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Summary

Formulae for the effective population sizes of autosomal, X-linked, Y-linked and maternally

transmitted loci in age-structured populations are developed. The approximations used here predict

both asymptotic rates of increase in probabilities of identity, and equilibrium levels of neutral

nucleotide site diversity under the infinite-sites model. The applications of the results to the

interpretation of data on DNA sequence variation in Drosophila, plant, and human populations

are discussed. It is concluded that sex differences in demographic parameters such as adult

mortality rates generally have small effects on the relative effective population sizes of loci with

different modes of inheritance, whereas differences between the sexes in variance in reproductive

success can have major effects, either increasing or reducing the effective population size for X-

linked loci relative to autosomal or Y-linked loci. These effects need to be accounted for when

trying to understand data on patterns of sequence variation for genes with different transmission

modes.

1. Introduction

The advent of easily accessible methods for studying

variation at the DNA level is producing a wealth of

data on a variety of organisms. There is a growing

interest in examining these results for interesting

patterns, which may shed light on the evolutionary

forces controlling levels of natural variability. In

particular, comparisons of amounts of variability on

autosomes and X chromosomes in Drosophila have

been used to test hypotheses about factors influencing

variation (Aquadro et al., 1994; Begun, 1996;

Moriyama & Powell, 1996; McVean & Charlesworth,

1999; Andolfatto, 2001 ; Begun & Whitley, 2000).

There is also interest in using patterns of variation on

evolving Y or neo-Y chromosomes to make inferences

about the processes leading to the degeneration of Y

chromosomes (Bachtrog & Charlesworth, 2000;

Filatov et al., 2000; Yi & Charlesworth, 2000). A clear

understanding of the expectations for the levels of

neutral variability on autosomes, X chromosomes and

Y chromosomes, in the absence of any disturbing

forces, is necessary for these purposes.

* Tel : ­44(0) 131 650 5750. Fax: ­44(0) 131 650 6564. e-mail :
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Under the standard infinite-sites model of molecular

population genetics, the equilibrium level of neutral

variability at a locus in a panmictic population is

governed by the product of the mutation rate and

effective population size (N
e
) (Kimura, 1971). The

relative levels of variability for genes with different

modes of inheritance are thus dependent only on the

relative values of N
e
, if there are no sex differences in

mutation rate. It is commonly assumed that the

simplest discrete-generation formulae for N
e
, which

assume Poisson offspring number distributions

(Wright, 1969), can be used for calculating expected

levels of diversity. These formulae imply that an X

chromosome has three-quarters the effective size of an

autosome, and a Y chromosome gene only one-

quarter (e.g. Aquadro et al., 1994; Moriyama &

Powell, 1996).

However, as has been pointed out many times (e.g.

Nunney, 1993; Caballero, 1995; Charlesworth, 1996),

there may well be sources of non-random variation in

fertility that inflate the variance in reproductive success

for one sex over the other. For example, an increased

variance in male reproductive success due to sexual

selection would inflate the ratio of the effective

population size for X-linked genes to that for
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autosomal genes, since X chromosome genes are

transmitted twice as often through females as through

males, the opposite to what is observed in some of the

Drosophila examples mentioned above (Aquadro et

al., 1994; Begun, 1996; Moriyama & Powell, 1996;

Begun & Whitley, 2000; Andolfatto, 2001). Additional

factors, such as various forms of selection, have

therefore been postulated to account for this pattern

(Aquadro et al., 1994; Begun, 1996; McVean &

Charlesworth, 1999; Begun & Whitley, 2000).

In populations with age structure, such as humans

and many species of Drosophila, there is an additional

source of non-Poisson variance in net reproductive

success, caused by the stochastic nature of survival

during the reproductive phase and by differences

in fertility among individuals of different ages

(Felsenstein, 1971 ; Hill, 1972; Nunney, 1993). If there

are sex differences in age-specific patterns of re-

production and survival, this could alter expectations

for the effective sizes of different types of gene, e.g.

lower male survival during adult life would reduce N
e

for autosomal genes more than for X-linked genes. A

well-developed body of theory has been worked out

for calculating effective population size in age-

structured populations (reviewed by Charlesworth,

1994, pp. 78–91).

This theory has, however, mostly been developed in

terms of either the asymptotic rate of increase in

probabilities of identity by descent of pairs of alleles,

or the asymptotic rate of increase of variance in allele

frequencies at a biallelic locus. No attention has been

given to predictions of equilibrium levels of genetic

diversity, and it is not self-evident that the above N
e

values necessarily apply to this situation. One purpose

of this paper is to develop such predictions, using the

method originally used for the study of variability in

a geographically structured population by Nagylaki

(1980). As has been noted previously (Whitlock &

Barton, 1997), there is a close analogy between

geographically structured and age-structured popu-

lations. This can be usefully exploited for the present

purpose; it also enables a unified approach to the

derivation of expressions for N
e
, as outlined in the

Appendix. Related methods have also been used to

predict rates of inbreeding in populations under

selection (Wray & Thompson, 1990; Nomura, 1999;

Woolliams et al., 1999).

As will be seen, the standard formulae for N
e
in fact

provide excellent approximations for predicting

expected equilibrium levels of genetic diversity under

the infinite-sites model. Some simplifications to these

formulae are proposed which facilitate comparisons

of the effects of sex differences in demographic

parameters on the N
e

values for different modes of

inheritance, and also incorporate the effects of other

sources on non-random variation in reproductive

success. The conclusions are applied to the interpret-

ation of levels of DNA variability in Drosophila,

humans and plants.

2. Results

An age-structured population is a special class of

structured population with gene flow among sub-

classes. While it is usually difficult to obtain explicit

general results for the amount of genetic variability

maintained in a structured population (Nagylaki,

1998; Wilkinson-Herbots, 1998), the case of a geo-

graphically structured population when gene flow is

much stronger than mutation and genetic drift (the

‘strong-migration limit ’) can be fully analysed to a

satisfactory level of approximation (Nagylaki, 1980,

2000). It is straightforward to extend this approach to

an age-structured population, provided that mating is

random with respect to genotype, since the conditions

for the validity of the strong migration limit are easily

satisfied if the numbers of individuals in each age-class

are large. A general derivation of the necessary results

is presented in the Appendix. The population is

assumed to be stationary in size and age-composition,

and so large that stochastic fluctuations in numbers

can be neglected.

These results show that an effective population size

N
e

can be defined for an age-structured population

which determines both the asymptotic rate of increase

in inbreeding coefficient per generation and the

equilibrium level of nucleotide site diversity under the

infinite-sites model. The use of this measure of N
e

depends on appropriate definitions of generation time

and mutation rate, which are determined by the

genetic system in question, as described in Sections

(i)–(iii) below. The genetic state of the population at

time t is described by a vector h(t), made up of an

ordered set of components, such that a given

component h
ij
(t) is the probability of non-identity

between two genes sampled from age–sex classes i and

j at time t. Changes in h are specified by the matrices

A and S defined in the Appendix, which respectively

describe the deterministic effects of the flow of genes

among sex and age-classes, and the effect of stochastic

sampling on variability (Nagylaki, 1980).

(i) Autosomal loci

Let n
fx

and n
mx

be the numbers of females and males

in age-class x at time t, where x runs from 0 to d for

females, and from 0 to d* for males. Age-class 0

corresponds to newly formed zygotes, age-class 1 to

individuals one time-unit older, etc. For internal

consistency, the demographic state of the juvenile and

reproductively active adult population at any one time

is described by the column vector n, whose components

are n
f"
, n

f#
, … , n

fd
, n

m"
, n

m#
, … , n

md*
. Let l

sx
be the

probability of survival from conception to age x for
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individuals of sex s. Let m
sx

be the expected number of

offspring of sex s of a parent of sex s (for x" d, m
fx

¯ 0; for x" d*, m
mx

¯ 0). The corresponding ex-

pectation of same-sex offspring produced at age x for

a zygote of sex s is k
sx

¯ l
sx
m

sx
.

Given these definitions, it is easy to obtain the

elements of G, a matrix that describes the deterministic

flow of alleles among age- and sex-classes (Johnson,

1977), from which A can be derived (equation (A 2)).

The element g
ij

is the probability that an allele now in

class i came from class j in the previous time interval

(where values of i between 1 and d refer to females of

age x¯ i, and values between d­1 and d­d* refer to

males of age x¯ i®d ). The following quantities are

also needed to obtain an expression for N
e
(Johnson,

1977).

Generation time, T, is defined as the mean age of

the parents of newborn offspring. Assuming that the

primary sex ratio is independent of parental age, we

have

T¯
1

2
3
d

x="

xk
fx
­

1

2
3
d*

x="

xk
mx

. (1)

The components of the left eigenvector, q, of G

corresponding to its leading eigenvalue, normalized so

that females and male aged 1 have values of one-half

each, are given by

q
fx

¯
1

2
3
d

y=x

k
fy

(1%x%d ), (2a )

q
mx

¯
1

2
3
d*

y=x

k
my

(1%x%d*). (2b)

Equation (1) can thus be rewritten as:

T¯ 3
d

x="

q
fx
­ 3

d*

x="

q
mx

. (3)

If the components of q are divided by T, we obtain

a vector ν whose elements sum to 1, which is used in

the calculations in the Appendix.

Using these expressions, a straightforward evalu-

ation of the terms in S, and their substitution into

equation (A 7), yields the following well-known

approximate expression for the reciprocal of the

effective population of an autosomal locus (N
eA

),

neglecting terms of the order of the square of the

reciprocal of the population size (Felsenstein, 1971 ;

Johnson, 1977; Emigh & Pollak, 1979) :

1

N
eA

E
1

T

A

B

1

4n
f"

­
1

4n
m"

­ 3
d

x=#

q#
fx

E

F

1

n
fx

®
1

n
fx−"

G

H

­ 3
d*

x=#

q#
mx

E

F

1

n
mx

®
1

n
mx−"

G

H

C

D

. (4)

This formula can be used as follows to determine

the equilibrium level of diversity under the infinite-

sites model (Kimura, 1971). Let u be the probability

that a gene of a new zygote contains a mutation (see

equation (A 14)). Combining equations (A 12) and

(A 13) with equation (A 14), we recover the standard

discrete generation formula for equilibrium nucleotide

site diversity under the infinite-sites model as

π¯ 4N
eA

u­O(u). (5)

(ii) X-linked loci

It is straightforward to evaluate the components of G

for the sex-linked case under the same assumptions as

used in the autosomal case. If we normalize the

components of its left leading eigenvector, q, such that

q
f"

¯ 2}3 and q
m"

¯1}3 (corresponding to the relative

contributions of females and males to the X

chromosome gene pool), we have

q
fx

¯
2

3
3
d

y=x

k
fy

(1%x%d), (6a)

q
mx

¯
1

3
3
d*

y=x

k
my

(1%x%d*). (6b)

The corresponding expression for generation time is

T*¯ 3
d

x="

q
fx
­ 3

d*

x="

q
mx

,

i.e.

T*¯
2

3
3
d

x="

xk
fx
­

1

3
3
d*

x="

xk
mx

. (7)

Applying, these results to equation (A 7), we obtain

an equation equivalent to that given by Pollak (1990)

for the effective population size of an X-linked locus:

1

N
eX

E
1

T*

A

B

4

9n
f"

­
2

9n
m"

­ 3
d

x=#

q#
fx

E

F

1

n
fx

®
1

n
fx−"

G

H

­2 3
d*

x=#

q#
mx

E

F

1

n
mx

®
1

n
mx−"

G

H

C

D

. (8)

The mutation rate needed to obtain the expression

for equilibrium diversity is obtained as follows. For a

gene in a female zygote, the probability of a new

mutation is the same as that given by equation (A 14).

For a gene in a male zygote, it is

u*¯ 3
d

x="

u
fx

k
fx
. (9)

Carrying out the same simplification as in the

autosomal case, we find that

π¯ 4N
eX

(#
$
u­"

$
u*)­O(u). (10)

(iii) Y-linked and mitochondrial loci

The cases of Y-linked and mitochondrial loci are

equivalent to a haploid population, with the demo-
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graphic parameters of males and females, respectively,

so that the results of Felsenstein (1971) for the

effective population size can be used. For Y-linked

loci, we have

1

N
eY

¯
2

T**

A

B

1

n
m"

­ 3
d*

x=#

q#
mx

E

F

1

n
mx

®
1

n
mx−"

G

H

C

D

, (11)

where q
mx

is now twice the quantity given by equation

(2b), and T** is the generation time for males :

T**¯ 3
d*

x="

xk
mx

.

The mutation rate for this case clearly involves only

mutations derived from males, so that equation (5)

applies with this modification.

For maternally transmitted organelle genomes,

female demographic parameters replace the male ones

in these formulae.

(iv) Effects of non-random �ariation in fertility

The formulae for N
e

derived above assume that the

only sources of non-random sampling of offspring

from parents alive at a given time are differences in

mean numbers of offspring among parents of different

ages. This assumption can be relaxed, using the

formulae given in the Appendix (equations (A 17) and

(A 18)), which give additional terms that are to be

added to the appropriate expressions for 1}N
e
. When

there is no variation among parents in the primary sex

ratio of their offspring, or their probabilities of

survival to age 1, the additional terms in 1}N
e
simplify

as follows:

Autosomal loci :

1

4T

E

F

∆V
f

n
fT

­
∆V

m

n
mT

G

H

(12a)

Sex-linked loci :

2

9T*

E

F

2∆V
f

n
fT

­
∆V

m

n
mT

G

H

, (12b)

where ∆V
f
is the difference between the total variance

of offspring number per adult female and the

component due to variance in mean number of

offspring per adult female among females of different

ages, scaled relative to the squared mean offspring

number; ∆V
m

is the corresponding expression for

offspring per adult male; n
sT

is the number of adult

individuals of sex s present at a given time.

A similar calculation for the case of Y-linked genes

yields the correction term

2∆V
m

T**n
mT

. (13)

Organelle genomes can be treated similarly, sub-

stituting female for male parameters.

3. Applications

(i) General considerations

The main focus here will be the effect of demographic

factors on the effective population size, extending the

contributions of Nunney (1991, 1993). For purposes

of numerical illustrations of different scenarios, it is

convenient to approximate the summations in

equations (4), (8) and (11) by integrals, but the frame

of reference will be a discrete age-class model with a

time-interval of one unit of time between successive

age-classes. The reason for this is the technical

problems that arise in dealing with the terms resulting

from non-random variation in fertility when a

continuous limit is taken, discussed in Section 3.iii

below. In reality, of course, reproductive activity by

females is usually a point process, corresponding to

the production of litters or laying of clutches of eggs,

so that a discrete-time model is the appropriate one to

use.

If B is the number of births per unit time, the

number of individuals of sex s of age x at time t is

n
sx

¯ 0±5Bl
sx
, assuming a primary sex ratio of 0±5,

which is reasonable for most cases of interest here.

Substituting into the integral equivalent of equations

(4), rearranging the terms of the resulting integral in

the denominator, and using equation (12a), the effec-

tive population size for autosomal loci is given by

N
eA

E
BT

E

F

∆V
f

2l
fb
e
f

­
∆V

m

2l
mb

e
m

G

H

­2&
¢

!

(q
fx
m

fx
­q

mx
m

mx
)dx

,

(14)

where e
s

is the life expectancy at maturity of an

individual of sex s, l
sb

is the probability that a zygote

of sex s survives to maturity, and q
sx

is defined by the

integral equivalent of equations (2), respectively.

Similarly, the effective population size for X-linked

loci is

N
eX

E
BT*

4

9

1

2
3

4

2∆V
f

e
f
l
fb

­
∆V

m

e
m
l
mb

5

6
7

8

­
8

3&
¢

!

²q
fx
m

fx
­q

mx
m

mx
´ dx

,

(15)

where q
sx

is defined by the integral equivalent of

equations (6).

The effective size for Y-linked loci is

N
eY

E
BT*

4

1

2
3

4

∆V
m

l
mb

e
m

­2&
¢

!

q
mx

m
mx

dx

5

6
7

8

, (16)

where q
mx

is twice the integral equivalent of q
mx

in

equation (2b).
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(ii) Effects of sex differences in demographic

parameters

This section will focus on the effects of purely

demographic factors on N
e
, ignoring the contributions

from non-random sources of variation in offspring

number. Analytical results on the effects on N
e

of

differences in male versus female life-history para-

meters can easily be obtained for the case of constant

adult mortality and fertility. Age-independence of

mortality rate under natural conditions is often

observed, since external sources of mortality such as

predation usually outweigh any intrinsic changes due

to senescence (Charlesworth, 1994). Constant adult

fertility is realistic for many natural populations of

birds, small mammals and plants, but not for

organisms like Drosophila and humans, where re-

productive success reaches a peak early in adult life

and then declines (Charlesworth, 1994). Nevertheless,

it serves as a rough guide to more complex situations,

and has previously been explored by Nunney (1991,

1993).

Let the ages at first reproduction for females and

males be b
f
and b

m
. For adults, the death rate per unit

time for an individual of sex s in a continuous time

representation is denoted by µ
sa
. Hence, for adults we

have

l
sx

¯ l
sb
exp®µ

sa
(x®b

s
).

Equation (14) for autosomal loci then reduces to

N
eA

E
B(b

f
­b

m
­µ−"

fa
­µ−"

ma
)

(l−"
fb

­l−"
mb

)
. (17)

Similarly, equation (15) for X-linked loci becomes

N
eX

E
3B(2b

f
­b

m
­2µ−"

fa
­µ−"

ma
)

4(2l−"
fb

­l−"
mb

)
. (18)

The ratio of effective sizes for X-linked and

autosomal loci, in the absence of non-random vari-

ation in fertility, is thus

N
eX

N
eA

E
3(2b

f
­b

m
­2µ−"

fa
­µ−"

ma
)(l−"

fb
­l−"

mb
)

4(b
f
­b

m
­µ−"

fa
­µ−"

ma
)(2l−"

fb
­l−"

mb
)
. (19)

As expected from the standard discrete-generation

results, this ratio is equal to three-quarters if all the

demographic parameters of the two sexes are equal

(this is also true for cases where mortality and fertility

rates vary with age). The effects of sex differences can

be explored as follows. First, consider adult mortality.

If adult mortality for males is lower than that for

females, it is evident that the ratio R
XA

¯ (N
eX

}N
eA

) is

reduced, since less weight is given to male longevity in

the expression for N
e
for sex-linked than for autosomal

loci. The converse is true if males have higher adult

mortality. In D. melanogaster, there is evidence from

laboratory studies that reproduction may impose a

higher survival cost on females than on males. For

example, in the study of Roper et al. (1993), the adult

life expectancy of females from the outbred flies in

their table 1 was about 92% of that of males ; it is

possible that this effect could be even more marked in

nature, although data are currently lacking. Another

factor operating in the same direction is the longer

development time commonly observed for males ; the

data of Roper et al. (1993) indicate that the de-

velopment time of males was about 4% greater than

that of females for F1 hybrids between lines selected

for early reproduction, and about 3% greater for F1s

between lines selected for late reproduction. But

longer development time implies that survival to

maturity may be lower for males than females ; this

will operate in the opposite direction, by reducing l
mb

relative to l
fb
.

l
fb

and l
mb

are related by the requirement for

stationary population size, which implies that

µ
sa

¯m
s
l
sb
. (20)

If juvenile mortality rate per unit time is the same

for males and females, l
mb

can be determined by using

l
fb

from equation (20) and assuming a given value of

b
f
, thereby determining the juvenile mortality rate.

Substitution of the resulting value for l
mb

into the male

version of equation (20) enables m
m

to be determined,

on the assumption that the fertility of matings is

controlled by females. Taking m
f
to be 10 female eggs

per day as a rough average over a Drosophila female’s

reproductive span (cf. fig. 1 of Roper et al., 1993), this

implies that the probability of survival to maturity for

a female is one-tenth the mortality rate per day.

Adult survival rates for D. melanogaster in nature

are poorly known, but are likely to be low (Boesiger,

1968; Boule! treau, 1978), especially as population cage

studies indicate short life expectations in a relatively

benign environment (Frydenberg, 1962; Crow &

Chung 1967). For illustrative purposes, assume a

mortality rate per day for females of 0±09 and for

males of 0±045, consistent with a large sex-difference

of the type described above and with the survival data

of Dobzhansky & Wright (1947) on a natural

population of D. pseudoobscura, a species which is

likely to be somewhat longer-lived than D. melano-

gaster. Taking a female development time of 9±00 days

and a male value of 9±27, and assuming equal juvenile

survival rates for males and females, equation (20)

yields a value of R
XA

¯ 0±754 for the ratio of X-linked

to autosomal N
e

values, i.e. a completely trivial

difference from 0±75. If the adult mortality rate is half

this value, but the ratio of male to female values is

unchanged, R
XA

¯ 0±753. If there were no differences

between male and female probabilities of survival to

maturity, R
XA

values with the two different adult

mortality rates become 0±742 and 0±740, still very close

to 0±75, although now somewhat lower. It is, in fact,
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Table 1. Effects of �ariation in demographic parameters on relati�e N
e
�alues of sex chromosomal and

autosomal loci

Row µ
fa

µ
ma

b
f

b
m

R
XA

R
YA

R
YX

β
f
¯ 0±06, β

m
¯ 0±06, γ

f
¯ 0±905, γ

m
¯ 0±905

1 0±05 0±05 9 9 0±750 0±250 0±333
2 0±05 0±025 9 9 0±728 0±273 0±375
3 0±10 0±05 9 9 0±719 0±283 0±394
4 0±20 0±10 9 9 0±710 0±294 0±414
5 0±20 0±10 9 9±27 0±726 0±274 0±378
6 0±20 0±05 9 9±27 0±696 0±308 0±442
7 0±025 0±05 9 9 0±773 0±228 0±295
8 0±05 0±10 9 9 0±782 0±220 0±281

9 0±10 0±20 9 9 0±792 0±212 0±268
10 0±10 0±20 9 9±27 0±811 0±200 0±246

β
f
¯ 0±06, β

m
¯ 0±03, γ

f
¯ 0±905, γ

m
¯ 0±905

11 0±05 0±05 9 9 0±722 0±279 0±387
12 0±10 0±10 9 9 0±732 0±269 0±367
13 0±05 0±05 9 9±27 0±742 0±257 0±346
14 0±10 0±05 9 9 0±692 0±315 0±455
15 0±05 0±10 9 9±27 0±785 0±219 0±279

R
XA

, R
YA

and R
YX

are the ratios of effective population sizes of X chromosome to autosome, Y chromosome to autosome,
and Y chromosome to X chromosome, respectively. See text for explanation of other symbols.

very difficult to produce values of the ratio much less

than 0±75 with this model, even with a much smaller

male mortality rate and with no sex difference in

probability of survival to maturity; e.g. with a male

mortality rate that is one-half the female value, R
XA

is

0±697 and 0±686 for the two female mortality rates

considered above.

These results suggest that demographic factors of

this kind are unlikely to have major effects on the

relative effective population sizes of X-linked and

autosomal loci in Drosophila. This model is somewhat

unrealistic, in that it ignores the roughly triangular

relation between reproductive output and age that is

found in both humans and Drosophila. A simple

model that describes this relation was proposed by

McMillan et al. (1970) for egg production by D.

melanogaster females, and adapted by Roff (1981) for

the analysis of life-history evolution. Given that the

age-specific profile of male reproductive success is

roughly parallel to that of females in this species

(Roper et al., 1993), this model can also be used for

male reproduction.

We can write

m
sx

¯α
s
[exp(®β

s
(x®b

s
))®exp(®γ

s
(x®b

s
))], (21)

where β
s
'γ

s
.

If the assumption of age-independent adult mor-

tality is retained, integration of the product of this

expression and the probability of survival to age yields

the condition for stationarity :

l
sb

¯
(µ

sa
­β

s
)(µ

sa
­γ

s
)

α
s
(γ

s
®β

s
)

. (22)

If the female parameters in equation (21) are treated

as fixed, as well as the ages of maturity for males and

females, this equation can be used to determine α
m

by

the same method as in the previous model, given

values of b
s
for the two sexes and values of β

m
and γ

m
.

Simple expressions for generation time and the

integral involving q
sx
m

sx
in the expressions for N

e
are

readily obtained. The contribution of sex s to

generation time is

b
s
­

1

(γ
s
®β

s
)

A

B

(µ
sa
­γ

s
)

(µ
sa
­β

s
)
®

(µ
sa
­β

s
)

(µ
sa
­γ

s
)

C

D

(23a)

and the integral of q
sx
m

sx
is proportional to

α
s

(γ
s
®β

s
)

1

2
3

4

(µ
sa
­γ

s
)

(µ
sa
­β

s
)
®

(µ
sa
­β

s
)

(µ
sa
­γ

s
)

5

6
7

8

. (23b)

These results can be substituted into equations

(14)–(16) to obtain ratios of N
e

values for X versus

autosome, Y versus autosome, and Y versus X

chromosome, under any given set of assumptions.

Some numerical examples, based on the estimates of β

and γ from the data of McMillan et al., (1970) on

female fecundity in an intercross between different

strains of the Oregon-R stock of D. melanogaster, are

shown in Table 1.

Rows 1–10 assume no sex difference in the shape of

the relation between reproductive success and age,

while rows 11–15 assume that males have a slower

decline in reproductive success at advanced ages. The

overall conclusion is similar to that above; even a

large mortality differential in favour of males has only

a small effect on R
XA

(e.g. rows 2–4) ; the effect is
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diminished by a difference in probability of survival of

males and females to maturity, due to a difference in

age at maturity (rows 5–6). The maximum effect is

observed when there is an adult mortality differential

in favour of females, as well as delayed maturity of

males, both of which inflate R
XA

, but even this is

relatively small (row 10). The effects on the ratios of

Y chromosome to autosome or X chromosome

effective sizes are larger than those on R
XA

if sex

differences are sufficiently extreme, and go in the

opposite direction to effects on R
XA

. Rows 11–15

show that a late-life fertility advantage to males will,

as expected, bring R
XA

down and R
YA

and R
YX

up.

This effect is counteracted by later reproductive

maturity of males and}or higher adult mortality of

males (rows 13 and 15).

A substantial late-life fertility advantage to males

relative to females seems more likely for humans than

for flies ; demographic data indicate that human males

continue to reproduce much later in life than females,

as well as initiating reproduction later (e.g. Keyfitz,

1968, table 3.6). Numerical studies similar to those in

Table 1 confirm the same general effect of a late-life

fertility advantage to males, for parameter values that

seem reasonable for human populations under natural

conditions. The effect is, however, largely outweighed

by the mortality differential against males and the

later age at maturity of males, so that the net

deviation from the predictions in line 1 of Table 1 is

trivial. Overall, it is thus unlikely that demographic

differences of these kinds will have major consequences

for the relative effective population sizes under

different modes of inheritance. The magnitudes of

such effects are probably too small to be detectable

from datasets on DNA sequence variation of the sizes

that are currently available (see Section 4).

(iii) Effects of non-random �ariation in fertility

Differences in fertility variances between the two

sexes, notably those resulting from sexual selection,

are commonly invoked as potential causes of

departures from Poisson expectation of the values of

the ratios of effective population sizes (Crow &

Morton, 1955; Nunney, 1993). In discrete-generation

models, a large excess variance of male reproductive

success over Poisson expectation can have large

effects ; in the limit, when this excess variance

dominates other terms, we have R
XA

¯ 9}8, R
YA

¯
1}8 and R

YX
¯1}9 (cf. Caballero, 1995).

Predictions of the effects of sexual selection in the

case of age-structured populations are complicated by

the need to include the terms arising from purely

demographic effects in the denominators of equations

(14)–(16), which in general will tend to dilute the

effects of sexual selection expressed in ∆V
m
. Nunney

(1991, 1993) has considered some aspects of these

effects in the context of sexual selection acting on a

species with discrete breeding intervals, as in the case

of annually reproducing temperate-zone iteroparous

species. His results for the special cases he considers,

which are expressed in terms of Hill’s formula for N
e

involving sex-specific variances of life-time repro-

ductive success (Hill, 1972, 1979), can easily be derived

from the general equations used here. They imply,

that as the adult life-expectancy increases, the effect

on N
e
of a given intensity of sexual selection within a

single breeding season diminishes.

This can be seen as follows, using the model used to

obtain equations (22) and (23), and assuming γ
s
(β

s
,

µ
a

and ∆V
f
¯ 0. In the absence of sex differences in

demographic parameters, the denominator of

equation (14) can be approximated by

l−"
fb

E

F

∆V
m
µ
fa

2
­2

G

H

(24)

so that the effect of a given level of sexual selection

decreases with adult life expectancy (the reciprocal of

µ
a
).

The discrete-time model assumes, however, that

offspring are produced and intermale competition for

mates take place in successive and independent

episodes. While this is reasonable for species with

discrete breeding seasons, it is inappropriate for

species such as Drosophila or humans, where there is

no such sharp clustering of bouts of reproduction.

Taking the continuous-time limit leads to the absurd

result that the contributions from ∆V
m

and ∆V
f

disappear; this reflects the unrealistic nature of the

assumption of independence between reproductive

events that are close in time.

One extreme possibility is that some fraction of

individuals fail to reproduce at any time in their lives ;

this could apply either to females who fail to enter

breeding condition, or to males in a polygynous

mating system who fail ever to obtain mates. Under

these conditions, only individuals capable of breeding

need be counted in the basic equations (14)–(16). This

is tantamount to reducing l
sb

for the sex in question by

the appropriate factor, and re-expressing l
sx

and m
sx

in

terms of values conditioned on individuals who are

part of the breeding population. If this factor is small

enough, there could be a substantial effect on the

relative N
e

values for different modes of inheritance,

with N
eX

being reduced relative to N
eA

by a reduction

in the proportion of breeding females, and vice versa

by a reduction in the proportion of breeding males.

The maximal effect of a reduction in the lifetime

probability of a female breeding, p
f
, to near-zero is to

reduce R
XA

to 9}16, and to increase R
YA

and R
YX

to

1}(8p
f
) and 2}(9p

f
), respectively. The effect of a

lifetime reduction in the probability of a male

breeding, p
m
, to near-zero is to increase R

XA
to 9}8,

and to reduce R
YA

and R
YX

to 1}8 and 1}9,
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respectively, the same effect as that of a large variance

in male reproductive success.

In general, sexual competition between males will

involve the passage over time of individuals in and out

of groups of potential competitors for receptive

females, which is difficult to model explicitly without

recourse to simulations. In the case of Drosophila, a

female continues to lay eggs fertilized by a given male

for several days after mating, and under laboratory

conditions is unreceptive to further courtship attempts

(Ashburner, 1989, p. 142). The mean period, τ, over

which a clutch derived from a given male is laid thus

forms a natural time-interval for the model developed

above. Genetic evidence for multiple matings in

natural populations suggests, however, that this lack

of receptivity is not absolute, and that clutches with

mixed paternity are often produced (Harshman &

Clark, 1998), which reduces the degree of non-Poisson

variance in male reproductive success (Nunney, 1993).

Ignoring this effect for the moment, under the lottery

model of polygyny, which seems appropriate for

Drosophila (Nunney, 1993),∆V
m

over the time-interval

corresponding to the period over which eggs resulting

from a given mating are laid would be expected to be

approximately (1®ω)}ω, where ω is the proportion of

receptive females (Nunney, 1993). If most adult

females are unreceptive, due to having recently mated,

ω will be close to the fraction of the adult female

population that has just reached sexual maturity over

a given time-interval ; this is equal to the reciprocal of

the adult female life-expectancy in days if the

population is stationary and receptive females mate

within 24 h. On this model, e
m

in equations (14)–(16)

is measured in units of time-intervals of length τ, and

so we obtain

∆V
m

e
m

¯ (1®e−"
f

)τ,

where e
s
and τ are measured in days.

If n males contribute on average to the eggs laid by

a single female over this period, this expression is

reduced by a factor of approximately n (Nunney,

1993). Given the facts that eggs from a single mating

of a D. melanogaster female continue to be produced

over about 7 days (Ashburner 1989, p. 143) and that

broods of wild-caught females seem to show evidence

of insemination by roughly two males on average

(Harshman & Clark, 1998), the net estimate of ∆V
m
}e

m

is therefore around 3±5 for this species. This may well

be a considerable overestimate, since the production

by a female of eggs fathered by a single male tends to

decrease over a period of a few days (Ashburner,

1989, p. 142).

The expression in equation (24) then reduces

approximately to 3±75}l
fb
, if the term in e

f
is ignored.

Assuming no other life-history differences between the

sexes, similar calculations for the other terms in

equations (14)–(16), using equation (24), give R
XA

¯
0±89, R

YA
¯ 0±17 and R

YX
¯ 0±19, i.e. there is a

substantial departure from the Poisson expectations

in the direction of more X-linked variability than

expected and less Y-linked variability.

4. Discussion

The results presented above bring out the fact that the

relative values of the effective population sizes

experienced by genes with different modes of in-

heritance are influenced by many different demo-

graphic variables, which in practice are very difficult

to estimate even for laboratory populations. The

analyses in Section 3.ii suggest, however, that rather

extreme differences in survival and age-specific fertility

patterns between males and females would be required

to produce major departures of R
XA

, R
YA

and R
YX

from their Poisson expectations of 0±75, 0±25 and 0±33.

(i) Drosophila populations

In the case of D. melanogaster, there is little reason to

expect large effects of sex differences in demography.

The major disturbing factor for this species would

seem to be non-random variation in fertility. Con-

sidering male effects only, more or less plausible

guesses about the effects of lottery model competition

for mates (Nunny, 1993) suggest that the equilibrium

level of variability on the X chromosome could be

nearly 90% of that for the autosomes, and variability

on the Y only 20% of the autosomal value (see

Section 3.iii). A factor operating in the opposite

direction is non-random variation in female breeding

success ; the most extreme effect would occur if some

fraction of females simply failed to attain breeding

condition. There is abundant evidence that female

flies can control the development of their oocytes in

response to their nutritional status (Soller et al., 1999),

so that it is quite likely that inseminated females will

refrain from breeding in nature if they are in poor

condition.

Given the 1 :1 primary sex ratio in this species, this

effect could greatly reduce the effective size for the X

relative to the autosomes and Y chromosome.

Observations on females caught in nature in southern

France indicated that, despite the fact that they are

mostly inseminated if they are over 24 h old, between

50% and 70% of wild-caught females lacked vitello-

genic activity, although they can breed successfully

when established in the laboratory (Boule! treau, 1978).

If these figures correspond to life-time probabilities of

not breeding, (1®p
f
), the argument presented in

Section 3.iii indicates that the terms in q
fx

in the

denominators of equations (14)–(16) should be in-

creased by 1}p
f
. Taking the lower value of p

f
¯ 0±3, in

the absence of male fertility variation and other life-

history difference, we would then have R
XA

¯ 0±64
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and R
YA

¯ 0±54. With sexual selection of the intensity

just discussed, we have R
XA

¯ 0±73 and R
YA

¯ 0±28.

An analysis of published data on DNA sequence

diversity in D. melanogaster and D. simulans shows

that African populations have levels of X chromo-

somal variability that are similar to or even larger

than those for the autosomes, whereas the non-

African populations have a mean X chromosomal

nucleotide site diversity level that is approximately

87% of the mean autosomal level in D. melanogaster

and 76% of that in D. simulans (Andolfatto, 2001). A

similar pattern has been observed with microsatellite

data (C. Schlo$ tterer, personal communication). The

standard errors of these estimates are, however, very

high, but there does seem to be a significant reduction

in variability on the X chromosome relative to the

autosomes in non-African populations of D. melano-

gaster (Andolfatto, 2001). Begun & Whitley (2000)

also found a significant reduction in X-linked relative

to autosomal variability in D. simulans, using data

from various, predominantly non-African, popu-

lations.

These results are consistent with the possibility that

adult females are generally in good breeding condition

in African populations in these species, and that there

is strong sexual selection which reduces the effective

size for the autosomes much more than for the X,

whereas the poor breeding success of females in non-

African populations reduces the effective size of the X

more than that of the autosomes. Further ecological

studies, especially of African populations, are needed

to test this possibility. These calculations assume no

differences in mutation rates between the sexes, which

obviously can also influence relative nucleotide

diversities. There is, however, no indication of any

such difference in D. melanogaster and its relatives

(Bauer & Aquadro, 1997).

Before appealing to selectionist interpretations of

these patterns, it is thus important to exclude these

purely demographic effects, which must, however,

take into account the fact that the time required to

approach a new equilibrium level of variability after a

reduction in effective population size is of the order of

N
e
. If the effective sizes of D. melanogaster and D.

simulans are around 1 million, as suggested by the

nucleotide site diversity data, equilibration of the

diversity values of X chromosomal loci after move-

ment of these species out of Africa would require

something of the order of 50000 years, assuming 20

generations per year. This is substantially longer than

current estimates of the timing of their spread into

Europe and Asia (around 10000 years ago: David &

Capy, 1988), but the evidence for this date is weak. It

is conceivable that fly populations accompanied

modern humans as they moved out of Africa.

Alternatively, a period of greatly reduced population

size following movement out of Africa, followed by

subsequent expansion, could have speeded up equi-

libration of relative levels of diversity on X and

autosome.

(ii) Human populations

The pattern of relative diversity values for X, Y and

autosomes in humans is confusing at present, with

very different results emerging from different studies

whose interpretation is obscured by the fact that

different studies use different sampling strategies, and

different amounts of coding and non-coding sequences

(Charlesworth & Charlesworth, 2000). In addition, if

there is a difference in mutation rates between males

and females (Miyata et al., 1987; Li, 1997), or

between the X chromosome and autosomes or the Y

chromosome (McVean & Hurst, 1997), the ratio of

diversities will differ from the R values. For example,

if the male mutation rate is α times the female

mutation rate, the expected ratio of X-linked to

autosomal diversities is 2(2­α)R
XA

}3(1­α). The

value of α is still controversial, with estimates ranging

between 1±7 and 5 (Anagnostopoulos et al., 1999;

Bohossian et al., 2000; Nachman & Crowell, 2000).

Taking α¯ 3, which is in the mid-range of estimated

values, the expected ratio of X-linked to autosomal

diversities is 0±833R
XA

.

The mean diversity for 11 X-linked loci (including

both coding and non-coding regions, in variable

proportions) is 6±5¬10−% (from table 1of Przeworski

et al., 2000), whereas the mean for 16 autosomal loci

with nearly equal amounts of coding and non-coding

sequences is 3.9¬10−% (Shen et al., 2000). Taking

these at face value, the estimate of R
XA

is 2±0, much

larger than expected even with intense sexual selection

on males. In contrast, a study of several regions of the

human Xq22 region from a world-wide sample of 24

men, based on a chemical mutation-detection method,

gave a diversity value of 1±7¬10−% (Anagnostopoulos

et al., 1999). Using the same autosomal value as

before, this gives an estimate of R
XA

of 0±49, suggesting

an excess of female variance in reproductive success.

Studies that use comparable sampling strategies for X

chromosome and autosomes are needed to resolve this

major discrepancy.

For the Y chromosome, the corresponding ex-

pression for the expected ratio of Y-linked to

autosomal diversities is R
YA

(1­α)}2α. An extensive

survey of world-wide Y chromosome variation in

humans suggests that there is approximately 5 times

less variation at non-coding sites at four Y-chromo-

somal loci than for comparable autosomal samples

(Shen et al., 2000) – slightly but probably not signifi-

cantly greater than the 4-fold difference expected with

a Poisson variance of reproductive success and no

difference in mutation rate, but considerably larger

than the value of 1±5 expected with α¯ 3 and
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implying an R
YA

value of 0±133. This is consistent with

an appreciable effect of sexual selection on the effective

size of human populations.

(iii) Plant populations

A recent study of variability at a locus on the sex

chromosomes of the dioecious perennial flowering

plant Silene latifolia showed that there is 20 times as

much variation among X-linked copies of the gene as

among Y-linked copies (Filatov et al., 2000). This is

much greater than the maximum effect of 9 fold which

occurs when a large fraction of males fail to breed

throughout the whole of their life. Studies of the

flowering phenology of this species show no evidence

for such an extreme effect (Delph, 1999), so it seems

unlikely that sexual selection could have such a large

effect. Since adults are known to live for several

years, and to flower each season, the effect of male

competition occurring within flowering seasons on the

relative effective sizes of different inheritance modes is

likely to be counteracted by the purely demographic

terms in the denominators of equations (14)–(16) (see

Section 3.iii above), so that it seems extremely unlikely

that the reduction in Y chromosomal variability could

be caused by this factor.

There is evidence, however, that males suffer higher

adult mortality, an adult sex ratios are often strongly

male biased (Mulcahy, 1967; Lovett-Doust et al.,

1987). A simple calculation shows that, in a discrete

age-class model, the relative numbers of males and

females in a stationary population is equal to the

inverse of the ratio of their probabilities of death per

time-interval, if the primary-sex ratio is 1 :1. An adult

sex ratio of 1 :2, which is close to the most extreme

values reported, therefore indicates that males have a

death rate that is approximately twice that of females.

From the calculations presented in Table 1, this seems

unlikely to reduce R
YX

to as small a value as the ratio

of observed diversities.

(iv) General remarks

The method of derivation used here employs gene

identities and diversities. Orive (1993) applied a

coalescent approach to age- and stage-structured

populations, but did not obtain simple expressions

even for the mean coalescent time for a pair of

sampled alleles. Given the proportionality between

the expected pairwise diversity measure under the

infinite-sites model and the mean coalescent time for

a pair of alleles (Hudson, 1990), the results derived in

Section 2 must apply to the mean coalescent time, i.e.

2N
e
is the mean time to coalescence of a pair of alleles

in the age-structured case. Use of the properties of

strong-migration models of structured populations, in

which the time-scale over which migration between

classes occurs is shorter than for all other evolutionary

processes (Nagylaki, 1980, 2000; Notohara, 1993;

Nordborg, 1997; Wilkinson-Herbots, 1998), implies

that the time to coalescence of a pair of alleles is

independent of the age-class from which they orig-

inate, to the level of approximation assumed. In

turn, this means that all the useful properties of

the exponential distribution of coalescence times

(Hudson, 1990) can be applied.

Appendix

(i) Properties of the general recursion relation

Following Felsenstein (1971) and Johnson (1977), we

can treat the changes in probabilities of identity

between genes sampled from different sex and age

classes as follows. The state of the population at time

t is described by the vector of probabilities of non-

identity, h(t), defined in the text. In the absence of

finite population size effects, we have the general

recursion relation

h(t)¯Ah(t®1). (A 1)

The element a
ij,kl

of A that corresponds to the

subscript pairs ij and kl is the probability that a gene

sampled from class i is derived from class k in the

previous time-interval, and a gene from class j is

derived from class l.

In an infinitely large population, two randomly

sampled genes from a given age-sex class come from

two separate individuals with probability 1, and hence

represent two independent draws from this class. If g
ik

is the probability that a gene sampled from class i is

derived from class k in the previous time-interval, we

thus have

a
ij,kl

¯ g
ik

g
jl
. (A 2)

In this case, A is identical in structure to the matrix K

used by Nagylaki (1980) in dealing with migration

between demes, and G¯²g
ik
´ corresponds to his

migration matrix M. Both G and A are stochastic

matrices, with leading eigenvalues of 1. Of interest in

what follows are the components of the left eigenvector

ν of G that corresponds to the leading eigenvalue

(Emigh & Pollak, 1979; Nagylaki, 1980). If these are

normalized to sum to 1, the ith component, ν
i
,

corresponds to the proportional contribution of the

ith class to the ancestry of future generations, i.e. it is

a measure of reproductive value (Whitlock & Barton,

1997).

In addition to A, we need to consider the effects of

random sampling on h. This can be represented by a

matrix of stochastic terms, S, such that

h(t)¯ (A­S) h(t®1). (A 3)

If the population size of each class is of order n, the

elements of S are of order 1}n (for details of the
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relevant stochastic terms see Felsenstein, 1971, and

Johnson, 1977). If these are sufficiently small in

relation to the non-zero components of G (the ‘strong-

migration limit ’ assumption: Nagylaki, 1980), a

perturbation argument implies that the right eigen-

vector (µ
!
) of A­S that corresponds to its leading

eigenvalue has elements which differ from each other

by terms of order 1}n, since the corresponding

elements of the eigenvector of A are all equal (Emigh

& Pollak, 1979; Nagylaki, 1980, eq. 10). Without loss

of generality, we can thus write the components of µ
!

as 1­O(1}n).

(ii) The inbreeding effecti�e population size

Following Felsenstein (1971) and Nagylaki (1980), we

can define a weighted mean of the h
ij
(t) as

ha (t)¯3
ij

�
i
�
j
h
ij
(t). (A 4)

This weighted mean is invariant under the trans-

formation A (Nagylaki, 1980).

We can write the leading eigenvalue of A­S as

λ
!
¯1®

1

2TN
e

, (A 5)

where T is the generation time. We have

λ
!
µ
!
¯ (A­S)µ

!
. (A 6)

Substituting from (A 4) and (A 5) into (A 6), and

using the above result on the components of µ
!
, we

obtain

1

2TN
e

¯® 3
ij,kl

�
i
�
j
s
ij,kl

­O

E

F

1

n#

G

H

. (A 7)

This corresponds to equations (12) of Nagylaki (1980).

The effective population size in this sense gives the

asymptotic rate at which the probabilities of non-

identity change, and thus corresponds to the ‘ in-

breeding effective size ’ (Whitlock & Barton, 1997).

(iii) The mutation effecti�e population size

It is not obvious that the same quantity can be used to

determine the equilibrium level of variability in the

population (the ‘mutation effective size ’ of Whitlock

& Barton, 1997), although this is known to be the case

for the infinite-alleles and infinite-sites models in the

strong migration limit with population subdivision

(Nagylaki, 1980).

In the present case, Nagylaki’s argument can be

used to obtain the equlibrium nucleotide site diversity

under the infinite-sites model, by adding a mutation

vector u to equation (A 3). Mutations are only of

evolutionary relevance when transmitted to gametes,

so that u
ij

is defined as zero for all classes for which

neither i nor j equals 1 or d­1. If these probabilities

are of order u, the infinite-sites assumption implies

that u multiplied by the mutation effective population

size is sufficiently low that the equilibrium probability

of non-identity of a pair of alleles is '1 ; the

mutational contribution to the change in h can then be

treated as independent of the state of the population,

to order u.

We can define the vector h! as the limit of the

equilibrium value of h as u tends to zero, keeping nu

fixed. Following Nagylaki (1980), we can write

h¯ h!­uh"­O(u#) (A 8)

and we find that h! is an eigenvector of A with

eigenvalue 1. From the above results, this implies that

the elements of h! are all equal to a constant, h! say.

Substituting into equation (A 8), we obtain

uh"
ij
¯ h!3

kl

s
ij,kl

­u3
kl

a
ij,kl

h"
kl
­u

ij
. (A 9)

Weighting the right-hand side by �
i
�
j
and summing

over all ij, we obtain

®h! 3
ij,kl

�
i
�
j
s
ij,kl

¯3
ij

�
i
�
j
u
ij
. (A 10)

We can define a weighted measure of the rate per

time-interval with which mutations arise that dis-

tinguish a pair of alleles (which is twice the cor-

responding mutation rate per haploid genome) as

2uh ¯3
ij

�
i
�
j
u
ij
. (A 11)

It follows from (A 7) and (A 10) that the equilibrium

nucleotide site diversity is given by

π¯ 4N
e
Tuh ­O(u). (A 12)

For an autosomal locus, it follows from the remarks

before equation (A 8) that we have u
"j

¯ u
d+"j

¯
u ( j1 1, d­1) ; u

""
¯ u

",d+"
¯ u

d+","
¯ u

d+",d+"
¯ 2u,

where u is the probability that a new zygote contains

a mutation. All other u
ij

are zero. Hence

3
ij

�
i
�
j
u
ij
¯ 2u(�

"
­�

d+"
) 3
d+d*

j="

�
j
¯

2u

T
. (A 13)

From equations (2.29) of Charlesworth (1994), for

an autosomal locus, we also have

u¯
1

2

E

F

3
d

x="

u
fx

k
fx
­ 3

d*

x="

u
mx

k
mx

G

H

, (A 14)

where u
sx

is the probability that a gamete originating

from an individual of age x and sex s contains a new

mutation.

(iv) Non-random �ariation in fertility

The expression for S used to derive N
e

assumed

random sampling of genes from parents of a given

age–sex class (Johnson, 1977; Emigh & Pollak, 1979),

implying that the probability of non-identity of a pair

of genes in age-class 1 that originated from parents

belonging to the same age–sex class k at time t is equal
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to h
kk

(t). With variation in fertility additional to that

corresponding to differences in mean fertility among

age-classes, this is no longer true, since there is no

longer a random chance that the two genes are

replicates of the same gene from class k. Methods for

accounting for such variation in the context of the

inbreeding effective population size with discrete

generations have been developed (Caballero, 1995;

Nagylaki, 1995), and can be adapted as follows for the

age-structured case.

Consider first the autosomal case. Only pairs of

genes sampled from age-class 1 need be considered,

since reproduction will not affect identity probabilities

for other pairs. For two genes sampled from the same

female from age-class 1, there is no change to the

previous results, since they are either replicates of the

same gene, or are derived from a male and a female.

If they come from different females, and sampling of

offspring is random except for differences in fertility

across age-classes, the probability that two genes are

derived from a replicate of the same gene (neglecting

higher-order terms in 1}n) is approximated by

3
d

x=b

g#

"x

1

2n
fx

¯
1

8
3
d

x=b

n#
fx

f #
ffx

n
fx
(n

fT
f a
ff
)#

,

where f
ffx

is the expected number of daughters

contributed to age-class 1 by a female aged x, f -
ff

is the

mean of this across all age-groups, n
fT

is the total

number of females of reproductive age, and b is the

age of reproductive maturity for females.

This simplifies to

3
d

x=b

g#
lx

1

2n
fx

¯
(1­V

ffA
}f a#

ff
)

8n
fT

, (A 15a)

where V
ffA

is the variance in mean numbers of

daughers per female across reproductive ages.

This term is implicitly included in the calculations

leading to equation (4), since it represents the chance

that two random genes from this age–sex class are

identical as a result of replication of the parental gene

(this can be verified by direct calculation). More

generally, however, expected numbers of daughters

can be assigned individually to each female present at

a given time, such that the probability that two

offspring genes are replicates of the same gene of

female i is proportional to the square of this female’s

fertility. This yields the following approximate ex-

pression for the probability of identity of two genes

from females of age-class 1 :

(1­V
ffT

}f a#
ff
)

8n
fT

, (A 15b)

where V
ffT

is the total variance in numbers of

daughters per female among all females of repro-

ductive age.

The difference between (A 15b) and (A 15a)

represents the relevant contribution to the complement

of the sum of the s
"",kl

terms corresponding to female

parents, and can conveniently be written as:

∆V
ff

8n
fT

, (A 16)

where ∆V
ff

is the difference between the total variance

of daughters per female and the variance between age-

classes in mean numbers of daughters per female,

scaled relative to the overall mean number of

daughters per female.

A similar calculation for contributions from male

parents to females aged 1 can be made, substituting

the number of males of reproductive age, n
mT

, for n
fT

and writing ∆V
mf

for the corresponding scaled

difference in variance in numbers of daughters per

male. We also have equivalent terms arising from

males, of age-class 1, where now fertility is measured

as sons per female and sons per male, inserting ∆V
fm

and ∆V
mm

into (A 16) and its equivalent for male

progeny, respectively.

Finally, terms from genes sampled from a male and

a female of age-class 1 must be considered. These

involve the covariance between the number of male

and female offspring contributed to age-class 1 by

parents of a given sex. If these covariances are scaled

by the product of the mean numbers of male and

female offspring per parent, we obtain the equivalents

of equations (A 15a) and (A 15b) as

∆C
ffm

4n
fT

(A 15c)

and

∆C
mfm

4n
mT

(A 15d)

where ∆C
ffm

is the difference between the total scaled

covariance in female and male offspring number for

female parents, and the scaled covariance for mean

numbers of male and female offspring per female of a

given age class ; ∆C
mfm

is the corresponding expression

for male parents.

Weighting these terms by the appropriate com-

ponents of �, and substituting into equation (A 7), we

obtain the following contribution to the expression

for the reciprocal of N
e
:

1

16T

A

B

(∆V
ff
­∆V

fm
­2∆C

ffm
)

n
fT

­
(∆V

mf
­∆V

mm
­2∆C

mfm
)

n
mT

C

D

. (A 17)

The same general procedure can be followed for the

other genetic systems studied here. For the case of sex-

linkage, we get

1

9T*

A

B

(∆V
ff
­∆V

fm
­2C

ffm
)

n
fT

­
2∆V

mf

n
mT

C

D

. (A 18)
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These are equivalent to the expressions in Pollak

(1980, 1990) and Caballero (1995).

I thank P. Andolfatto, D.J. Begun, D. Charlesworth, W.G.
Hill, T. Nagylaki, C. Schlo$ tterer and two reviewers for their
comments on this paper. This work was supported by grants
from the Royal Society and the EPSRC}BBSRC.
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