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Abstract

A scale-free tree with the parameter β is very close to a star if β is just a bit larger than −1,
whereas it is close to a random recursive tree if β is very large. Through the Zagreb index,
we consider the whole scene of the evolution of the scale-free trees model as β goes from
−1 to +∞. The critical values of β are shown to be the first several nonnegative integer
numbers. We get the first two moments and the asymptotic behaviors of this index of
a scale-free tree for all β. The generalized plane-oriented recursive trees model is also
mentioned in passing, as well as the Gordon–Scantlebury and the Platt indices, which are
closely related to the Zagreb index.
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1. Introduction

Recently, random networks have been a very popular research area among physicists and
mathematicians. A lot of effort has been put into the investigation of such systems, in order to
recognize their structures and to analyze emerging complex properties. It was observed that
most real-world networks share three prominent structural features: the small-world property,
high clustering, and scale-free degree distribution (see, for example, Dorogovtsev and Mendes
(2003)).

The scale-free trees model is one of the fundamental dynamics networks, which was
introduced in Barabási andAlbert (1999). In the beginning, we only have a single node labeled 0.
Progressively, nodes are added in steps: at the nth step a node in the existing tree is chosen
as the parent of the new node (labeled n). The probability that a given old node is chosen is
proportional to its degree. This principle of adding nodes is called preferential attachment.
Móri (2002) generalized this model by replacing the node degree with a fixed linear function
(weight) of itself. Formally, the probability that a given old node is chosen is (k + β)/Sn−1,
where β > −1 is a given real number, k is the degree of the node, and

Sn = 2n + (n + 1)β = (2 + β)n + β

is the sum of all the weights after the nth step. Clearly, the special case β = 0 is the Barabási–
Albert random tree.
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Phase changes in the topological indices of scale-free trees 517

The degree distribution of a scale-free tree is a power law (see Móri (2002)), like most of the
real-world networks (see, for example, Bollobás et al. (2001)). Móri (2005) also studied the
convergence of the joint degree distribution as well as the limiting distribution of the maximal
degree. The spanning trees of various real-world networks are also scale-free trees (see Kim et
al. (2004)). For recent works on the scale-free trees model and more background, we refer the
reader to Katona (2005), (2006), and Dondajewski and Szymański (2009).

The Zagreb index, one of the well-known topological indices in computational chemistry,
was introduced by the chemists Gutman and Trinajstić (1972). This index of a (chemical) graph
is defined as the sum of the squares of the degrees of all vertices in the graph. In chemistry,
graphs are generated from molecules by replacing atoms with vertices and bonds with edges, or
represent only bare molecular skeletons, that is, molecular skeletons without hydrogen atoms.
For a survey of the application of the Zagreb index in computational chemistry, we refer the
reader to Nikolić et al. (2003) and the references therein. The Zagreb index also attracts
attention in graph theory (see, for example, Andova et al. (2011), Nikiforov (2007), and Peled
et al. (1999)).

The small-world property in random networks is usually described as the average path
length (APL) between nodes is small. However, both the APLs of a scale-free tree and a
random recursive tree increase approximately logarithmically with the tree size n (see Durrett
(2007) or Bollobás and Riordan (2004) for the scale-free trees and Neininger (2002) for random
recursive trees), while the degree distribution of a random recursive tree is not a power law but
the geometric distribution (see, for example, Janson (2005)). Since the nodes with large degrees
will shorten the APL, there exists some inner connection between the small-world property and
the degree distribution. We propose the Zagreb index as a bridge between them. For any tree,
the total sum of the degrees of its nodes is determinately equal to twice the nodes number minus
two. But if we consider the sum of squares of degrees in a random tree, it is now a random
variable. The nodes with large degrees, if they exist, will contribute mainly to this quantity,
whereas this index will be small if the nodes have almost common degrees. That is, the effect
of the nodes with large degrees is magnified by the Zagreb index. For a tree T with size n, Li et
al. (2003) studied the extreme values of the Zagreb index of T : it reaches the minimum value
4n − 6 if and only if T is a path (with the longest APL) on n nodes, and reaches the maximum
value n(n − 1) if and only if T is a star (with the shortest APL) on n nodes.

Feng and Hu (2011) showed that a random recursive tree is much ‘closer’ to a path than
to a star by considering its Zagreb index: the Zagreb index of a random recursive tree is
approximately 6n. One can imagine the following fact. A scale-free tree with β close to −1,
say β = −0.99, is very close to a star, whereas it is close to a random recursive tree if β is very
large. Our aim is to study the phase changes in the Zagreb indices of scale-free trees. We will
show that the critical values of β are the first several nonnegative integer numbers.

For our work, it is easier to deal with the modified Zagreb index that is defined in exactly
the same way as the standard index, except that all the degrees of the nodes are changed to
their weights. Mathematically, for a scale-free tree after the nth step, we can define the general
Zagreb and modified Zagreb indices as

Z(m)
n =

n∑
k=0

Dm
n,k, X(m)

n =
n∑

k=0

(Dn,k + β)m, m = 2, 3, . . . ,

where Dn,k denotes the degree of node k. For the standard cases m = 2, we will suppress the
superscripts.
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Throughout, we will use the following notation. Let us denote by Hn the nth harmonic
number (i.e. H0 = 0 and Hm = ∑m

i=1 1/i for m ≥ 1), the integer part of a real number x by
�x�, and, for nonnegative integers n and k,

c[n, k] := �(n + β/(2 + β))

�(n + (k + β)/(2 + β))
.

For any fixed k > 0, it is easy to see that c[n, k] is strictly decreasing,

c[n + 1, k]
c[n, k] = Sn

Sn + k
,

and, as n → ∞,

c[n, k] = n−k/(2+β)

(
1 + O

(
1

n

))
. (1)

Our main results are the following two theorems.

Theorem 1. Let Zn be the Zagreb index of a scale-free tree after the nth step. As n → ∞, the
following assertions hold.

(i) If β > 2 then
Zn − (6 + 4/β)n√

n

d−→ N

(
0,

8(1 + β)2(2 + β)2

(β − 2)(β − 1)β2

)
.

(ii) If β = 2 then
Zn − 8n√
72n log n

d−→ N(0, 1).

(iii) If −1 < β < 2 then there exists a random variable Z with E[Z]2 < ∞ such that

c[n, 2](Zn − E[Zn]) → Z almost surely (a.s.) and in L2,

where E[Zn] is given in (6) below.

As the calculations of the moments of Zn in the next section reveal, Theorem 1 shows that
the normalized version (Zn − E[Zn])/√var[Zn] tends to a limit, which is normal for β ≥ 2
and a nondegenerate limit for −1 < β < 2. For many real-world networks, the parameter β is
small or even negative (see, for example, Albert and Barabási (2002)). Then it is necessary to
consider the further limiting behavior for the case −1 < β < 2.

Theorem 2. As n → ∞, the following assertions hold.

(i) If 1 < β < 2 then

n(2−β)/(2β+4)(c[n, 2](Zn − E[Zn]) − Z)
d−→ N

(
0,

8(1 + β)2(2 + β)2

(2 − β)(β − 1)β2

)
.

(ii) If β = 1 then

n1/6

√
96 log n

(c[n, 2](Zn − E[Zn]) − Z)
d−→ N(0, 1).

https://doi.org/10.1239/jap/1371648958 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648958


Phase changes in the topological indices of scale-free trees 519

(iii) If −1 < β < 1 then

n1/(2β+4)(c[n, 2](Zn − E[Zn]) − Z)
d−→ N(0, 4(Z̃ + C2)),

where the constant C2 is defined in (8) below,

Z̃ = lim
n→∞ c[n, 3](Z(3)

n − E[Z(3)
n ]) a.s.,

and the normal mixture N(0, 4(Z̃ + C2)) is defined as the distribution of the product

2
√

Z̃ + C2N with a standard normal random variable N , independently of Z̃.

The sequel is organized as follows. The first two moments of the Zagreb index of a scale-free
tree after the nth step are given in Section 2. We introduce several lemmas and give the proofs
of the main theorems in Section 3. In the last section, a related random trees model and two
topological indices related to the Zagreb index are mentioned in passing.

2. The moments

Let the random variables Zn and Xn respectively be the standard and modified Zagreb indices
of a scale-free tree after the nth step. Let Dn,k denote the degree of node k (i.e. Wn,k := Dn,k+β

is the weight of node k), and let Vn denote the label of the chosen node (the parent of the new
node) in the scale-free tree at the nth step. Note that the total sum of the degrees of the nodes
in a tree with size n is 2(n − 1). Then

Xn =
n∑

k=0

W 2
n,k

=
n∑

k=0

(Dn,k + β)2

=
n∑

k=0

D2
n,k + 2β

n∑
k=0

Dn,k + (n + 1)β2

= Zn + (4β + β2)n + β2. (2)

We also define Fn to be the σ -field generated by the first n steps of the scale-free trees.
Considering the insertion of node n at the nth step, we obtain

Xn = Xn−1 + (Wn−1,Vn + 1)2 − W 2
n−1,Vn

+ (1 + β)2

= Xn−1 + 2Wn−1,Vn + 2 + 2β + β2. (3)

Then

E[Xn | Fn−1] = Xn−1 + 2
n−1∑
k=0

P(Vn = k | Fn−1)Wn−1,k + 2 + 2β + β2

= Xn−1 + 2

Sn−1

n−1∑
k=0

W 2
n−1,k + 2 + 2β + β2

=
(

1 + 2

Sn−1

)
Xn−1 + 2 + 2β + β2

= c[n − 1, 2]
c[n, 2] Xn−1 + 2 + 2β + β2. (4)
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Taking the expectation of both sides of (4), we have

E[Xn] = c[n − 1, 2]
c[n, 2] E[Xn−1] + 2 + 2β + β2,

which, with the initial value E[X0] = β2, implies that

E[Xn] = c[0, 2]
c[n, 2]β

2 + 2 + 2β + β2

c[n, 2]
n∑

i=1

c[i, 2], n = 1, 2, . . . .

By (1) we have

E[Xn] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
β2 + 4β + 6 + 4

β

)
n + O(n2/(2+β)), β > 0,

2nHn = 2n log n + O(n), β = 0,

C1n
2/(2+β) + O(n), −1 < β < 0,

(5)

where

C1 := c[0, 2]β2 + (2 + 2β + β2)

∞∑
n=1

c[n, 2] < ∞

is a constant dependent only on β. By (2) we obtain the mean of Zn.

Proposition 1. Let Zn be the Zagreb index of a scale-free tree after the nth step. Then

E[Zn] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
6 + 4

β

)
n + O(n2/(2+β)), β > 0,

2nHn = 2n log n + O(n), β = 0,

C1n
2/(2+β) + O(n), −1 < β < 0.

(6)

An analogous technique to (3) gives

X(3)
n = X

(3)
n−1 + (Wn−1,Vn + 1)3 − W 3

n−1,Vn
+ (1 + β)3

= X
(3)
n−1 + 3Wn−1,Vn + 3W 2

n−1,Vn
+ 1 + (1 + β)3.

Thus,

E[X(3)
n | Fn−1] = X

(3)
n−1 + 3

Sn−1

n−1∑
k=0

(W 3
n−1,k + W 2

n−1,k) + 1 + (1 + β)3

=
(

1 + 3

Sn−1

)
X

(3)
n−1 + 3Xn−1

Sn−1
+ 1 + (1 + β)3. (7)

Write

bn := 3E[Xn−1]
Sn−1

+ 1 + (1 + β)3, n = 1, 2, . . . .
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Then

E[X(3)
n ] = c[n − 1, 3]

c[n, 3] E[X(3)
n−1] + bn

= c[0, 3]
c[n, 3]β

3 + 1

c[n, 3]
n∑

i=1

c[i, 3]bi, n = 1, 2, . . . .

By (5),

bn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β3 + 3β2 + 6β + 8 + 6

β
+ O(n−β/(2+β)), β > 0,

3Hn−1 + 2 = 3 log n + O(1), β = 0,

3C1(1 + β)

2 + β
n−β/(2+β) + O(1), −1 < β < 0.

Hence,

E[X(3)
n ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2 + β)(β3 + 3β2 + 6β + 8 + 6/β)

β − 1
n + O(n3/(2+β)), β > 1,

24n log n + O(n), β = 1,

C2n
3/(2+β) + O(n), 0 < β < 1,

C2n
3/2 + O(n log n), β = 0,

C2n
3/(2+β) + O(n2/(2+β)), −1 < β < 0,

where

C2 := c[0, 3]β3 +
∞∑

n=1

c[n, 3]bn < ∞ (8)

is a constant dependent only on β. Now, by (3),

E(Xn − Xn−1 − (2 + 2β + β2))2 = 4E[W 2
Vn,n−1] = 4

n−1∑
k=1

E[W 3
n−1,k]

Sn−1
= 4

Sn−1
E[X(3)

n−1].

It follows from (4) that the sequence {c[n, 2](Xn − E[Xn]), Fn, n ≥ 0} is a martingale. Then

E(Xn − Xn−1 − (2 + 2β + β2))2

= E(Xn − E[Xn] − Xn−1 + E[Xn−1])2 + (E[Xn] − E[Xn−1] − (2 + 2β + β2))2

= var[Xn] +
(

1 − 2c[n − 1, 2]
c[n, 2]

)
var[Xn−1] + 4

(
E[Xn−1]

Sn−1

)2

.

Hence,

var[Xn] =
(

2c[n − 1, 2]
c[n, 2] − 1

)
var[Xn−1] + b̂n = c[n − 1, 4]

c[n, 4] var[Xn−1] + b̂n, (9)
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where

b̂n := 4

Sn−1
E[X(3)

n−1] − 4

(
E[Xn−1]

Sn−1

)2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8(1 + β)2(2 + β)

(β − 1)β2 + O(n(1−β)/(2+β)), β > 1,

32 log n + O(1), β = 1,

4C2

2 + β
n(1−β)/(2+β) + O(1), 0 < β < 1,

4C2

2 + β
n1/2 + O(log2 n), β = 0,

4C2

2 + β
n(1−β)/(2+β) + O(n−2β/(2+β)), −1 < β < 0.

For any n ≥ 0, relation (2) implies that var[Zn] is equal to var[Xn], which can be directly
obtained from recurrence (9) with the initial values var[Z0] = var[Z1] = 0.

Proposition 2. Let Zn be the Zagreb index of a scale-free tree after the nth step. Then

var[Zn] = var[Xn]

= 1

c[n, 4]
n∑

i=1

c[i, 4]b̂i

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8(1 + β)2(2 + β)2

(β − 2)(β − 1)β2 n + O(n4/(2+β)), β > 2,

72n log n + O(n), β = 2,

C3n
4/(2+β) + O(n), 1 < β < 2,

C3n
4/3 + O(n log n), β = 1,

C3n
4/(2+β) + O(n3/(2+β)), 0 < β < 1,

C3n
2 + O(n3/2), β = 0,

C3n
4/(2+β) + O(n(3−β)/(2+β)), −1 < β < 0,

(10)

where C3 = ∑∞
n=1 c[n, 4]b̂n < ∞ is a constant dependent only on β.

An immediate consequence of Proposition 1 and Proposition 2 is the following result.

Proposition 3. Let Zn be the Zagreb index of a scale-free tree after the nth step. If β ≥ 0 then,
as n → ∞,

Zn

E[Zn]
P−→ 1.

Proof. For β ≥ 0, it follows by Proposition 1 and Proposition 2 that var[Zn] = o(E2[Zn]),
which implies the result via Chebyshev’s inequality.
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3. Proofs of the theorems

In order to prove the main results, we need the following auxiliary lemmas.

Lemma 1. The following assertions hold.

(i) For any β > −1, the sequence {c[n, 2](Xn − E[Xn]), Fn, n ≥ 0} is a martingale.
Specifically, if −1 < β < 2, there exists a random variable Z with E[Z2] < ∞ such that

c[n, 2](Xn − E[Xn]) = c[n, 2](Zn − E[Zn]) → Z a.s. and in L2.

(ii) Define
Tn := X(3)

n + 3Xn − E[X(3)
n + 3Xn]. (11)

Then, for any β > −1, the sequence {c[n, 3]Tn, Fn, n ≥ 0} is a martingale.

(iii) If −1 < β < 2, there exists a random variable Z̃ with E[Z̃2] < ∞ such that

lim
n→∞ c[n, 3](X(3)

n − E[X(3)
n ]) = lim

n→∞ c[n, 3](Z(3)
n − E[Z(3)

n ]) = Z̃ a.s.

Proof. It follows from (4) that the sequence {c[n, 2](Xn−E[Xn]), Fn, n ≥ 0} is a martingale
for any β > −1. For −1 < β < 2, Proposition 2 shows that

sup
n≥0

E(c[n, 2](Xn − E[Xn]))2 < ∞.

Then, by the martingale convergence theorem (see, for example, Theorem 2.5 and Corollary 2.2
of Hall and Heyde (1980)), assertion (i) holds by (2).

By (4) and (7), we have

E[X(3)
n + 3Xn | Fn−1] =

(
1 + 3

Sn−1

)
(X

(3)
n−1 + 3Xn−1) + c0

= c[n − 1, 3]
c[n, 3] (X

(3)
n−1 + 3Xn−1) + c0,

where c0 = 1 + (1 + β)3 + 3(2 + 2β + β2). Hence, assertion (ii) holds.
To prove assertion (iii), we first estimate the variance of X

(3)
n + 3Xn. Since {c[n, 3]Tn, Fn,

n ≥ 0} is a martingale, an analogous technique as the calculation of var[Xn] gives, for n ≥ 1,

var[Tn] = var[X(3)
n + 3Xn] = c[n − 1, 6]

c[n, 6] var[X(3)
n−1 + 3Xn−1] + b̃n, (12)

where

b̃n := 9

Sn−1
E[X(5)

n−1 + 6X
(4)
n−1 + 9X

(3)
n−1] − 9

S2
n−1

(E[X(3)
n−1 + 3Xn−1])2. (13)

Let

Z[n, k, 5] = c[n, 5]
(

Wn,k + 4

5

)
.

By Theorem 2.1 of Móri (2005), the process {Z[n, k, 5], Fn, n ≥ k} is a martingale and

E[Z[n, k, 5]] = E[Z[k, k, 5]] = c[k, 5]
(

5 + β

5

)
.
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This implies that

b̃n ≤ 9 · 5!
Sn−1

n−1∑
k=0

E

(
Wn,k + 4

5

)

= O

(
n−1

c[n, 5]
n∑

k=1

c[k, 5]
)

=

⎧⎪⎪⎨
⎪⎪⎩

O(1), β > 3,

O(log n), β = 3,

O(n(3−β)/(2+β)), β < 3.

We thus have

var[X(3)
n + 3Xn] = 1

c[n, 6]
n∑

k=1

c[k, 6]b̃k =

⎧⎪⎪⎨
⎪⎪⎩

O(n), β > 4,

O(n log n), β = 4,

O(n6/(2+β)), β < 4.

Then, for −1 < β < 4,
sup
n≥0

E[c[n, 3]Tn]2 < ∞.

Therefore, also by the martingale convergence theorem, there exists a random variable Z̃ with
E[Z̃2] < ∞ such that c[n, 3]Tn → Z̃, a.s. and in L2.

Note that

c[n, 3](X(3)
n − E[X(3)

n ]) = c[n, 3]Tn − 3c[n, 3](Xn − E[Xn]),
and c[n, 3]/c[n, 2] → 0 as n → ∞. By assertion (i), we thus have, for −1 < β < 2,

c[n, 3](X(3)
n − E[X(3)

n ]) → Z̃ a.s.

An analogous calculation to (2) gives

X(3)
n = Z(3)

n + 3βZn + 6nβ2 + (n + 1)β3,

which implies that

Z(3)
n − E[Z(3)

n ] = (X(3)
n − E[X(3)

n ]) − 3β(Zn − E[Zn]).
Also, by assertion (i), for −1 < β < 2,

lim
n→∞ c[n, 3](Z(3)

n − E[Z(3)
n ]) = lim

n→∞ c[n, 3](X(3)
n − E[X(3)

n ])

− 3β lim
n→∞

c[n, 3]
c[n, 2]c[n, 2](Zn − E[Zn])

= Z̃ a.s.

Then assertion (iii) holds.
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For β ≥ 2, define

A2
n := 1

c[n, 2]2 var[Xn] ∼

⎧⎪⎨
⎪⎩

σ−2
β n(2−β)/(2+β), β > 2,

1

72 log n
, β = 2,

(14)

where

σ 2
β = 8(1 + β)2(2 + β)2

(β − 2)(β − 1)β2 .

Lemma 2. If β ≥ 2 then

A2
n

n∑
k=1

c[k, 2]2

Sk−1
(X

(3)
k−1 − E[X(3)

k−1])
P−→ 0.

Proof. Note that c[n, 3] < c[n, 2]. By assertions (i) and (ii) of Lemma 1 and Doob’s
inequality, we have

E

[
max

1≤k≤n
{c[k − 1, 3](X(3)

k−1 − E[X(3)
k−1])}2

]
≤ 2E

[
max

1≤k≤n
{c[k − 1, 3]Tk−1}2

]
+ 18E

[
max

1≤k≤n
{c[k − 1, 2](Xk−1 − E[Xk−1])}2

]
≤ 8c[n, 3]2 var[X(3)

n + 3Xn] + 72c[n, 2]2 var[Xn].
Hence, for β ≥ 2,

P

(
A2

n

∣∣∣∣
n∑

k=1

c[k, 2]2 X
(3)
k−1 − E[X(3)

k−1]
Sk−1

∣∣∣∣ ≥ ε

)

≤ 1

ε2 E

(
A2

n

n∑
k=1

c[k, 2]2 X
(3)
k−1 − E[X(3)

k−1]
Sk−1

)2

≤ 1

ε2

(
A2

n

n∑
k=1

c[k, 2]2

c[k − 1, 3]Sk−1

)2

E

[
max

1≤k≤n
{c[k − 1, 3](X(3)

k−1 − E[X(3)
k−1])}2

]

≤ O(1)A4
n(c[n, 3]2 var[X(3)

n + 3Xn] + c[n, 2]2 var[Xn])
→ 0,

which completes the proof.

For −1 < β < 2, define

B2
n :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2 − β)(β − 1)β2

8(1 + β)2(2 + β)2 n(2−β)/(2+β), 1 < β < 2,

n1/3

96 log n
, β = 1,

1
4n1/(2+β), −1 < β < 1.

(15)
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Lemma 3. If −1 < β < 2,

B2
n

∞∑
k=n+1

4c[k, 2]2

Sk−1
(X

(3)
k−1 − E[X(3)

k−1])
P−→

{
0, 1 ≤ β < 2,

Z̃, −1 < β < 1,

where
Z̃ = lim

n→∞ c[n, 3](Z(3)
n − E[Z(3)

n ]) a.s.

Proof. Since
X

(3)
k − E[X(3)

k ] = Tk − 3(Xk − E[Xk]),
where Tk is defined in (11), it is sufficient to show that

B2
n

∞∑
k=n+1

c[k, 2]2

Sk−1
(Xk−1 − E[Xk−1]) P−→ 0 (16)

and

B2
n

∞∑
k=n+1

4c[k, 2]2

Sk−1
Tk−1

P−→
{

0, 1 ≤ β < 2,

Z̃, −1 < β < 1.
(17)

It is easy to check that, for any −1 < β < 2,

B2
n

∞∑
k=n+1

c[k, 2]2

Sk−1c[k − 1, 2] → 0.

Then, by assertion (i) of Lemma 1,∣∣∣∣B2
n

∞∑
k=n+1

c[k, 2]2

Sk−1
(Xk−1 − E[Xk−1])

∣∣∣∣
≤

(
B2

n

∞∑
k=n+1

c[k, 2]2

Sk−1c[k − 1, 2]
)(

sup
k≥n

|c[k, 2](Xk − E[Xk])|
)

→ 0 a.s.,

which, of course, implies (16).
Let

M̃k := c[k, 3]Tk − c[k − 1, 3]Tk−1, k ≥ 1.

Then

B2
n

∞∑
k=n+1

4c[k, 2]2

Sk−1
Tk−1 = B2

n

( ∞∑
k=n+1

4c[k, 2]2

Sk−1c[k − 1, 3]
)

c[n, 3]Tn

+ B2
n

∞∑
k=n+2

4c[k, 2]2

Sk−1c[k − 1, 3]
k−1∑

i=n+1

M̃i

=: I1(n) + I2(n).

Since

B2
n

∞∑
k=n+1

4c[k, 2]2

Sk−1c[k − 1, 3] ∼ 4B2
nn−1/(2+β) →

{
0, 1 ≤ β < 2,

1, β < 1,
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by the proof of assertion (iii) of Lemma 1, we have

I1(n)
P−→

{
0, 1 ≤ β < 2,

Z̃, −1 < β < 1.

By (12), as k → ∞, we have, for −1 < β < 2,

E[M̃2
k ] = c[k, 3]2 var[Tk] − c[k − 1, 3]2 var[Tk−1]

=
(

c[k, 3]2c[k − 1, 6]
c[k − 1, 3]2c[k, 6] − 1

)
c[k − 1, 3]2 var[Tk−1] + c[k, 3]2b̃k

= −9c[k − 1, 3]2

(Sk−1 + 3)2 var[Tk−1] + c[k, 3]2b̃k

= O(k−(3+β)/(2+β)),

where b̃k is defined in (13). Hence, as n → ∞,

E[I2(n)]2 = B4
nE

( ∞∑
k=n+2

4c[k, 2]2

Sk−1c[k − 1, 3]
k−1∑

i=n+1

M̃i

)2

= B4
nE

( ∞∑
i=n+1

M̃i

∞∑
k=i+1

4c[k, 2]2

Sk−1c[k − 1, 3]
)2

= B4
n

∞∑
i=n+1

E[M̃2
i ]

( ∞∑
k=i+1

4c[k, 2]2

Sk−1c[k − 1, 3]
)2

= O(1)B4
nn−3/(2+β)

→ 0,

which implies that I2(n)
P−→ 0. Then (17) holds. The proof of Lemma 3 is complete.

Proof of Theorem 1. The −1 < β < 2 case has been proved in Lemma 1. Here we consider
only the cases β = 2 and β > 2. By (2) and (6), we only need to prove that

Xn − E[Xn]√
var[Xn]

d−→ N(0, 1).

Let

Mk := c[k, 2](Xk − E[Xk]) − c[k − 1, 2](Xk−1 − E[Xk−1]), k = 1, 2, . . . , (18)

with M0 = 0. Clearly, the process {Mk, k ≥ 1} is a martingale difference sequence. By
Corollary 3.1 of Hall and Heyde (1980), it is sufficient to show that, for any ε > 0,

n∑
k=0

E[(AnMk)
2I (|AnMk| > ε) | Fk−1] P−→ 0 (19)

and
n∑

k=0

E[(AnMk)
2 | Fk−1] P−→ 1, (20)

where A2
n is defined in (14).

https://doi.org/10.1239/jap/1371648958 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648958


528 Q. FENG AND Z. HU

For (19), we only need to prove that

An max
1≤k≤n

|Mk| P−→ 0.

Note that |c[n, 2] − c[n − 1, 2]| ≤ c[n, 2]/n and c[n, 2](E[Xn] − E[Xn−1]) → 0. By (3), we
have

max
1≤k≤n

|Mk| = max
1≤k≤n

|(c[k, 2] − c[k − 1, 2])(Xk−1 − E[Xk−1])
+ c[k, 2](2Wk−1,Vk

+ 2 + 2β + β2) − c[k, 2](E[Xk] − E[Xk−1])|
≤ max

0≤k≤n−1

∣∣∣∣c[k, 2]
k

(Xk − E[Xk])
∣∣∣∣ + 2 max

0≤j<k≤n−1
{c[k, 2]Wk−1,j } + O(1). (21)

Thus, to prove (19), we only need to prove that

An max
0≤k≤n−1

∣∣∣∣c[k, 2]
k

(Xk − E[Xk])
∣∣∣∣ P−→ 0 (22)

and
An max

0≤j<k≤n−1
{c[k, 2]Wk−1,j } P−→ 0. (23)

Since, for large n,

max
1≤k≤n−1

∣∣∣∣c[k, 2]
k

(Xk − E[Xk])
∣∣∣∣ ≤ max

1≤k≤log n
{c[k, 2]|Xk − E[Xk]|}

+ 1

log n
max

1≤k≤n−1
{c[k, 2]|Xk − E[Xk]|},

it follows by Kolmogorov’s inequality for the martingale sequence and (10) that, for any ε > 0,

P

(
max

0≤k≤n−1

∣∣∣∣c[k, 2]
k

(Xk − E[Xk])
∣∣∣∣ ≥ εA−1

n

)

≤ P

(
max

1≤i≤�log n�{c[i, 2]|Xi − E[Xi]|} ≥ ε

2
A−1

n

)

+ P

(
max

1≤i≤n−1
{c[i, 2]|Xi − E[Xi]|} ≥ ε

2
A−1

n log n

)

≤ 4c[�log n�, 2]2 var[X�log n�]
ε2A−2

n

+ 4c[n, 2]2 var[Xn]
ε2A−2

n log2 n

→ 0

as n → ∞. Then (22) holds.
Write

M[n, n] := c[n, 1] max
0≤j≤n

Wn,j ≥ c[n, 2] max
0≤j≤n

Wn,j .

For any β > −1, by the proof of Theorem 3.1 of Móri (2005), the process {M[n, n], n ≥ 1} is
a nonnegative submartingale and, for any m > 2 + β,

sup
n

E[M[n, n]m] < ∞.
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Then, for any ε > 0, by Kolmogorov’s inequality,

P

(
An max

0≤j≤k≤n
{c[k, 2]Wk,j } > ε

)
≤ P

(
An max

0≤k≤n
M[k, k] > ε

)
≤ ε−mAm

n E(M[n, n])m
→ 0,

which, together with the fact that c[n, 2] < c[n − 1, 2] for any n ≥ 1, implies (23). Hence, the
conditional Lindeberg condition (19) has been verified.

By (3),
E[(Xn − Xn−1 − (2 + 2β + β2))2 | Fn−1] = 4E[W 2

Vn,n−1 | Fn−1]

= 4
n−1∑
k=1

W 3
n−1,k

Sn−1

= 4

Sn−1
X

(3)
n−1.

Note that

E[(Xn − Xn−1 − (2 + 2β + β2))2 | Fn−1]
= E[(Xn − E[Xn] − Xn−1 + E[Xn−1])2 | Fn−1]

+ (E[Xn] − E[Xn−1] − (2 + 2β + β2))2

+ 2(E[Xn] − E[Xn−1] − (2 + 2β + β2))E[Xn − E[Xn] − Xn−1 + E[Xn−1] | Fn−1]
= E[(Xn − E[Xn])2 | Fn−1] +

(
1 − 2c[n − 1, 2]

c[n, 2]
)

(Xn−1 − E[Xn−1])2

+ 4

(
E[Xn−1]

Sn−1

)2

+ 8
E[Xn−1]

S2
n−1

(Xn−1 − E[Xn−1]).

Then
n∑

k=1

E[M2
k | Fk−1]

=
n∑

k=1

(c[k, 2]2
E[(Xk − E[Xk])2 | Fk−1] − c[k − 1, 2]2(Xk−1 − E[Xk−1])2)

=
n∑

k=1

4c[k, 2]2

Sk−1
X

(3)
k−1 −

n∑
k=1

4c[k, 2]2

S2
k−1

(Xk−1 − E[Xk−1])2

− 4
n∑

k=1

(
c[k, 2]E[Xk−1]

Sk−1

)2

− 8
n∑

k=1

c[k, 2]2
E[Xk−1]

S2
k−1

(Xk−1 − E[Xk−1])

=
n∑

k=1

4c[k, 2]2

Sk−1
(X

(3)
k−1 − E[X(3)

k−1]) −
n∑

k=1

4c[k, 2]2

S2
k−1

(Xk−1 − E[Xk−1])2

− 8
n∑

k=1

c[k, 2]2
E[Xk−1]

S2
k−1

(Xk−1 − E[Xk−1]) +
n∑

k=1

c[k, 2]2b̂k

=: II1(n) + II2(n) + II3(n) + II4(n). (24)
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It follows by Lemma 2 that A2
nII1(n)

P−→ 0. By Chebyshev’s inequality, for any ε > 0,

P

(
A2

n

n∑
k=1

c[k, 2]2

S2
k−1

(Xk−1 − E[Xk−1])2 > ε

)
≤ A2

n

ε

n∑
k=1

c[k, 2]2

S2
k−1

var[Xk−1] → 0,

which implies that A2
nII2(n)

P−→ 0. Note that, for any β ≥ 2, the limit

lim
n→∞ A2

n

n∑
k=1

c[k, 2]2(E[Xk−1])2

S2
k−1

=: Lβ

exists and is positive, and, for any ε > 0,

|II3(n)|
8

≤ 1

2

(
4Lβ

ε

II2(n)

4
+ ε

4Lβ

n∑
k=1

c[k, 2]2(E[Xk−1])2

S2
k−1

)
.

Then, for any ε > 0 and sufficiently large n,

P(A2
n|II3(n)| > 8ε) ≤ P

(
Lβ

ε
A2

nII2(n) + ε > 2ε

)
≤ P

(
A2

nII2(n) >
ε2

Lβ

)
→ 0,

which also implies that A2
nII3(n)

P−→ 0. Finally, it is easy to check that limn→∞ A2
nII4(n) = 1

for all β ≥ 2. Hence, (20) holds. This completes the proof of Theorem 1.

Proof of Theorem 2. Note that, for −1 < β < 2,

Z − c[n, 2](Zn − E[Zn]) =
∞∑

k=n+1

Mk,

where Mk is defined in (18). By Corollary 3.1 of Hall and Heyde (1980), in order to prove
Theorem 2, it is sufficient to show that, for any ε > 0,

∞∑
k=n+1

E[(BnMk)
2I (|BnMk| > ε) | Fk−1] P−→ 0 (25)

and
∞∑

k=n+1

E[(BnMk)
2 | Fk−1] P−→

{
1, 1 ≤ β < 2,

Z̃ + C2, β < 1,
(26)

where Bn and C2 are defined in (15) and (8), respectively.
To prove (25), we only need to prove that

Bn max
k≥n+1

|Mk| P−→ 0. (27)

For any β > −1, by Theorem 3.1 of Móri (2005),

lim
n→∞

(
n−1/(2+β) max

0≤j≤n
Wn,j

)
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exists a.s. and the limit is positive and finite a.s. By the proof of Theorem 1, we have c[n, 2](Xn−
E[Xn]) → Z a.s. for any −1 < β < 2. Hence, similarly to (21), for −1 < β < 2, we have

max
k≥n+1

|Mk| ≤ max
k≥n

∣∣∣∣c[k, 2]
k

(Xk − E[Xk])
∣∣∣∣ + 2 max

k≥n+1

{
c[k, 2] max

0≤j≤k−1
Wk−1,j

}
+ max

k≥n+1
{c[k, 2]|(2 + 2β + β2) − (E[Xk] − E[Xk−1])|}

≤ O

(
1

n

)
+ O(n−1/(2+β)) + O(1)n−2/(2+β) a.s.

Now (27) follows directly and (25) holds.
Next we will prove (26). Similarly to (24), we have

∞∑
k=n+1

E[M2
k | Fk−1] =

∞∑
k=n+1

4c[k, 2]2

Sk−1
(X

(3)
k−1 − E[X(3)

k−1])

−
∞∑

k=n+1

4c[k, 2]2

S2
k−1

(Xk−1 − E[Xk−1])2 +
∞∑

k=n+1

c[k, 2]2b̂k

=: III1(n) + III2(n) + III3(n).

It is also easy to check that

B2
nIII3(n) →

{
1, 1 ≤ β < 2,

C2, −1 < β < 1.

By Chebyshev’s inequality, for any ε > 0,

P

(
B2

n

∞∑
k=n+1

4c[k, 2]2

S2
k−1

(Xk−1 − E[Xk−1])2 > ε

)
≤ B2

n

ε

∞∑
k=n+1

4c[k, 2]2

S2
k−1

var[Xk−1] → 0,

which implies that B2
nIII2(n)

P−→ 0. Now (26) follows by Lemma 3. This completes the proof
of Theorem 2.

4. The variants

Plane-oriented recursive trees are nearly identical to the Barabási–Albert random trees. In
the case the tree is embedded in the plane, the left-to-right order of the children of the nodes
is relevant (see, for example, Mahmoud et al. (1993)). The outdegree instead of the degree is
considered here. It is equal to the degree of the node minus one, except for the root, where it
is the same as the degree. If a vertex v has outdegree d then there are d + 1 possible ways to
attach a new vertex to v. We get the plane-oriented recursive trees model if all these possibilities
are equally likely. Namely, the probability that a vertex of outdegree d gets the new edge is
proportional to d + 1. In the generalized plane-oriented recursive trees model, this probability
is proportional to d + β for some β > 0 (see, for example, Drmota (2009, p. 255)). One can
get the analogous results by our method. We omit the details.

A path in a graph is a sequence of adjacent edges, which do not pass through the same vertex
more than once, and the length of the path is the number of edges in it. The degree of an edge
is equal to the number of its adjacent edges. For a simple graph G, the Gordon–Scantlebury
index of G is equal to the number of paths of length two in G (see Gordon and Scantlebury
(1964)), and the Platt index is equal to the total sum of edge degrees in G (see Platt (1947)).
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The Zagreb index is related to the Gordon–Scantlebury and Platt indices (see, for example,
Barysz et al. (1986)). Let ZG, SG, and PG be the Zagreb index, the Gordon–Scantlebury index,
and the Platt index of graph G, respectively. Nikolić et al. (2003) showed that

ZG = 2(SG + E(G)) and PG = 2SG,

where E(G) denotes the number of edges in G. Since the number of edges in a tree of size n

is obviously n − 1, one can directly establish parallel results for the Gordon–Scantlebury and
Platt indices of a scale-free tree. We also omit these details.
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