial
symmetries, through the azimuthal wavenumber, differ from those of the leading-order
solution (see table 2). Hence no solvability conditions are required at the present order
(Meliga et al. 2009). We can thus look for a second-order solution as the superposition of
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2 + A+ —A— 7 + A+ —A— +A— +A—
€ AfAT* ATAT F ATA] ATA] ATA] AfAT
m 0 0 0 2m —2m 0 2m
ol 0 0 2w 2w 2w 2w 0

Table 2. Second-order nonlinear forcing terms gathered by their amplitude dependency, and corresponding
azimuthal and temporal periodicity (mY, wY). Seven terms have been omitted as they are the complex
conjugates.

the second-order response to the external forcing, ég , and 10 responses c}g to each single
forcing term,

g = TP A + AT P Y + (Fal exp (i (201 + AT) ) +cc.)
2 _2
+ (Ale}g“ exp (i Qot +2me)) + AT & exp (i Qut — 2mg)) + C.c.)
+(ATATE Y 2 L ATAT T e (5.9)

(the same form is assumed for 777) each of which is computed as a solution of a linear
forced problem

(iw"f B— Z\mi,-) il =7 (5.10)

with m¥ and w? for (i, j) from table 2 and which can be inverted (non-singular operator)
so long as any of the combinations (m¥, w¥) is not an eigenvalue (none of them has
m¥ = 4m). As an example, the e-order eigensurface and some of the various second-order
surfaces are shown in figure 2 for three different waves, i.e. (m, n) = (1,2), (3,2) and
(0, 2). Owing to the symmetries of the system (given in (4.13)), some of the second-order
responses corresponding to the generic (m, n) wave have the same solution with opposite
azimuthal velocity, therefore in figure 2 we show only the solutions with different surface
shapes. Furthermore, as can be deduced from figure 2(m—r), in the axisymmetric case
(0, n) all the responses are axisymmetric with zero azimuthal velocity, thus some of
the second-order responses share exactly the same solution. In this case, indeed, the
second-order solution could be formulated a priori as the sum of three terms only, whose

amplitudes are proportional to F , A% (second harmonic) and |A;|?> (mean flow correction),
respectively.

Of particular interest is the second-order response to the external forcing, whose
interface shape is highlighted by the red boxes in figure 2. With the present scaling,
the forcing enters at second order in the z-component of the momentum equation (see
(2. l)) If the initial static interface is assumed to be flat (6; = 90°), then the response

(q2 172) translates into a harmomc hydrostatlc pressure modulation only, with a free

surface remaining flat, i.e. u2 =0and 7 n2 = 0, a case classically analysed in the literature.
On the other hand, as shown in figure 2(c,i,0), if a static contact angle 05 #=90° is
considered, then the €®-order static meniscus induces at order €2 axisymmetric meniscus
capillary waves travelling from the sidewall to the interior and reflected back, which
oscillates harmonically with the external forcing and with an amplitude proportional to
the external forcing amplitude. In the present WNL analysis, these MW, which appear
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ez-order responses

r r r r r r
@ 4§ g5 (é’())so 0s  1© 0.5 %1)120 o5 1©@o s 1({;)120 05 1
—6,=90° : : .
0.24/=% - 0.04 0.10
o.16| gl : o\ 0.06 y
e 7 e S o\ A
N | 4 - 20.107)
. 7 | “0.06 107
008 N/ I I 0.2 : A -
~0.16 0.12 012 ~0.20°

(0)

ool

-0.01{
-0.02
-0.03

Figure 2. (a—f) Upper subpanel: real part of the free surface elevation, Re(77) associated with (@) mode (1, 2)
and with (b—f) some of the corresponding second-order responses for different values of the static contact
angle, 0. The e-order solution is normalized such that the phase of the interface at the contact line in ¢ = 0 is
zero and the corresponding slope is one, i.e. §; — ¢ exp(—iarctan[7; (r = 1, 0)])/(37:(r, 0)/dr|,=1). Lower
subpanel: free surface visualization in terms of absolute value of the real part of the interface slope at 6; =
45°. The colourmaps were individually saturated for visualization purposes only. (g—/) Same as (a—f), but for
mode (3, 2). (m-r) Same as (a—f), but for the axisymmetric mode (0, 2). Parameter setting: R = 0.035m; h =

0.022m; p =997kgm3; . = 0.00l kgm~"' s7!; y = 0.072Nm~!; for which Bo = 166.2 and Re = 20437,
and a static contact angle 6, = 45°. The light red boxes highlights the second-order response to the external
forcing, i.e. second-order harmonic MW.

as concentric ripples (see figure 2c,i,0), as typically observed in experiments (Batson
et al. 2013; Shao et al. 2021a,b), will couple at third order with the first-order solution
and will contribute to modify both the linear stability boundaries associated with the
subharmonic Faraday tongues as well as the bifurcation diagram, i.e. wave amplitude
saturation to finite amplitude. Furthermore, figure 2 clearly shows that a static contact
angle 6 # 90, depending on its value (here only values of 6, < 90° have been considered),
modifies not only the damping coefficients and frequencies of the leading-order wave
(see also Appendix A), but also its spatial shape and, as consequence, all the associated
second-order responses, whose modifications may have a significant influence on the
corresponding saturation to a finite amplitude.

5.5. Order €: amplitude equation for standing waves

Lastly, at the €3-order we derive an amplitude equation for standing waves with a pinned
contact line accounting for WNL modifications of the subharmonic Faraday threshold due
947 A24-14
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to contact angle effects. The problem at order € is similar to the one obtained at order €2,
as it appears as a linear system,

(Bd, — An) q3 = F3, (5.11)

forced by combinations of the previous-order solutions encompassed in F3, that contains
several nonlinear terms of various space and time periodicities and which we denote as
F 13’ exp(i(wt + mg)). Since many of these terms are resonant, as standard in multiple
scale analysis, in order to avoid secular terms and solve the expansion procedure at the
third order, a compatibility condition must be enforced through the Fredholm alternative
(Friedrichs 2012). Such a compatibility condition imposes the amplitudes Af and A| to
obey the following relation:

dA* .y

= —OAT H CEAT R [AFPAT 4 gl AT AT, (5.12)
where the physical time t = T’/ €2 has been reintroduced and where 0 = €26, F = F;/g =
€2F and A = €% A. By considering the expansion g = qo + €A14q, - . ., the small parameter
€ is eliminated by defining the amplitude A = €A1, so that everything is recast in terms
of actual physical quantities (Bongarzone et al. 2021a; Bongarzone, Guido & Gallaire
2022). The various coefficients are computed as scalar products between the adjoint global
modes and the resonant forcing terms F7, whose analytically complex expressions have
been extracted from the third-order forcing using the symbolic calculus tools of Wolfram
Mathematica. For instance, the complex coefficient ¢ is evaluated as

[y i il A .7:3 NS rdrdz—l—f AT AT ﬁ?‘D rdr+f §T*A+.7:FA rdr
Iy ﬁJ{*AJr . uff+ rdrdz + fno ST*M’%H rdr
where V denotes the fluid bulk domain, the dagger symbol refers to the adjoint eigenmode,
no.r (01, iy, N 2 oy,
= |- - 5.14
d [Re(8r+82)+(pl+R 9z G149

(see also Viola & Gallaire 2018) and the subscripts Ns» p and g designate the

¢ = , (5.13)

forcing components of .’F 3 appearing in the e3-order Navier-Stokes equations,
dynamic boundary condition and kinematic boundary condition, respectlvely Analogous
expressions hold for x; and y» by replacing .7-'§A with .7-'? rattar and f'g‘ A A+,
respectively. We notice that the adjoint eigenvector appearing in (5.13) does not need
to be independently calculated. Indeed, Viola & Gallaire (2018) demonstrated that the
linear operator B and A,, (the same applies to the shifted operator A,,) are self-adjoint,
ie. B = B and A|, = A,,, with the adjoint eigenvalue being the complex conjugate of
the direct one, A7 = A*. Then, from (4.13), (4.14) and (4.15), it follows that for the couple
(m, —o + iw) associated with a direct mode, we have the relation

N Ak Ak Ak A At At
(u’f,, —iy, iy, P, nT) — ( i um,ulz,p} n1> (5.15)

which directly provides the desired adjoint mode without any further calculation. We also
underline that due to the symmetry of the solution, the same value of ¢ is obtained if one
makes use of the scalar product between the adjoint mode for A and the forcing term

.’i-'fAJr (same for x; and x2).
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As anticipated before, the standing wave solution corresponds to the superposition of
two balanced counter-rotating waves of same amplitude AT = A~ = A. It follows that
system (5.12) reduces to the single amplitude equation

dB . * 2
a:—(o+1A/2)B+§FB + x|B|"B, (5.16)
where the change of variable A = B'4/% has been introduced and where the complex
coefficient y is taken as the sum of x; and x». The form of (5.16) is totally equivalent
to the normal form (1.1) postulated by Douady (1990) using symmetry arguments only.
Its structure indeed does not depend on the boundary conditions or on the mode shape,
nevertheless its coefficients do. In the present work these complex coefficients, ¢ and y,
as well as the frequency and damping of the wave, w and o, are formally computed by
taking into account the full hydrodynamic system, whose solution is exact at numerical
convergence. The damping coefficient must be small enough, but its value is numerically
computed, rather than estimated heuristically. Most importantly, { and x, through the
WNL formulation presented above, encompass in a formal manner, although within the
assumptions of validity of a single-mode WNL theory, the effect of the static contact
angle and of the coupling with harmonic MW on the subharmonic Faraday threshold of
standing viscous capillary—gravity waves with pinned contact line.

5.6. Linear stability of the amplitude equation: subharmonic Faraday tongues

Here we perform the stability analysis of the amplitude equation (5.16), which prescribes
the marginal stability boundaries, typically known as Faraday tongues. By turning to polar
coordinates

B=|Ble!?, — (0 +iA/2) =cie¥, [ =ce?, yx =3, (5.17)

splitting the modulus and phase parts of (5.16) and introducing the change of variable
® = & — ¢r/2, we obtain the following system:
d|B|

T = c1¢cos (¢1)|B| 4+ c2cos 2O)F|B| + c¢3 cos (g03)|B|3, (5.18)

% = ¢y sin(¢1) — ¢ sin (2@)F + ¢3 sin (¢3)|B|%. (5.19)
Equation (5.18) admits two possible equilibria (d/dt = 0), having |[B| = 0 and |B| #0,
respectively. We first focus on the stability of the trivial stationary solution, |B| = 0. By
eliminating & from (5.18)—(5.19), the linear threshold or marginal stability boundaries
(subharmonic Faraday tongues) are readily obtained (Douady 1990; Rajchenbach &
Clamond 2015),

Fb = (Fy/e)h =ci/ea —> Fh = i|§|_1\/02 + (£24/2 — ), (5.20)

where the relation A = £2; — 2w has been reintroduced and which predicts the lowest
threshold, F tLh’min =a/|¢|, at 24 = 2w. The forcing amplitude at which the instability
appears is therefore proportional to its dissipation, ~ ¢ (note that this is true only for
subharmonic resonances, e.g. the threshold for harmonic tongues is expected to scale as
~ol/2 see Rajchenbach & Clamond (2015)). Moreover, F th depends on the coefficient

¢, which is produced by the interaction of the first-order response, proportional to the
amplitude A*, with the second-order response to the external forcing, proportional to F.
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Therefore, contact angle modifications of the leading-order solution and harmonic MW
(see figure 2) enter directly in the calculation of ¢, whose value contributes to the definition
of the marginal stability boundaries. Presence of a static meniscus, as widely discussed in
§ 4, also modifies the natural frequency @ and the damping o. Lastly, it is important to
note that within the subharmonic tongue (linearly unstable) the signal is periodic with a
frequency equal to half the driving frequency, £2;/2, whereas out of the tongue (linearly
stable) it is periodic with frequency £24, due to the presence of harmonic meniscus waves.

5.6.1. Brimful condition: validation with the inviscid analysis by K13 for 6; = 90°

The most comprehensive investigation of Faraday thresholds with pinned contact line that
the authors are aware of is that of K13 (see table 1), who considered the case of a perfect
brimful condition (meniscus-free) in the inviscid limit. Unlike the classic case of an ideal
moving contact line, K13 showed that the pinned contact line problem can be recast into
an infinite system of coupled Mathieu equations taking the following form:

dzy
—= 4+ (P —2Qcos2t)y =0, (5.21)
dr?

where matrices P and Q, obtained via projection onto the test function space, are in
general not diagonal (for a free contact line P and @ are diagonal, so that (5.21) reduces
to (2.14) of Benjamin & Ursell (1954), i.e. uncoupled Mathieu equations). Three different
methods (Nayfeh & Mook 1995) can be used to solve (5.21) , namely, (i) the mapping at
a period (given by the Floquet theory), (ii) Hill’s infinite determinant method (used by
Kumar & Tuckerman (1994)) and (iii) the multiple scale method. The first two techniques
were used in K13 and, particularly, the first one was employed in order to describe the
so-called combination resonance tongues (indicated by the black arrows in figure 3),
which are not studied in the present work which is focused on subharmonic tongues only
(see K13 for a thorough discussion). The disadvantage of the multiple scale method is
that generally it is not suitable for the exploration of a large part of the parameter space,
however, as anticipated in the introduction, the application of the first two techniques is
challenging when the initial free surface is not assumed to be flat. Here we use the inviscid
results provided by K13 to validate the present WNL model for prediction of subharmonic

instability onset in the limit of high Reynolds numbers (e.g. Re is assumed to be ~ 10° in
the present viscous analysis).

A quantitative comparison of the prediction of subharmonic Faraday thresholds with
results by K13 is shown in figure 3 for 6, = 90°, h/R = H = 1, for two different Bond
numbers and for two non-axisymmetric modes, i.e. (1, 1) and (1, 2). For computational
reasons, the instability regions (grey shaded) computed by K13 were obtained by
truncating the number of basis function Nk13 to 2, although convergence of the natural
frequencies was achieved by taking Nk13 = 30, as stated by K13 in his table 1, causing
a systematic underestimation of approximately 5 %. The vertical black dash—dot lines,
corresponding to the converged natural frequencies reported in table 1 for Ngi3 = 30,
agrees perfectly with the present prediction, which prescribes the correct slope of the
right-hand and left-hand marginal stability boundaries (blue solid lines). If the present
prediction is shifted by —5 % (orange dash—dot lines), the results match. Hence we can
conclude that the present model is congruent with the analysis by K13 and it prescribes
correctly the subharmonic Faraday tongues for a pinned contact line case in the limit of
validity of the WNL model, i.e. small external forcing amplitude and small detuning.
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Figure 3. Inviscid stability plots associated with modes (1, 1) and (1,2) for two different Bond numbers,
i.e. Bo = 1000 and 100, and for a depth #/R = H = 1. The grey shaded regions have not been reproduced in
this work, but rather they have been simply taken from figure 10 of K13. subharmonic tongues are denoted
by the subscript g,. For computational reasons, the instability regions (grey shaded) were obtained in K13 by
truncating the number of basis function Nk 3 to 2, although convergence of the natural frequencies was achieved
by taking Nk13 = 30, as stated by K13 in his table 1 (with a systematic underestimation of approximately 5 %).
The vertical black dash—dot lines correspond to the converged results reported in table 1 of K13. The blue solid
lines correspond to the present numerical prediction computed through (5.20) for Re = 109, while the coloured
dash—dot lines denote the present Faraday tongues shifted by 5 %. Black and coloured lines have been added
on top of the original figure from K13.

5.6.2. Brimful condition: comparison with recent experiments by S21 for 65 = 90°

From the knowledge of the authors, no systematic calculations of the linear subharmonic
Faraday tongues for pinned contact line and including viscous dissipation are reported
in the literature. With regard to small circular cylinder experiments, this configuration
was recently studied by Shao et al. (2021b) (S21). By properly filling the container they
could reproduce an initially flat static-free surface, which remains stable and flat below
the Faraday threshold and thereby they could derive experimentally the boundaries of the
unstable regions. Their experimental measurements (extracted from figure 4 of S21) are
illustrated in figure 4(a), as coloured filled circles, together with our numerical prediction
from (5.20) (coloured solid lines). Shao et al. (2021b) also employed a Rayleigh—Ritz
approach (Bostwick & Steen 2009) to estimate numerically the natural frequency in the
inviscid limit and this result, which showed a good agreement with their experiments, is
reported for completeness in figure 4(a) as vertical black dash—dot lines.

The present numerical analysis for 6, = 90° predicts the occurrence of the same
subharmonic single-mode instabilities in the selected frequency window. In agreement
with experimental observations, the viscous WNL analysis prescribes a minimum onset
acceleration that is nearly constant for all (m, n)-modes in the range f; € [10, 20] Hz
with a discrete spectrum of subharmonic resonances. Moreover, the WNL model predicts
correctly the coefficient ¢, which prescribes the slope of the transition curves for all
tongues.

All the experimental frequencies are slightly larger than the ones predicted here and
this shift is roughly of the order of +1 % for all measurements. It is difficult to attribute
a positive 1% shift to a specific cause, especially because the pinned contact line
configuration is known to produce the largest frequencies among the possible contact
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Figure 4. (a) Coloured solid lines: boundaries of the subharmonic Faraday tongues predicted by (5.20) in the
forcing acceleration amplitude-forcing frequency dimensional space, (fy, F7). Here the static contact angle
was set to §; = 90°. The coloured filled circles corresponds to the original experimental values extracted from
figure 4 of S21 for different waves (m, n). The black dash—dot lines correspond to their inviscid numerical

calculation. Parameters: R = 0.034925m; h = 0.022m; p = 1000kg m3; n = 0.001 kg m~ s ! and y =

0.072Nm™"; for which Bo = 165.5 and Re = 20 371. Coloured bands: marginal stability boundaries computed
for a container radius R = (0.034925 — 0.000254) m (right boundary) and R = (0.034925 + 0.000254) m (left
boundary). (b) Modification of the linearly unstable regions due to contact angle effects, where the results for
three values of 6y, including 90° (black dotted lines) as in (a), are compared for a nominal radius R = 0.035 m.

line boundary conditions, e.g. a free contact line. Presence of free surface contamination
(surface film) is expected to slightly increase the rigidity of the free surface, leading to
higher resonance frequencies, but also to larger damping coefficients, which reduce the
frequencies (Miles 1967; Henderson & Miles 1990, 1994). However, any evidence of
surface contamination is reported in S21. In the present case, such a slight systematic
mismatch is more likely to be caused by small incongruities between numerics and
experiments. For instance, in this case the Bond number is relatively low, Bo = 165.5,
so that small variations in the value of the surface tension or, alternatively, geometrical
tolerances on the container radius could contribute to shift the tongues slightly.

In S21 the authors report the nominal container radius R = 0.035. We have written to
the authors, who have kindly provided us with the technical drawing of their cylindrical
container. The actual nominal (inner) radius is R = 0.034925m. Unfortunately, the
tolerance on the inner radius is not specified. Nevertheless, given the tolerances specified
by the manufacturer on the outer radius, i.e. 0.000254 m, it is natural to assume at least
the same value for the inner one. In figure 4(a) the subharmonic tongues computed for
the nominal radius are shown as coloured solid lines, whereas the coloured bands are
associated with the geometrical tolerance on the container radius. One can see that a
value of R = 0.034925 — 0.000254 = 0.034671 m (right-hand boundaries) is sufficient to
produce a +1 % frequency shift so to achieve a fairly good agreement with the experimental
measurements.
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(m, n) /190(’ 4-90“ 6/|{ |90"’ /1455 {45°’ o—/lé- |45o

(2,1) —0.007+411.978 —0.005—-10.409 0.016  —0.009 +11.907 —0.006 —10.389  0.022
0,1) —0.003+i2.173 —0.003 -i0.459  0.008  —0.0044+i2.117 —0.107 —i0.333  0.012
(3,1) —0.008+12.443 —0.007 —10.474  0.017 —0.011 +12.366 —0.010 —10.475  0.023
(1,2) —0.005+12.686 —0.003 —i0.521 0.010  —0.0064+12.621 —0.006—10.524  0.012
(4,1) —-0.010+12.864 —0.008 —10.516  0.019 —0.014 +12.779 —0.020 —10.651  0.021
(2,2) —0.008+i3.160 —0.003 —i0.556  0.014  —0.009+41i3.077 —0.006 —i0.587  0.015
0,2) —-0.007+413.237 —-0.003 -1i0.565 0.012  —0.008 +13.160 —0.008 —10.610  0.013
(5,1) —0.012+41i3.276 —0.010-i0.546  0.022  —0.017 +i3.179 —0.014 —i0.524  0.032
(3,2) —0.010+1i3.627 —0.003 —10.577  0.018 —0.012+13.526 —0.003 —10.664 0.018
(6,1) —0.014+413.690 —0.010-10.566  0.025 —0.020+1i3.581 —0.015—-10.603  0.034

Table 3. Non-dimensional natural frequencies, damping coefficients (4 is the eigenvalue 1 = —o + iw) and
complex normal form coefficient ¢ = ¢gr + i¢1 for both 6; = 90° and 6, = 45°, associated with the modes
shown in figure 4 and computed for R = 0.034925m, h = 0.022m, p = 1000kgm~3, 1z = 0.001 kgm~' s~!
and y = 0.072Nm™!, for which Bo = 165.5 and Re = 20371. The number of points in the radial and axial
directions for the GLC grid used is this calculation is N, = N, = 80, for which convergence up to the third
digit is achieved.

For completeness, the values of the damping coefficients, natural frequencies and of the
normal form coefficient ¢ for two different static contact angles used in figure 4 are given
in table 3.

5.6.3. Nearly brimful condition: static contact angle effects and MW modifications
When the value of the prescribed static contact angle is 65 #= 90°, then the initial static
free surface is not flat, but rather concave (65 < 90°) or convex (f; > 90°), and its effects
on Faraday waves can be studied by exploiting the present WNL analysis.

In §4 we discussed how the static meniscus modifies the natural frequencies and
damping coefficients in a non-trivial way depending on the wavenumber of the mode,
on the Bond and Reynolds number and on the fluid depth (Kidambi 2009) (KO09).
Moreover, under vertical oscillations, the meniscus emits axisymmetric travelling waves
(see figure 2c,i,0), which, with the WNL scaling adopted in this work, are coupled at third
order with the subharmonic parametric waves and hence contribute to alter the instability
regions.

With regard to the same configuration of figure 4(a) (Shao et al. 2021b), in figure 4(b)
we examine the influence of these capillary effects on the linear Faraday thresholds. For
this configuration the natural frequencies are found to have a maximum for 6; & 90°
(Picard & Davoust (2007) (PD07), see also Appendix A). This suggests that the small
shift (+1 %) in the experimental measurements reported in figure 4(a) is not due to an
uncontrolled nearly brimful condition. When the static contact angle 6, is decreased,
the meniscus introduces a negative shift in all resonances. This translates in a negative
shift of all Faraday tongues in the (fy, Fz)-plane, which also show a slightly higher onset
acceleration due to an increase of the dissipation occurring in the meniscus region (despite
the fact that the natural frequencies are lower). For 6; > 90°, e.g. 100°, the onset is slightly
lowered (slight decrease of the dissipation occurring in the meniscus region, in agreement
with experimental observation by Henderson et al. (1992)). As a result of the mode shape
modification by contact angle effects (see figure 2a,g,m) and of the third-order coupling
with harmonic MW, the slope of the transition curves is also altered, but only slightly.
In other words, harmonic MW do not affect significantly the linear instability onsets of
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these subharmonic resonances. This observation is in agreement with Batson et al. (2013),
who noticed that a significant meniscus modification is more likely to occur for harmonic
Faraday waves and particularly for axisymmetric (0, n) modes. This is somewhat intuitive
as MW, being axisymmetric and having zero threshold, are essentially indistinguishable
from harmonic axisymmetric parametric waves when the driving angular frequency is
24 = wop.

Notwithstanding that the coupling between meniscus and subharmonic-parametric
waves is only weak, the shift in frequency may lead to a reorganization of the discrete
spectrum. This is observable in figure 4(b) for modes (0, 2) and (5, 1). Decreasing 6,
the region associated with mode (5, 1) progressively lies within that of mode (0, 2) and
possibly disappears. Having a higher onset acceleration, it is less likely to be detected. This
reorganization is expected to be more pronounced for higher frequency modes, where,
for a fixed Bond number, the characteristic mode wavelength becomes comparable and
eventually smaller than the characteristic meniscus length, i.e. the (static) capillary length
I. ~ 1/~/Bo, thus enhancing contact angle effects.

Lastly, it should be noted that although parametric waves are linearly stable for all 6
outside the Faraday tongues, the free surface (which is maintained flat when 65 = 90°)
appears as the superposition of the static meniscus and harmonic meniscus waves, whose
amplitude (for a fixed frequency) is proportional to the forcing amplitude, giving rise to an
imperfect bifurcation diagram that shows a tailing effect and that will be examined in the
following.

5.7. Weakly nonlinear threshold and bifurcation diagram

In this paragraph, we focus on the stability of the non-trivial equilibrium, |B| #0, of
system (5.18)—(5.19). Again, for stationary solutions, we find by eliminating @ that

e31BP = i cos (g1 — 3) £ /3F2 — Esin? (g1 — 93), (5:22)

with physical real solutions for F' > %I sin (91 — ¢3)|. This well known result prescribes
either a supercritical or a subcritical transition when the marginal stability boundaries are
crossed, i.e. by changing forcing frequency and amplitude. The location of the hysteresis
depends on the sign of the nonlinear coefficient x (Kovacic, Rand & Sah 2018), which
assumes the meaning of a nonlinear detuning, while the boundary of the hysteresis region
in the parameter space is defined by the nonlinear threshold

FNE = ¢ /ea] sin (91 — @2)]. (5.23)

In figure 5 the nonlinear wave amplitude saturation, for a fixed external acceleration
amplitude, F;, and for a varying excitation frequency, §24, is shown for two different
modes, (0,2) and (3,2), and for different static contact angle values. The linear
acceleration threshold (Faraday tongue) is plotted versus a normalized driving frequency
in order to better compare the difference between the two cases with ; = 90° (flat static
surface, brimful condition) and 45° (static meniscus and MW, nearly brimful condition).
As previously discussed, contact angle modifications on the linear thresholds are only
weak. When a concave (6 < 90°) static meniscus is considered, the damping is generally
higher, the shape of the mode is, however, modified, leading to a slightly different
value of the complex linear coefficient ¢ (see table 3), which also encompasses the
second-order coupling between parametric and MW. As a consequence, the minimum
onset acceleration, given by the ratio o /||, is often comparable.

947 A24-21


https://doi.org/10.1017/jfm.2022.600

https://doi.org/10.1017/jfm.2022.600 Published online by Cambridge University Press

A. Bongarzone, F. Viola, S. Camarri and F. Gallaire

0.75  (b) 2.0 0.75
0.50 L.5 - 0.50
0.25 1.0 10.25 |B|
\\/ 0 0.5 0
0,2 32
0 02 : : —0.25 0 G : —-0.25
0.96 1.00 1.04 0.96 1.00 1.04
2,20 $2,/20

Figure 5. Linear acceleration threshold (Faraday tongue) (left-hand y-axis; thin solid lines) and saturated wave

amplitude, |B|, (right-hand y-axis; thick solid lines) for a fixed acceleration amplitude F; = 0.5 ms ™2, while
the driving frequency is varied. Stable branches for |B| are shown as solid lines, while unstable branches
as dashed lines. Two different modes corresponding, namely (a) (m, n) = (3,2) and (b) (0, 2), are shown.
Different static contact angle are considered. The frequency is normalized with twice the natural frequency
of the corresponding excited mode, so that the lowest linear threshold occurs for £2,/2w = 1 for all 6;. At
convergence (GLC grid N, = N, = 80), the complex nonlinear amplitude equation coefficient, x = xr +1 xy,
for mode (0, 2) (inset in panel (b)), assumed the values, x°°° = —0.0909 —i1.9094 and x*>° = —0.0184 —
10.5617. Geometrical and physical parameters are set as in figure 2.

Supercritical and subcritical bifurcations of Faraday waves have been widely discussed
in the literature (see, for instance, Douady (1990) and Rajchenbach & Clamond (2015),
among other references), hence we limit here to recall that if cos (¢; — ¢3) > 0, or
alternatively A = §2; — 2w > —20 xr/ x1, then the bifurcation is supercritical, while if
cos (o1 —¢@3) <0, 0or A =24 —2w < —20 xg/x1, the transition is subcritical, the sign
of x; determines whether hysteresis occurs on the left-hand side or on the right-hand side.
The inferior boundary of the hysteresis region in the (£24, F)-plane is defined by (5.23).
In other words, the ratio xg/x;, through the relation ¢3 = tan~! (x7/xg), determines the
importance of the subcritical region in the parameter space (Hsu 1977; Gu & Sethna 1987,
Meron 1987; Nayfeh & Mook 1995; Douady 1990).

We underline that the amplitude equation coefficients setting the nonlinear threshold
and the bifurcation diagram are not calibrated from experimental data, but their values are
here computed numerically from first principles through our WNL analysis.

5.7.1. Wave amplitude increase and subcriticality suppression

We now discuss contact angle modifications on the nonlinear wave amplitude saturation
in comparison with the results for the classic case with 6; = 90° (flat static interface).
A first striking result is shown in figure 5(a) for the second axisymmetric mode (0, 2),
which displays the bifurcation diagram (in the right-hand y-axis) computed by sweeping
the external forcing frequency at a fixed forcing amplitude, i.e. F; = 0.5m s~ (left-hand
y-axis). Figure 5(a) shows that, despite the fact that contact angle effects do not alter
substantially the subharmonic Faraday tongue (the unstable region is slightly wider), the
presence of the MW, from which the parametric wave bifurcates, can strongly increase
the wave amplitude response (up to three times in this case). The magnitude of such an
increase is found to be maximum for axisymmetric waves. Again, this can be intuitively
explained by considering that axisymmetric parametric and MW share the same spatial
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symmetries, despite their different nature, i.e. subharmonic versus harmonic responses.
Therefore, axisymmetric parametric waves, which emerge on the top of MW, appear to be
nonlinearly more destabilized by the latter when compared with other modes.

The second interesting result is shown in figure 5(b). In some cases, as for example for
mode (3, 2), we observe an inversion of the bifurcation diagram, caused by the change
of sign of the nonlinear coefficient, x, as the static contact angle is varied from 90° to
45° (same extrema of figure Sa). This is mathematically not paradoxical as one more
independent parameter, i.e. the contact angle 6y, is added to the overall parameter space.
The increase of the wave amplitude response with a decrease of 6, is accompanied by
a progressive reduction of the region of hysteresis, until a threshold value, 8 (= 56°
for the case of figure 5b), is reached. Eventually, the direction of the bifurcation reverses
and the size of the hysteresis region starts to increase again. At the threshold value, GS’h,
corresponding to figure 5(b), the nonlinear coefficient x takes the value y = —0.0729 +
10.0083, yielding a large ratio xg/x; in absolute value, for which the phase ¢3 is nearly
—mt, thus meaning that the subcriticality is totally suppressed and the bifurcation is
always supercritical for each combination of external control parameter in (£24, Fg)-plane
(Douady 1990). From the knowledge of the authors, such a contact-angle-related behaviour
has not been reported in the literature yet, thus suggesting a pursuable direction that future
labscale and controlled experiments could take.

5.7.2. The imperfect bifurcation diagram: tailing effect

As shown in figure 5, the linear threshold given by (5.20) prescribes a stable solution
outside the subharmonic Faraday tongues (see figure 4) with a stationary mode amplitude
|B| = 0. Nevertheless, we remind the reader that the total solution, e.g. in terms of free
surface elevation, is given by the sum of the solutions at the various orders in e, i.e.
n = no + n1(B) + n2(Fy4, B2, |B|?). In particular, MW, whose amplitude is proportional
to the external acceleration amplitude, F, are contained in the second-order response 7,.
If one considers an axisymmetric dynamics, e.g. (0, 2), the amplitude of the centreline
elevation is a suitable quantity to monitor the free surface stability and thus to depict a
comprehensive bifurcation diagram. This is done in figure 6, where such a bifurcation
diagram for (0, 2) is reported for different excitation angular frequencies in a range which
gathers both supercritical and subcritical bifurcations. Figure 6 clearly shows that, when a
nearly brimful condition is considered, e.g. 6; < 90°, the subharmonic parametric waves,
stable outside the Faraday tongues, do not bifurcate from the rest state (as for 6, = 90°), but
rather from the MW solution (o< Fy), oscillating harmonically with the driving frequency.
This produces a so-called imperfect bifurcation diagram, which displays a tailing effect
(highlighted by the black thin solid line) (Virnig et al. 1988). The bifurcation diagram of
figure 6 is also reminiscent of that presented by Batson et al. (2013), although they focus
on harmonic parametric waves.

6. Validation with axisymmetric DNS

In this section, with the purpose of partially validating the WNL analysis, we perform
nonlinear DNS associated with the system of (2.1)—(2.3) and, specifically, with the
axisymmetric dynamics (m, n) = (0, 2), already discussed in §5. Indeed, differently
from non-axisymmetric modes (1, n) that would require computationally demanding full
three-dimensional DNS, axisymmetric (0, 7) modes can be solved through axisymmetric
DNS, thus reducing the computational burden. To this end, the built-in package for laminar
flow with moving interface and automatic remeshing implemented in the finite-element
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Figure 6. Bifurcation diagram associated with (m, n) = (0, 2) (see also figure 5a) and for a static contact angle
6s = 45°. Here the dimensional centreline amplitude (axisymmetric dynamic) is reconstructed by summing the
various-order solutions, i.e. n = 1o + n1 + 12 and it is plotted versus the external forcing acceleration for a
fixed excitation angular frequency, while different colours correspond to different forcing frequencies. The
tailing effect (imperfect bifurcation diagram) produced by presence of harmonic MW and indicated by the
black thin solid line (the amplitude of MW grows linearly with F;, independently of the parameter combination
(824, Fy)), is well visible in the right-hand inset. Coloured solid lines are used for stable branches, while
coloured dashed lines for the unstable ones. The hysteretic loop is indicated by the green arrows. The centreline
amplitude is simply computed as max; n(r =0, 7)/2 — min; n(r = 0, 1) /2.

software COMSOL Multiphysics v5.6. were employed. In the underlying problem, we
adopted a hybrid quadrilateral-triangular mesh. Specifically, triangular elements were
used in the interior, where small deformations occur, while quadrilateral elements were
adopted in the neighbourhood of the free surface (larger mesh deformation), sidewalls
and bottom, where, in addition, boundary layer refinements were used to properly
account for the viscous dissipation taking place in the oscillating Stokes boundary
layers. Globally, the grid is made of approximatively 60 000 mesh elements. Here, P1—P
elements (default), stabilized with a streamline diffusion scheme (SUPG, streamline
upwind Petrov—Galerkin), were used, leading to roughly 230 000 degrees of freedom, for
which convergence was tested. Time integration is handled with a mixed-order backward
differentiation formula (BDF1/BDF2) with adaptive time step and the system at each time
step is solved via robust direct method MUMPS (multifrontal massively parallel sparse
direct solver) coupled with an inner iterative Newton solver.

By simulating an axisymmetric dynamics only, all the other non-axisymmetric
instabilities are artificially filtered out, i.e. the Faraday tongues for (0, n) are isolated,
enabling a direct comparison of DNS with the single standing-wave expansion adopted
in § 5. Although such a simplification is not realistic, as often multiple tongues may share
nearly the same region of instability and the associated parametric waves may therefore
interact nonlinearly, it is extremely convenient for validation purposes and it enables us to
easily highlight the various effects, i.e. contact angle and MW modifications of the Faraday
threshold, tackled in in § 5.

6.1. Procedure

To start, the shape of the static meniscus, computed in MATLAB by solving (4.1) with
its boundary conditions (prescribing a static contact angle value, e.g. 65 = 45°) was
loaded in COMSOL Multiphysics and the static domain was meshed. First, simulations
were initialized for time ¢ =0 with a BDF1 scheme giving a zero velocity field
and hydrostatic pressure p = —z as initial conditions. A body forcing, corresponding
to the non-dimensional time-dependent gravity acceleration, —1 + (F;/g) cos £24¢, was
assigned. The starting point of the grey arrows in figure 7(b) indicates the combination of
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Figure 7. (a) Faraday tongue (black solid line) for the axisymmetric mode (0, 2) and for a static contact
angle 6, = 45°. Forcing frequency and amplitude in the (£24, F)-space, corresponding to the DNS points
in (), are indicated by coloured filled markers. Note that the frequency in the x-axis is normalized using
the natural frequency w = 3.16 computed for 6; = 45°. The grey arrows denote the direction followed in the
continuation procedure for DNS. For completeness, the Faraday tongue for 65 = 90° is reported as grey dashed
line. (b) Associated bifurcation diagram: WNL prediction (lines) versus DNS (markers). The unstable branch
is displayed as coloured dashed lines. The black solid line indicating the slop of the meniscus wave response is
also given to guide the eyes. The centreline amplitude is computed as max; n(r = 0, ) /2 — min, n(r = 0, 1) /2.

external control parameter (24, Fz) (coloured markers), chosen to initiate the simulations,
as described above. Once the stationary state for these initial DNS was established,
a continuation procedure (directions of the arrows), by slightly adjusting the external
amplitude acceleration and angular frequency, was adopted in order to speed up the
computations for all the other combinations of parameters here considered (see figure 7).

6.2. Amplitude saturation and free surface reconstruction: WNL versus DNS

The WNL prediction (5.22) for the finite amplitude saturation is compared with DNS
in figure 7. The selected combinations of control parameters, i.e. (£24, Fy), for DNS
calculations are indicated by coloured markers in figure 7(a), where the grey arrows
display the direction followed in the continuation procedure. Once the stationary state
is established, i.e. the wave amplitude saturates, and the underlying dynamics being
axisymmetric, the centreline free surface elevation is used as a reference measure of
the free surface destabilization and of its saturation to finite amplitude. The DNS
results are therefore compared with the WNL prediction, where the centreline dynamics
is reconstructed by evaluating n = no + n1 + n2 in r = 0 for any time. The resulting
amplitude comparison is shown in figure 7(b). At small forcing amplitude below the
Faraday threshold (see also figure 7b), only harmonic travelling MW, whose amplitude
is proportional to F, are observed in the DNS, consistently with the WNL model (straight
line in figure 7b). In this small amplitude regime, the WNL model and DNS are in
fairly good agreement in terms of free surface dynamics (see figure 8a,b). The frequency
spectrum in figure 8(b) clearly highlights the harmonic nature of these zero-threhsold MW,
directly forced by the container sidewalls as soon as the vertical excitation starts.

By increasing the external acceleration amplitude Fy, the stability boundary (Faraday
tongue in figure 7a) is eventually crossed and the parametric wave emerges on the
top of edge waves, i.e. it bifurcates from the new stable and harmonically oscillating
configuration.
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Figure 8. Plot of WNL (black) versus DNS (red) below Faraday threshold (outside the Faraday tongue) for

24 /a)45o =0.9804 and F; = 0.85m s—2 (see figure 7). (a) Free surface shape computed when the centreline
elevation is maximum. For completeness, the shape of the static meniscus for 6, = 45° is reported as a black
dotted line. (b) Corresponding frequency spectrum: power spectral density (PSD) versus the dimensional
oscillation frequency of the system response.

Employing a continuation technique by progressively increasing/decreasing the forcing
amplitude at different driving frequencies, several DNS were performed in both the
supercritical and subcritical regime (filled coloured circles and triangles in figure 7,
respectively). The agreement between DNS and WNL prediction in terms of amplitude
saturation is found to be fairly good. Moreover, as figure 7(a) shows, DNS are consistent
with the frequency shift caused by the presence of the static meniscus for 6y = 45°.
As an example, the fully nonlinear free surface dynamics obtained from DNS for
R4/0% =1.0054 and F; = 0.675ms 2 is compared with the WNL reconstruction in
figure 9(a—c) for three different time instants, while the corresponding centreline elevation
and frequency spectrum are provided in figures 9(g) and 9(h), respectively.

The WNL model is in agreement with the DNS, which consistently predicts the
excitation of a dominant subharmonic parametric wave (0, 2), coupled with smaller
amplitude harmonic meniscus waves as well as with higher-order harmonics (only second
harmonics are included in the asymptotic expansion up to the third order in €).

As a final comment to this section, while not the purpose of the present analysis, a
few DNS were performed at higher external acceleration amplitudes, in the parameter
region far from the hypotheses of validity of the WNL theory. For the case of figure 7(b),
preliminary observations revealed that DNS tends to diverge when the centreline elevation
approaches a value of approximatively 5 mm, suggesting a potential transition to a highly
nonlinear wave-breaking condition and eventually to a finite-time singularity with intense
jet formation (Basak, Farsoiya & Dasgupta 2021). See also Das & Hopfinger (2008) for a
detailed investigation of the occurrence of such a phenomenon in Faraday experiments.

7. Conclusion

In this paper, we considered subharmonic parametric resonances of standing viscous
capillary—gravity waves in straight-wall circular cylindrical containers with brimful
(flat static interface) or nearly brimful (curved meniscus) conditions. We formalized a
numerically based WNL expansion (in the spirit of the multiple time scale method) that
provides an amplitude equation for the prediction of subharmonic Faraday thresholds,
which corresponds to the classic one widely discussed by Douady (1990) and other authors
using symmetry arguments solely. However, in this work the amplitude equation (5.16) has
been derived from first principles and the values of the complex normal form coefficients
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Figure 9. Plot of WNL (black) versus DNS (red) above Faraday threshold (within the Faraday tongue)
for .Qd/w“sc =1.0054 and F; = 0.675ms 2 (see figure 7). (a—c) Comparison in term of free surface
reconstruction for three different time instants: (a) when the centreline elevation is maximum; (b) when it
is zero and equal to the static meniscus position; and (¢) when it is minimum. For completeness, the shape of
the static meniscus for 6, = 45° is reported as a black dotted line. (d—f) Full three-dimensional visualization
extracted from the DNS. (g) Centreline elevation versus time associated with (a—c). Here g is an arbitrary
time instant. The constant value of the static meniscus elevation at » = 0 is shown as a black dotted line.
(h) Frequency spectrum computed from the time series shown in (g): PSD versus the dimensional oscillation
frequency of the system response.

have not a heuristic (or fitting-based) nature, but rather they are obtained in closed form
and evaluated numerically.

While a simplified version of the underlying fluid problem, i.e. ideal inviscid fluid and
perfect brimful conditions (6; = 90°, meniscus-free), was investigated by Kidambi (2013),
the present work accounts for (i) viscous dissipation and (ii) static contact angle effects,
including harmonic travelling MW, i.e. nearly brimful conditions, realistic features which
are typically encountered in real Faraday experiments.

The numerical inviscid analysis by Kidambi (2013) and the recent experimental study
by Shao et al. (2021b) were used to validate the WNL model in the simpler case of an
initially flat static surface, i.e. meniscus-free configuration with a static contact angle
O; = 90° (see figure 4a). The agreement with experiments by Shao et al. (2021b) was
found to be fairly good in the whole frequency window examined. Starting from the
reference brimful condition, we progressively introduced in the analysis contact angle
effects, simulating the underfilling (or overfilling) of the container. Presence of a static
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meniscus was shown to determine a negative (at least in the cases examined) frequency
shift of all the subharmonic Faraday tongues and to slightly increase (or decrease) the
minimum onset forcing amplitude, as a consequence of a slightly higher (lower) dissipation
in the meniscus region, as expected from previous studies. In addition, contact angle
modifications, altering the position of the resonances, can induce a reorganization of the
frequency spectrum, with some instabilities overlapping with other unstable regions, hence
making them less likely to be detected, (see figure 4b).

The salient point of the present work is the introduction of harmonic meniscus or edge
waves emitted by the oscillating static meniscus under the vertical external excitation,
widely discussed in the literature, but mostly from an experimental perspective only.

In the adopted asymptotic scaling, these directly forced waves appear at €> and they
are coupled at order €3 with the parametric waves, thus influencing not only the wave
amplitude saturation, but also the marginal stability boundaries (through a modification
of the slope of transition curves) as well as the solution outside the instability regions.
If, indeed, for 6y = 90° no meniscus is present and the subharmonic parametric waves
bifurcate from the flat surface state, when 6; #90°, the instability emerges on the top of
a still stable, but stationary oscillating free surface, i.e. edge or MW. This translates in the
so-called imperfect bifurcation diagram shown in figure 6, which displays a tailing effect
owing to MW, whose amplitude is proportional to the external acceleration amplitude. In
this regard, we note the analogy with previous experimental observations (Batson et al.
2013), although for a different fluid system and contact line condition. One of the major
influences of contact angle effects on the wave amplitude response was found to occur
for axisymmetric subharmonic waves. Intuitively, this was explained by considering that
harmonic MW, being directly forced by the spatially uniform forcing, are axisymmetric by
construction, therefore axisymmetric parametric waves, although of different nature, are
more likely to be destabilized by edge waves, as they share the same spatial symmetries.
This effect is expected to be dominant for harmonic axisymmetric parametric waves, as
proven experimentally by Batson et al. (2013).

Furthermore, the existence of a harmonic meniscus wave state, from which the
parametric waves bifurcate (rather than the flat interface rest state), has been observed
in some cases (see figure 5b) to induce a change of sign of the direction in the bifurcation
diagram as the contact angle is varied. Specifically, in some cases the present analysis
predicts the existence of a static contact angle for which the bifurcation is always
supercritical no matter what the combination of external forcing amplitude and frequency
are, thus leading to a suppression of the subcriticality of the system. This does not seem
to have been reported in the literature and it could be checked in future experiments.

Lastly in §6, with the purpose of validation only, the single-mode WNL model,
in the specific case of an axisymmetric dynamics, was compared with fully nonlinear
axisymmetric DNS, which revealed a good agreement, proving (at least partially) the
correctness of the WNL prediction when contact angle effects were introduced.

To conclude, we add that the numerical tools developed in this work could enable
us to explore different geometries, to revisit previous experiments with different contact
line boundary conditions, e.g. the more involved sliding contact line condition (requiring
though the regularization of the well known contact line stress-singularity, most likely
via phenomenological slip length models (Ting & Perlin 1995; Miles 1990)), to introduce
in the latter dynamical contact angle effects (Viola ef al. 2018; Viola & Gallaire 2018)
and to explore different fluid systems of interest, e.g. multilayer configurations as those
investigated by Batson et al. (2013). Moreover, with the aim at quantifying contact
angle effects on the Faraday thresholds, the ad hoc asymptotic scaling for subharmonic
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parametric resonances defined in the present WNL analysis could be modified so as
to tackle other types of resonances, such as harmonic and superharmonic parametric
waves, combination resonances (see (Kidambi 2013)), internal resonances (Miles 1984;
Nayfeh 1987; Miles & Henderson 1990; Faltinsen, Lukovsky & Timokha 2016) as well
as secondary-drift instabilities triggered by pure viscous modes, which may break the
symmetry of non-axisymmetric standing waves (Fauve, Douady & Thual 1991; Martel
& Knobloch 1997; Martel, Knobloch & Vega 2000; Vega, Knobloch & Martel 2001;
Knobloch, Martel & Vega 2002; Périnet et al. 2017). Some of these directions are being
pursued and will be reported elsewhere.

Supplementary material. Wolfram Mathematica codes developed in this work for the automatized
linearization process and specifically for extraction of the WNL second-order forcing terms and third-order
resonating terms, discussed in § 5, are available to the readers as a supplementary material. Supplementary
material is available at https://doi.org/10.1017/jfm.2022.600.
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Appendix A. Damping and frequency of capillary-gravity waves in brimful and nearly
brimful circular cylinders

With regard to the literature survey outlined in table 1, in this appendix we study the
damping and natural frequencies of viscous capillary—gravity waves with fixed contact
line and we compare our numerical results with existing experiments and with previous
theoretical and numerical predictions.

A.l. Flat static free surface: s = 90°

Let us start by considering the case of a flat static interface, in other words the static contact
angle is set to 65, = 90°, for which no(r) = 0, i.e. perfect brimful condition.

A.1.1. Experiments and theories by HM94, MH9S and M98

We consider here the experimental measurements by HM94 for the first six modes
in a brimful, sharp-edged cylinder in absence of free surface contamination. The
corresponding geometrical and fluid properties are reported in the caption of table 4, while
the eigensurfaces associated with the first six modes, computed by solving numerically the
eigenvalue problem (4.11), are shown in figure 10.

In table 4, the experimental damping coefficients and angular frequencies measured by
HMO94 are compared with their own viscous theoretical predictions, with the prediction of
MO8 for the very same case and with our numerical results. If the frequency prediction
of HM94 is in good agreement with their own experiments, a significant mismatch is
found in terms of damping coefficient. However, this discrepancy is strongly reduced in
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Figure 10. Shape of the eigensurfaces associated with the six global modes considered in table 4 and denoted
by the indices (m, n). The magnitude of the eigensurface slope is plotted. The eigenmodes are normalized
such that the phase of the interface at the contact line in ¢ = 0 is zero and the corresponding slope is one,
ie.q, — q,exp (—i arctan[n (r =1, O)]) /@11(r, 0)/0r|,=1).
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Figure 11. Comparison of the experimentally measured natural frequency for mode (0, 10) (filled white
circles, extracted from figure 5 of PD07) versus static contact angle with the inviscid estimation of NO5
(black solid line) and our numerical results (black crosses). The black dashed line indicates the flat case with
0s = 90°. Parameter setting: pure water; clean surface; 7 = 0.045 m; and R = 0.025 m; for which 4/R = 1.8,
Bo = 86.3 and Re = 10855. The number of points in the radial and axial directions for the GLC grid used is
this calculation is N, = N, = 40, for which convergence is achieved.
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Figure 12. (a) Damping and (b) frequency of the first asymmetric mode (1, 1) as a function of the static contact
angle. Here: white filled squares and circles, numerical results of K09; black crosses, present numerical results.
The Bond number is fixed to Bo = 365. The number of points in the radial and axial directions for the GLC
grid used is this calculation is N, = N; = 40, for which convergence is achieved. (c¢) Eigenvelocity field for
h/R=H =0.231, Re = 13077.02 and f; = 45° att = and ¢ = 0.

the prediction of M98, which is in agreement with our numerical results. By analogy
with M98, the theory proposed in HM94 was supplemented in MH98 by a calculation
of the interior damping (based on Lamb’s dissipation integral for an irrotational flow
(Lamb 1932)), which yields results (here omitted for the sake of brevity) of comparable
accuracy with M98 and with the present predictions. We note that the predicted
frequencies in both M98 and the present study are always within 0.3 % of the experimental
values.
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Exp. HM9%4 Theory HM94 Theory M98 Present Num.
(m,n) feMHz) Ap(=) fr Ar Ag/Ar  fr  Ar  Ag/Ar f A Ag/A
(1, 1) 4.65 1.4 466 113 1.2 4.67 137 1.02 4.66 136 1.03
2, 1) 6.32 1.8 632 1.24 1.4 634 175 1.03 634 174 1.03
0, 1) 6.84 1.2 6.73 044 2.7 6.85 0.95 1.26 6.85 093 1.29
3. 1) 7.80 2.2 779 1.29 1.7 7.82 211 1.04 7.82  2.08 1.06
“4,1) 9.26 24 924 132 1.8 927 247 0.97 927 242  0.99
(1,2) 8.57 1.5 8.57 048 3.1 859 145 1.03 859 143 1.05

Table 4. Experimental frequency and damping by HM94, their theoretical prediction and the theoretical
prediction by M98 are compared with the present numerical results. Geometrical and fluid properties: R =
0.02766m; h = 0.038 m; p = 1000kgm—>; ;& = 0.001kgm~' s~ 1; = 0.0724 Nm~'; for which Re = 14401
and Bo = 103.6, and a static angle 6, = 90°. The dimensionless damping coefficient o is rescaled according
to HM94, i.e. A = 4\/Re/2wo, where o and w for the present numerical results (last three columns) are those
computed by solving (4.11). The dimensional frequency is readily obtained as f = (w/27)+/g/R. The number
of points in the radial and axial directions for the GLC grid used is this calculation is N, = N, = 40, for which
convergence is achieved.

Exp. H2000 Theory M98 Theory NO2 Num. K09 Present Num.

Re fE(=) A (=) fr/fe Ar/Ae  fr/fe Ar/Ae  fn/fe An/AE  flfe A/Ag

13077.02 2.079 0.0052 1.004 0.984 1.005  0.911 1.005 0920 1.005 0.911
6422.61 2.075 0.0088 1.005 0.984 1.007 0942 1007 0954 1007 0.947
2620.55 2.075  0.0181  1.005 1.040 1006 0968  1.006  0.971 1.006  0.967
131735  2.072  0.0332  1.006 1.046  1.006 0945 1.006  0.949 1.006  0.948
575.37 2.066  0.0660  1.008 1.135 1.005  0.975 1.006  0.979 1.005  0.978
269.91 2.059 01271 1010 1.193 1.001 0979  1.001 0.982 1.001  0.981

Table 5. Dimensionless damping and frequency of the first axisymmetric mode (0, 1) for different Re.
Non-dimensional parameters: R = 1; h/R = 1.379; Bo = 365; and 6; = 90°. Here the dimensionless natural
frequency and damping correspond to f = w and A = ¢ in our notation. The number of points in the radial and
axial directions for the GLC grid used is this calculation is N, = N, = 40, for which convergence is achieved.
Comparisons outlined in this table (except for last column) are provided in table 2 of K09.

A.1.2. Experiments and theories by H2000, M98, NO2 and K09

Table 5 provides a comparison of the present results with the experimental measurements
of H2000, the asymptotic calculations of M98, the theoretical predictions of NO2 and the
calculations of K09.

All the theoretical methods accurately predict the natural frequencies, even at low
Re, as the viscous correction is very small. However, in terms of damping, it is seen
that the asymptotic model of M98 is increasingly inaccurate for decreasing Re. For the
present case, our numerical calculations place in-between NO2 and K09, with frequency
predictions within 0.7 % of the experimental values.

A.2. Presence of static meniscus: 05 #90°

We now analyse the case of an initially non-flat static interface, i.e. 8, #=90°, for which
no(r) # 0 (nearly brimful condition), and its effect on the natural frequencies and damping
coefficients of viscous capillary—gravity waves with a pinned contact line.
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Exp. C93 Theory NO5 Num. K09 Present Num.
fe Hz)  Ap(mHz)  fr Ar  Ap/Ar fN Ay Ap/Ay f A Ag/A
3.222 1542 3222 1465 09767 3228 1627 1.0847 3.228 1542 1.0267

Table 6. Dimensional frequency and damping of the first non-axisymmetric mode (1, 1). Parameter setting:
R =0.05025m; h = 0.13m; p = 1000kgm~>; 1 = 0.00099kgm~'s~!; y = 0.0724Nm~!; and 6, = 62°,
for which Re = 35628.103 and Bo = 346.363. Here f = (w/27)+/g/R and A = o4/g/R. The number of
points in the radial and axial directions for the GLC grid used is this calculation is N, = N; = 40, for which
convergence is achieved.

A.2.1. Experiments by C93 and calculations by NO5 and K09

Cocciaro et al. (1993) (C93) measured the frequency and damping rate of the first
non-axisymmetric mode (m, n) = (1, 1) in a cylindrical container where the static free
surface had an effective static contact angle 6; = 62°. They identified two different
regimes, namely, a higher and a smaller amplitude regime. In the latter, the contact
line was observed to remain pinned. Nicolds (2005) (NO5) and K09 have computed the
damping and frequency for this case and a comparison with our numerical analysis is
reported in table 6. We note that the prediction of NOS is close to the experimental values,
however, such a prediction is based on an asymptotic representation of the static meniscus,
while in the present calculation, as well as the one proposed by K09, it is computed
numerically. Moreover, the damping prediction by NOS relies on HM94 and M98 theories,
since its starting point is an inviscid analysis. Our result seems to be slightly closer to the
experimental values than the one of K09, although both are in fairly good agreement.

A.2.2. Experiments by PDO7 and theory by NO5

Picard & Davoust (2007) (PDO7) presented a liquid surface biosensor for DNA detection
based on resonant meniscus capillary waves. In their experimental setting the contact line
is pinned at the brim, so that the static contact angle can be modified by controlling the
bulk volume. As their set-up was developed to make use exclusively of axisymmetric
stationary MW, by exciting the container below the Faraday threshold they could measure
the amplitude spectra for a series of effective contact angles in a frequency window centred
around one particular natural frequency (that of mode (m, n) = (0, 10)), highlighting two
main phenomena attributable to contact angle effects, namely a decrease of the resonance
frequency and a strong increase of the wave amplitude with the curvature of the meniscus,
the latter being typical of a MW response. The experimental values were found to be
in qualitative agreement with the inviscid prediction of NOS, according to which the
frequency has a maximum for 6, = 90° (the maximum experimental frequency is found
for 6, € [90, 100]). The frequency shift as a function of the static contact angle measured
by PDO07 is shown in figure 11 together with our numerical prediction for this specific case.
Even in this case, our frequency prediction lies within 0.3 % the experimental values.

A.2.3. Numerical study by KO9

As mentioned in the introduction, an important combined theoretical and numerical
work accounting for contact angle effects on the damping and frequency of viscous
capillary—gravity waves is that of K09. In figure 12 our predictions are compared with
Kidambi’s results for the first non-axisymmetric mode (1,1) and for two different
combinations of non-dimensional physical parameters. Our solution is found to be in good
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(m, n) £ 90° X7 £ 60° 457
2,1 —0.004 —10.438 —0.004 —i0.318 —0.004 —10.182 —0.005 —1i0.081
0, 1) —0.029 —10.948 —0.023 —i0.708 —0.039 —i0.415 —0.049 —10.297
3,1 —0.002 —10.760 —0.001 —1i0.512 —0.005 —10.246 —0.007 —10.086
(1,2) —0.017 —i1.156 —0.014 —10.798 —0.011 —10.394 —0.008 —1i0.139
4, 1) —0.023 —10.994 —0.037 —10.560 —0.046 —i0.115 —0.056 +10.118
2,2) —0.033 —i1.378 —0.031 —i0.888 —0.021 —i0.370 —0.010 —10.084
0,2) —0.091 —i1.909 —0.077 —11.458 —0.046 —i1.116 —0.018 —10.562
5, D —0.001 —i1.548 —0.009 —11.070 —0.013 —10.497 —0.010 —10.144
(3,2) —0.091 —i1.304 —0.099 —10.647 —0.080 —10.074 —0.046 +10.128
6, 1) —0.016 —11.765 —0.025 —11.084 —0.024 —10.360 —0.016 +10.009

Table 7. Nonlinear coefficient, x = xg + ixs, associated with the modes shown in figure 4 and computed for
different values of the static contact angle, i.e. 6, = 90°, 75°, 60° and 45°. These coefficients were computed
using a grid with N, = N; = 80 GLC nodes, for which convergence up to the third digit was achieved.

agreement with that of K09 for a wide range of static contact angles. In particular, the
predicted frequencies are within 0.4 % of each other. Different peculiar behaviours are
observed as the contact angle and the other physical parameters are varied. Kidambi (2009)
(K09) found that at shallow depths the presence of a static meniscus leads to an increase
of the natural frequency irrespective of the static contact angle, while at large depths the
frequency shows a maximum in the neighbourhood of 6; = 90°, in agreement with NOS,
with the experimental observations pointed out by PD07, and with the present study.

A.3. Comments

Although the frequency predictions are in excellent agreement with experimental
measurements (usually well within 1 %), we observe that the estimation of the damping
coefficient is more sensitive to the various methods of calculation proposed in the
literature. This is due to the fact that most of the existing theories are based
on semianalytical asymptotic expressions and boundary layer approximations with a
leading-order solution formulated in the inviscid framework (HM94, M98, MH98, N02,
NO5), as originally introduced by Benjamin & Scott (1979) and Graham-Eagle (1983).
However, despite the sources of dissipation being several and hard to accurately quantify,
especially with asymptotic approaches, the pinned contact line problem allows one to
drastically reduce uncertainties related to contact line dynamics, thus leading in general to
better agreement with experiments. Small uncertainties can still be present in experiments,
where free surface contamination is not fully controlled.

A wide majority of studies, both experimental and numerical (or semianalytic), have
been focused on the classic case of a flat static free surface, with the exceptions of
those by NOS5 and K09. Particularly K09, in the spirit of NO2, projected the governing
equations onto an appropriate basis and formulated a nonlinear eigenvalue problem
(solved numerically with an iterative method) for the damping and frequency of viscous
capillary—gravity waves with fixed contact line, which formally includes both static
meniscus effects and viscous dissipation.

We underline that, unlike the previous analyses by K09, in the present work, through a
fully numerical discretization technique, the problem of viscous capillary—gravity waves
with pinned contact line is formulated as a classic generalized linear eigenvalue problem,
which can be solved numerically with standard techniques. Hence, the numerical method
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used in this work allows one to directly solve capillary—gravity waves in brimful and nearly
brimful conditions accounting for contact angle effects and viscous dissipation without any
simplification or assumption, i.e. the numerical solution at convergence is supposed to be
accurate.

Appendix B. Values of the nonlinear normal form coefficient x

For completeness, the value of the nonlinear normal form coefficient x associated with
all modes in figure 4 is reported in table 7 for different static contact angle, 6;, i.e. 90°,
75°, 60° and 45°. By looking at the imaginary part, x;, one can see that an inversion of
the bifurcation direction occurs for modes (4, 1), (3, 2) and (6, 1) for a static contact angle
between 6, = 60° and 45°.
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