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Abstract

In this paper, we study the existence of periodic solutions of the NDDE (neutral
differential difference equation):

(*(/) + CX(t - T))' = -f(X(t) , X(t - T)) (•)

where x > 0 and c is a real number. We obtain a sufficient condition under which
(*) has at least k nonconstant oscillatory periodic solutions.

1. Introduction

In 1967, R. Brayton [1-2] considered the problem of lossless transmission
lines used to connect switching circuits and obtained the following NDDE
(neutral differential difference equation):

u{t) - ku(t - 2/s) = f{u{t), u(t - 2/s)) (A)

where s = VLC. In this paper, we study the existence of a periodic solution
of (A). For the case k = 0, several papers [5-6] have given sufficient condi-
tions for the existence of a periodic solution of (A). However, for the cases
k ^ 0, there are few papers dealing with the existence of a periodic solution
of (A). Now, we consider a class of NDDEs which is more general than (A):

(*(0 + cx(t - x))' = -f{x(t) ,x(t-x)) (1)

where T > 0, c is a real number, and f(x, y) is a continuous function.
Since the solutions of (1) may not be differentiable, (1) is more general than
(A).
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[2] Existence of periodic solutions of NDDE 509

Throughout this paper we assume that there exists a continuous function
g(x, y) such that

f(x,y) = g(x,y)-cg(y,x). (2)

Usually a function g(x, y) which satisfies (2) is easily obtained. For example
if c ̂  ±1 , then, from (2), we have

f(y, x) = g(y, x) - cg(x, y). (3)

By (2), (3) we obtain

\ — C \ — C

2. The main result

Consider the ordinary differential system:

dx dy ...
•jj = -g(x,y), -^ = g{y,x). (4)

We suppose that
(I) g(x, y) is continuous on R2 ;
(II) {~g^'x)) satisfies the local Lipschitz condition on R .
It is easy to see that, under the conditions (I) and (II), (4) has a unique

solution which satisfies the initial conditions x(tQ) = x0, y(t0) = y0 and
through any point (x0, yQ) (4) has a unique orbit [3].

LEMMA. Suppose that
(a) g{x, -y) = -g(x, y), g(-x, y) = g(x, y), yg(x,y)>0 (y^O);
(b) there exists some b > 0 such that

g{y,x)/g(x,y)<A(x)B{y) (x>0, y>b>0),

where A(x) is continuous on [0 , +oo) , B{y) is continuous on [b, +oo) ,
B(y) > 0 [y > b) and J+O°(l/B(y))dy = +oo ;

(c)

*2+>>2-o+ x + y
Urn xSiy,x)+yg{x,y) =

x2+y2
x~+y'-*+oo X +y

(d) there is some T > 0 such that p < 2n/T < q < +00 or q < 2n/T <
p < +00. Then (4) has a periodic solution with period of T.
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PROOF. Since yg(x, y) > 0 (y # 0), (0,0) is the unique singular point of
(4). By (I) and (II), through any point (x0, y0), (4) has a unique orbit [6].
Assume that, through the point (x0, y0), the orbit of (4) is L, where x0 > 0,
y0 > 0, (x0, y0) # ( 0 , 0 ) . If x0 = 0, then it is easy to see that L intersects
the positive y-axis. If xQ > 0, then we claim that L intersects the positive
y-axis. Otherwise, by dy/dx = -g(y, x)/g(x, y) < 0 (x > 0, y > 0), L
has an asymptotic line x = a > 0. Let L be y = y(x) (a < x <x0). Then,
by limx_a+ y(x) = +oo, there is xt: a < JC, < x0 such that y(x,) > b.
Noting that y(x) is decreasing, we have y(x) > y(xx) > b (a < x < xt).
Hence, by the condition (b), we obtain

^ > -A(x)B(y(x))
dx

and

or
ry(*) dv fxi

Jvix.) "\y) Jx

As x —* a+ , the above inequality and the condition f+oo(l/B(y))dy = +oo
produce the desired contradiction and establish the claim that L intersects
the positive y-axis. By the condition (b) and (4), for y > 0 and x > b > 0,
we have

Similarly, we can prove that L intersects the positive x-axis. Then, any
orbit which passes through the point (x0, y0) intersects the positive x-axis
and the positive y-axis, where x0 > 0, y0 > 0, (x0, y0) # (0, 0). By
(4) and the condition (a), we have dy/dx = -g(y, x)/g(x, y), dx/dy =
-g(x, y)/g(y, x) and g(x, -y) = -g(x, y), g(-x, y) = g{x, y). Hence,
the orbit of (4) is symmetric for the x-axis, y-axis, origin and the lines
y = ±x. Then, noting that L intersects the positive x-axis and the positive
y-axis, we know that every orbit of (4) is a simple closed curve which is sym-
metric for the x-axis, y-axis, origin and the lines y = ±x . Let (xc(t), yc(t))
be the solution of (4) which satisfies JCC(O) = c, yc{0) - c (c > 0). Since
the orbit of (4) is closed, the solution (xc(t), yc(t)) is bounded. Because
g(x, y) satisfies the conditions (I) and (II), the solution {xc(t), yc{t)) exists
on (-oo, +oo) [3].

Suppose that through the point (c, c) the orbit of (4) is Lc. Since Lc is
closed, the solution (xc(t), yc{t)) is a periodic solution of (4). Let the period
of (xc(t), yc{t)) be w(c). Because the solutions continuously depend on the
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initial conditions, it is easy to show that w(c) is a continuous function.
Noting that Lc is symmetric for the x-axis, y-axis and

dx g(x,y)

we have
\x\>c or \y\>c,

Then

Let

x2+y2>c2, V(jc,y)GLc. (5)

m(c) = inf{x2(t) + y]{t), 0 < / < w(c)},

M(c) = sup{xc
2(0 + y2

c), 0<t< w(c)}.

Then m{c) > 0 M(c) > 0. By (5), we obtain

lim m(c) - +oo. (6)
c—»+oo

Since, under the conditions (I) and (II), the orbits of (4) are mutually disjoint
[3], M(c) is an increasing function and limc_0+ M{c) exists. Noting that
M(c) > 0, we have lim(._>0+ M(c) > 0. We claim that

\imM(c) = 0. (7)
c-»0+

Otherwise, we have limc_0+ M(c) = d > 0 . Consider the orbit LA which
passes through the point A(Vd/2, 0) . Since LA is a simple closed curve
which is symmetric for the lines y = ±x, LA intersects the positive y-axis
and the intersection point is (0, y/d/2). Noting that LA is symmetric for
the x-axis, the y-axis and dy/dx > 0 on x > 0 , y > 0 , w e have

\x\<Vd/2, \y\<Vd/2, V(x,y)eLA,

and
x2 + y2 < (Vd/2)2 + (Vd/2)2 = d/2, V(JC , y) 6 LA .

Let the intersection point of LA and y = x be (a, a). Then, we have
M{a) < d/2 which contradicts the fact that limc_(0+ M(c) = d > 0 and
establishes the claim that (7) holds.

Let H{t) = arctanj>c(f)/xc(O . Then

r2n rw{c) r

2n= I dH= I H'{t)dt= ^ d t
Jo Jo Jo x2

c(t)+y2
c(t)

t)g(xc(t), yc(t)) ^

x2
c{t)+y2

c{t)

= fw(c) xc(t)g(yc(t), xc(t))+yc(t)g(xc(t), yc(t))f
Jo
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Since (7) holds, x*(t) + y*(0 uniformly tends to zero as c —• 0+ . Then, by
(7), (8) and the conditions (c), (d), we have

2n = p lim w(c). (9)
c-0+

Similarly, by (6), (8) and the conditions (c), (d), we have

2n = q lim w(c). (10)

Noting that p < 2n/T < q or q < 2n/T > p and (9), (10) hold, we obtain

lim w(c) > T, lim w(c) < T
C-+0+ c-*+oo

or
lim w(c)<T, lim w(c) > T.

c-*0+ c-*+oo

Hence, there exists c* e (0, +oo) such that w(c*) = T and the solution
{x*(t), y*(t)) which satisfies the initial conditions x*(0) = c*, y*{0) — c* is
a nonconstant periodic solution with period of T. The proof of the lemma
is now complete.

THEOREM 1. Suppose that there is a Junction g(x, y) such that

f{x,y) = g{x,y)-cg{y,x) (11)

where g{x, y) satisfies the conditions (I), (II). If the conditions (a), (b), (c)
of the lemma and

p<-—^— <Q or < — 5 — <p (n = m,n+l, ... ,m+k-l)

(d')
hold, then (1) has at least k nonconstant oscillatory solutions, where m is
some nonnegative integer and k is some positive integer.

PROOF. By the lemma, (4) has a periodic solution with period of Tn =
4T/(1 + 4m). Since n = m, m + \,..., m + k - I, we obtain k non-
constant solutions (xn(t), yn(t)) of (4), where (xn(t), yn(t)) satisfies the
initial conditions xn(0) = cn, yn{0) = cn and the period of (xn(t), yn(t))
is w(cn) = 4T/(1 + 4n). Assume that, through the point (cn, cn), the or-
bit of (4) is Ln . By the proof of the lemma, we know that Ln is a sim-
ple closed curve which is symmetric for the x-axis, y-axis, origin and the
lines y = ±x. Since Ln is symmetric for the origin, it is easy to show
that the point (-xn(t), —yn(t)) e Ln for any / e (-oo, +oo) and that
(-*„(')> -yn(0) is a solution of (4). Then the solution (xn(t), yn(t)) will
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meet the solution (-xn(t), -yn(t)) after a translation of time T, , i.e. there
is some T, e (0, y ^ ) such that

xn\)- xn(
 xi)-x

nK
 TiJ> ^

Noting that xn(t) has period of 4 T / ( 1 + An), by (12), we have

2TI = «, • i r - or T. = «, • —
1 ' l + 4 / i ' ' l + 4n

where /?j is some positive integer. By T, e (0, y ^ ) and T, = hx • y
2 ^ {hx

is positive integer), we have hx = 1 and Tj = 2 T / ( 2 + An). Then, by (12),
we have

(13)

On the other hand, since the closed curve Ln is symmetric for the x-axis,
y-axis and the lines y = ±JC , it is easy to show that the point (-yn(t), xn{t)) e
Ln (t e (-00, +oo)) and (-yn(t), xn(i)) is a solution of (4). Then the solu-
tion (xn(t), yn(t)) will meet the solution (—yn{t), xn(t)) after a translation
of time T2 , i.e. there is some T2 e (0, y ^ ) such that

-yHW = xH{t + r2), xn(t)=yn(t + r2). (14)

By (14), we have

xn(t)=yn{t + t2) = -xH{t + 2t2). (15)

By (13) and (15), we have

Then

2T , 4T 4T
—T- = h.> • -—T— or T, = - — .
An z I +An z 1 + An

2T2 + T-Tl^Z = h2 • TTTZ o r x2 = T-7-7z[-f--H) (16)

where h2 is some positive integer. By T2 e (0, y ^ ) and (16), it is easy to
see h2 = 1 or 2 . Then T2 = y ^ or T2 = y ^ . We choose t0 such that
the point (xn(t0), yn(t0)) belongs to the first quadrant. Then xn(tQ) > 0 ,
yn{t0) > 0. Hence the point (-yn(t0), xn(t0)) should belong to the second
quadrant and the point (-xn(t0), -yn(tQ)) should belong to the third quad-
rant.
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By (13), and (14), we have

Then (xn(/0 + T2),j>n(<0 + T2)) belongs to the second quadrant and
W ' o + irk)>yn(to + T+k)) b e l o n g s t 0 t h e third quadrant. Hence T2 ^
^ (A, * 2) and r2 = ^ ( A 2 = l ) .

By (14) and T2 = j ^ , we obtain

* « ( o = y » c + T 2 ) = - ^ c + 2 T
2 ) = - ^ e + 3 T

2 ) = ^ n ( ^ + 4 r )

Then

By (4) and (17), we have

xn{t-x)), (18)

n{t-x),xn{t)). (19)

By (18), (19) and (11), we have

Hence Jcn(O is a periodic solution of (1). By the proof of the lemma, xn{t)
is nonconstant oscillatory and has period of j ^ . Since n — m, m +
I, ... , m + k - I we obtain k nonconstant oscillatory periodic solutions.
The proof of Theorem 1 is now complete.

REMARK 1. By Theorem 1, if p < +00, q = +00 or p — +00, q < +00,
then (1) has an infinite number of periodic solutions.

In the case c = 0 , f(x,y) = F(y), we can choose g(x,y) - F(y).
Then, by Theorem 1, we have the following corollary:

COROLLARY 1. Suppose that
(a) F(y) is a continuous odd function, yF{y) > 0 (y ^ 0) and

J+ooF(y)dy = +00;
(b) limy^0F(y)/y =p, limy^+ooF{y)/y = q and

(l+4n)7r (H-4n)7t
P < -—i^— <q or q< i—-^-i— < p,
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[8] Existence of periodic solutions of NDDE 515

where n = m, m+l,...,m + k-l and m is some nonnegative integer,
k is some positive integer. Then the equation

x\t) = -F{x{t-x)) ( T > 0 ) (20)

has at least k nonconstant oscillatory periodic solutions. Specifically, if p <
+oo, q = +oo or p = +oo, q < +oo, then (20) has an infinite number of
periodic solutions.

REMARK 2. Corollary 1 generalises the result of Kaplan and Yorke [5].

3. Some examples

EXAMPLE 1. Consider

(x(t) + x(t - T))' = -a(xs(t - T) - x (t)) (21)

where a > 0 , T > 0 , s > l and 5 is a ratio of two positive odd numbers.
Then c = 1, f(x, y) = a(ys - xs). We choose g(x, y) = ays. It is easy
to show that g(x, y) satisfies the conditions of Theorem 1 and p — 0, q =
+oc. By Theorem 1 and Remark 1, (21) has an infinite number of periodic
solutions.

EXAMPLE 2. Consider

(x(t) - x(t - T))' = -(x(t) + x(t - T)) exp(-x\t) - x\t - x)), (22)

where x > (1+4(^~1))'t a n d £ is some positive integer. Then c = - 1 and
f(x ,y) = (x + y) exp(-x2 - y2). We choose g(x, y) = y e\p(-x2 - y2).
Hence, we have

xw{x2y2)=x.l {x>0 b>0)
yg(x,y) yexp(-x2-y2)

and

x2+y2
= 2 _ 2

It is easy to show that g(x, y) satisfies the conditions of Theorem 1 and

. ( l+4/l)7T . n i I i

q = 0<±—^—<\=p, n = 0, 1 , . . . ,k- 1 .

Then, by Theorem 1, (22) has at least k periodic solutions.
EXAMPLE 3. Consider

(JC(O + cx(t -x))' = -a( 1 + x2(t) + x2(t- x))(x(t - T) - cx{t)) (23)
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where a>0, T > 0 and c is a constant. Then, f(x,y) = a(l+x2+y2)(y-cx).
We choose g(x, y) = a(l + x2 + y2)y . Then we have

and

+ x)x=x l_ { x > 0 j y > b > 0 )

a(l+x2 + y2)y y ~

l (
x +y

It is easy to show that g(x, y) satisfies the conditions of Theorem 1 and
p = a , q = +oo. By Theorem 1 and Remark 1, (23) has an infinite number
of periodic solutions. Indeed, it is easy to show that

xn{t) = f (l+4n)n . \1 / 2 •1 j s

are the periodic solutions of (23), where m — [2T^~"] + 1. This is the same
conclusion as we obtain by Theorem 1 and Remark 1.
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