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1. Introduction.
Let % be a covering of a topological space X and 3F a sheaf of abelian

groups over X. By a well known result of Leray, (3) II theorems 5.2.4. and
5.4.1., if % is open, or closed and locally finite, there exists a spectral sequence
{Er} satisfying isomorphisms £§•« ^ Hp{<%, 3Vq{2F)} and ££« ^ <gpHp+l>(X, &)
for some filtration of the graded group H*(X, &). 3%"'(&') denotes the system
of coefficients over <%: s-+H*(\ s |, J^).

In this paper we shall derive another Leray sequence, given in Theorem 1
when °U is locally finite, open or closed, which satisfies isomorphisms Epiq =

and ££« ^ ytP+XX, F) with a suitable filtration of the

Cech cohomology H*(X, &). &"{&) is the system: s^H"(\ s |, &), this
being the " restricted " cohomology of | s \ as a subspace of X introduced in
Definition 1 of § 2.

The method used is equivalent to taking the double complex C*'* {^, V; J5"}
defined by a pair of coverings % and "V, (4) p. 220, forming its spectral sequences,
and taking their direct limit as "V runs over " all " open coverings of X. One of
these spectral sequences will degenerate provided ^ admits an open refinement;
the other will then be the Leray sequence given in Theorem 1.

In § 4 we express the restricted cohomology fl *{M, !F) of a subspace McX
as the Cech cohomology of the closure M with coefficients in an associated

sheaf $F which is the direct image of !F under the inclusion map M^M. In
Theorem 2 we obtain a spectral sequence relating the restricted and true
cohomologies of M, which leads to a sufficient condition for them to be
isomorphic.

Finally in Theorem 3 we obtain a map of spectral sequences from the
sequence of Theorem 1 to the usual Leray sequence for an open covering, and
characterise this map in the E2 terms.

2. Basic Definitions and Operations
See (3) I 1.6., 2.1., 2.2., 2.6., 3.3., 4.4., 4.5., 4.8., II 5.1., 5.8., (2) V 5., VIII,

and (1) XV 5.12.
We denote by \\ At the direct product of a family of abelian groups {At}iel;

i

by lim Ax the direct limit of a direct system of abelian groups {Ax} over a
A
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directed set A; and by H"A* the nth cohomology group of a cochain complex
A* = (A\eZ.

If Y]Af = (T[A?)aeZ is the direct product of complexes A? then HnT\Af s
/ / /

Y[H"A*, so that direct products commute with the formation of cohomology

groups. If Af is a direct system of complexes then H"lim A*= lim H"A*, so
A A

that direct limits commute with the formation of cohomology groups.
If °U = {^J i e / is a covering of a topological space X we may call any

ordered sequence J = (ioil...ip) of (p+1) elements of I an ordered p-simplex of
°U. We denote by | s | the (possibly empty) set Uio n...nUip and by Sp(«) the
set of ordered p-simplexes of <%. If !F is a sheaf of abelian groups over X, or
any system of local coefficients over °U, then the complex C*(fil, !F) of cochains
of % with coefficients in & is defined with Cp(^l, 2F) = \\&<\ s |), seSp(<%).

s

Let R(X) be the set of all open coverings of X of the form °U = {Ux} indexed
by x e X, such that x e Ux all x. Define an ordering relation > in R(X) by
putting {Ux}$> {VJ iff [/x=> Kx each xe X. More generally, if M is any subset
of X, put {£/J > M {Vx) iff CA,nM=> VxnM each x e l , /{(Z)is a directed set
with respect to each of the relations |> and >M. Let RM(X) be the set of
coverings {Vx} e R(X) such that VX<=X-M if x e X-M. If Af is closed in X
then i?M(̂ T) is cofinal in R(X), so that MnRM(X) is cofinal in Mnii (J) . But
M nRM(X) with the ordering induced by > M may be identified with R{M) and
thus R(M) is cofinal in Mni ! ( I ) (1)

C*{?U, J5") is a direct system of complexes over "U e -R(A') with the relation > ;
and C*(M r\%, #") is a direct system over R(X) with each of the relations >
and >M, the maps of the system being the same for %PY~ as for %^My.
Moreover lim C*(M r\<%, &) ^ lim C*(M nfy, 3?).

Definition 1. If M is any subset of X and gF a sheaf over M, then we put

C*{M,3?)= lim

and call it the complex of restricted cochains of M (as a subset of X) with coefficients
in ^ \ When M = X we have in particular the tech complex C*{M, IF) =

lim

We call the cohomology groups of these complexes the restricted cohomology
H*(M, &) (of M as a subset of X) and the tech cohomology H*(M, SF)
respectively. The restricted cohomology is that obtained by using only cochains
relative to those coverings of M which can be obtained by intersection from
coverings of the whole space X.

If <& is any covering of X and & a sheaf over X, let K** = C*{°U, <£*(&)}
be the bigraded group defined by:

C>{%, &(&)} = UC%\ s \, 3F), seSp(®) (2)
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i.e. the group ofp-cochains of % with coefficients in the system: s-*Cq(\ s |, J5").

The differentiations in the complexes C*{°U, <%"(&)} and C{%, <%*(&)} define
endomorphisms d' and d" in K*- * of degrees (1, 0) and (0, 1) with d'd" = d"d'.
If dt and d2 are the endomorphisms in K*' * with dt = d' and d2 — (— l)"d"
on homogeneous elements of degree (p, q), then d\ = d\ = d1d2 + d2dl = 0, so
that K*' * is a double complex with differentiations dx and <i2-

If K*' * is any double complex and {'Er} its spectral sequence with respect to
its first nitration, we have isomorphisms 'Ep

2-
 q^ 'Hp"HqK*'- *" the primes

indicating which complexes the cohomology operators act on. If L* ̂ * K*' *
is the inclusion map of the d2 0-cocyles of K*' * then:

'E"i° £ 'H""H°K*'- *"^ HnL*.

With this isomorphism the map 'En
2' ° -> H"(K) denned by the spectral sequence

is the same as the induced map of total cohomology:

H-L* -i H\K*- *) (3)

In particular if the sequence degenerates, i.e. if '£§•« s 'Hp"HqK*'- *"= 0 all
<7>0, then (3) will be bijective all n. We have a similar result for the inclusion
map of the dy 0-cocycles.

3. A Spectral Sequence defined by a Covering
Lemma 1. If {M t} i el is a locally finite family of subsets of a topological

space X, and if {i^1} ie I is a family of coverings belonging to R(X); then there
exists <%° 6 R(X) such that iri>M,'%0 each i e /.

Proof. Let "T* = {V^} each i. Let x e X; choose an open neighbourhood
Wx of x such that Wx intersects only a finite number of members of {M^:
Mi0,...,MiN say. Put U% = WxnV>°n... nVi". Then U°n>Ml<=WxnMl = 0
if i4(i0, ..., /jy) and UX<=VX if/e(/0, ..., iN). Choose U% similarly for each
xe X; then ^1° = {Ux} satisfies the required conditions.

Lemma 2. If °U is a locally finite covering of X then for all p, q^.0:

lim n c p ( | s I n-T, ^)^\[ lim C(\ s I n-f, &)
ir s s ir

over -V 6 R(X), > andse Sq(?ll).

Proof. Let 9: lim YlC"(\ s \ n f , ^)-*Y\ l i m c"( | s i ni^> &) t»e the homo-

morphism denned by 0[lim ]\cp{s, V°)\ = ]\ lim cp(s, -T0) for any set of ele-
> s s >\. i

ments cp(s, -V0) e C"(\ s \ n"T°, S?). By the limit of an element we mean its
projection in the limit group.

Then lim Y\cp(s, TT°)e kernel 9 => lim c\s, V°) = 0 all s e Sq(fll) => for all
s, 3 -Ts e R(X) such that * - 0 > M "r s ' and n^{c\s, TT0)] = 0, where {«£'}
are the maps of the direct systems involved. But °U is locally finite, so
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that the collection of subsets {| s |} for s e Sq{%) is locally finite, and therefore
by Lemma 1 there exists <%° e R(X) with ys>[s ft0 all s e Sq(%); we can also
take -r°><%°. It follows that n&[cp(s, r°)] = <o7r£°[cp0, y 0 ) ] = 0, so that
lim J'Jc'Xy, 'V0) = 0 and 9 is a monomorphism.

Also if IT l i m c'(ji, rs)eY\ lim C(\ s \ n f , 3?) then by Lemma 1 there

exists ®° e R(X) with iT s >, , \<%° each j . Thus

= 0[lim Hindis, 1T-)}]

which shows that 0 is also an epimorphism.
The isomorphism

6: lim Y\C(\ s

together with the isomorphisms

lim Cp(j 5 | nrT, &) s lim
> h

prove the lemma.
We are now in a position to obtain a Leray sequence for a locally finite

covering, as follows.

Theorem 1. If °U is a locally finite, open or closed, covering of a topological
space X, admitting an open refinement, and if ^ is a sheaf of abelian groups over
X; then the Cech cohomology group H*{X, !F) has a filtration so that there exists
a spectral sequence {Er} with isomorphisms

EP,q ^

and

all p, q^O; where JFq(tF) denotes the system of coefficients : s-*Hq(\ s |, J5")
(see Definition 1 of § 2).

Proof. Let K*-* = C*{<%, <#*(Jzr)} be the double complex introduced in
(2), and let 'E(K) and "E{K) be its two spectral sequences; see (3) I 4.8. We
shall show that "E(K) degenerates and that rE(K) fulfills the requirements of the
theorem.

In the first place

HqC{<%, <£

since direct products commute with the formation of cohomology groups; thus
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and hence

'£§•« (K) =* 'Hp"HqC*'{qi, <£*"

The primes indicate which complexes the cohomology operators act on.
Moreover

a{% £>"(#•)} n p(| s |, &) q

= n I'm C(\ s I n-r, 3F)
s -fsR(X)

s Hm ncp(| s | n f , Ĵ )

by Lemma 2, since ^ is locally finite; therefore

& s Hm n n ^ ( | s\n\t\) te S
•r s i

no
•V t s

n
r t

so that

s /?«lim
•r t

S lim
•v t

= 0 (alU>0),

since 11 admits an open refinement and hence a refinement by an element
•V e R(X). For such an element | t \ c\°U is a trivial covering of | r | each
16 SPC*O and therefore H\\ 11 r\%, &) = 0 for all q>0.

Also

/f°C*{^, ' t"^)} s lim n/r°(| (I n<%, &)
•r t

S lim n^ ( l < |) by (3) II 5.2.2.
•tr t

= lim Cp{-T, 3F)
•v

= C"(X, 3F).
Thus

"£§• «(K) s lH

= 0 (alU>0),
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and

"Eni °(K) s lHn"H"C*"{aU, &*'(

S 'H"C*\X, S?)

= H%X, &).

This shows that the spectral sequence °E(K) degenerates, giving isomorphisms
(1) XV 5.12.:

H*(X, P) s "E*- °(K) S H\K),

this being the total cohomology of the double complex K*' *, and giving
H*(X, $?) two filtrations induced by those of K.

Finally
'£& %K) =S '<S'H'+\K) see (3) 1 4.2.2.

S l(SpHpJr\K),

which completes the proof that 'E(K) is a spectral sequence satisfying the
required conditions.

4. The Restricted Cohomology of a Subspace
The restricted cochains of a subspace M c X, with coefficients in a sheaf J*

over M, can be expressed as Cech cochains of the closure M with coefficients

in an associated sheaf !F as follows. Let 3F be the direct image (3) II 1.13. of

!F under the inclusion map i: M-+M; this is the sheaf defined by &{M nU)
= 8F(M n U) for open sets U of X. If y is an open covering of Z then

n i J D

giving an isomorphism of complexes C*{Mr\"V, IF) ^ C*(Mr\i^, #"). So
that

C*(M, &) = lim C*(Wnf, #")

S lim C*(Mnf ,# )
*"eR(X)

^ lim_ C*(TT, # )
TeR(M)

by (1) since M is closed in X; i.e. C*(M, &) ^ (?*(M, # ) and thus
H*(M, SF) s ^*(M, # ) (4)

This shows in particular that the restricted cohomology may differ from the
true cohomology. For if A' is a 2-sphere and M = X—p where p is any point
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of X, and if Z is the simple sheaf of integers over M, then Z is the simple sheaf
of integers over M = X; therefore H\M, Z) S H2(X, Z) # 0, while

H\M, Z) = 0.

The relation between the restricted and true cohomologies of a subspace
can in general be expressed in terms of a spectral sequence, according to the
following theorem.

Theorem 2. If' 3F is a sheaf over M<=. X then there exists a spectral sequence
{Er} satisfying isomorphisms

and

for some filtration of H*(M, &).

Proof. Consider the double complex K*'* = C*(M, if*), where if*
= <g*{M, J5") is the canonical flabby resolution (3) II 4.3.

Since the operations of taking sections, direct products and direct limits
are left exact at least, the exact sequence of sheaves 0 -» 3F >̂ if0 -> if1 gives an
exact sequence of groups 0 -> €"(M, &) ^ C"(M, £C°) -» C"(M, if1) eachp^O,
which shows that

.A : C*(M, 3?) -> C*(M, JS?*) (5)

embeds C\M, &) as the subcomplex of d2 0-cocycles of K*1 *; and therefore

HoKp, * s g"(M, J*0 (6)
Similarly the exact sequence (3) II 5.2.1. 0 -> if« ^ <e\M r\Y', i?«) -»•

^ ( ^ n f , if") for each 1T e i?(Z) and g-^0, gives an embedding
j 2 : C\M, <F) - C*(M, if*) (7)

of C*(Af, ^") as the subcomplex of dt 0-cocycles of K*' *.
But

M, ifp)

= H* lim C*(M o r , if")

S lim Hq(Mnr,SCp)

= 0 (allg>0)

by (3) II 5.2.3. since if" is flabby all p^O; and therefore applying (3) we see
that (7) induces an isomorphism all n^O

j 2 : H\M, &) s H\K*- *) (8)

If {.E,} is the spectral sequence of K*' * with respect to its first filtration, then
En,o~ >H
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where H*(M, !F) is filtered by the isomorphism (8) and the first filtration of
K*' *. {Er} is therefore a spectral sequence satisfying the required conditions.

Corollary. There exists a homomorphism H*(M, ^)^H*(M, J*). This is
bijective if M is paracompact and if lim H"(M nU,^) = 0 for all n>0, each

x e M; where *P(x) is the directed set of open neighbourhoods of x in M, ordered
by inclusion.

Proof. The spectral sequence of the previous theorem defines a homo-
morphism, (3) I 4.5. El'°^H\K) i.e. H\M, ^)^H\M, &) each n^O. This
is bijective if the sequence degenerates, i.e. if Ep

2'
q = 0

Now

HqC"(M, &*) £ HqC"(M, &*) by (4)

= H" lim_ n ^*(
•TeR(M)

by (3) II Lemma 4.9.1. since each Mn\ s \ is open in M and if* is the canonical
resolution of J5" over M.

Thus HqC"(M, Se*) ^ C"(M, J^f") where Jf" denotes the presheaf over M:
= Hq(MnU, 3?); and therefore

s HP(M, jeq)

= 0 (alU>0)

by (3) II 5.10.2. since the sheaf generated (3) II 1.2. by 3fq over M has stalk over
x: J^q(x) = lim Hq(MnU, &) which is given to be zero all xeM,q>0.

5. Relation to the Leray Sequence
In (3) theorems II 5.4.1. and II 5.2.4. the Leray spectral sequence of an open,

or a closed locally finite, covering °U is given satisfying isomorphisms Ep
2'

q =
H"{%, <?f «(#•)} and Ep

2'
q s <$PHP+\X, &) where JT«(JF) denotes the system of

coefficients s^Hq(\ s\,&).
If °U is closed and X paracompact the Cech and restricted and true coho-

mology groups of | s | are all isomorphic for simplexes s of °U. The sequence of
Theorem 1 will then be isomorphic to the Leray sequence. In the case of an
open covering we have the following result.

Theorem 3. If^l is a locally finite open covering there exists a map of spectral
sequences from the sequence of Theorem 1 to the Leray sequence of (3) II 5.4.1.

This is induced in the E2 terms by the map of local coefficients over % :
-*3tf'*(!F) defined by the homomorphism of the corollary to Theorem 2.
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Proof. Consider the double complexes K*- * = C*(<%, $*{&)} and K%' *

= C*{%, <6\X, 3F)}\ and the triple complex is:*1 *• * = C*{<%, <$*[<<g*(X,
the latter having differentiations du d2 and d3. The sequences of Theorem 1
and of (3) II 5.4.1. are the spectral sequences of like Kl and K2 respectively
with respect to their first nitrations.

The embeddings (5) and (7):

C*Q s |, JO iJ- C*[\ s |, V*{X, JO] ^ C*{\ s |, JO (9)

for each s e SJtfl), give embeddings:

i.e. K\- * iXK*-*-* {I K2*- * (10)

We have used the fact (3) II Lemma 4.9.1. that <$*{X, JO | | S | = #*( |s | , .F)
since °U is open.

In the induced map of total cohomologies of (9):

H\\ s |, JO J"+ H"{C*[\ s |, <g*(X, JO]} +1 H\\ s |, 3F), (11)

we have from (8) t h a t ^ is bijective, and by (3)

H1 -Ji- H%\ s \, F) -» H\\ s |, JO (12)

is the homomorphism of the corollary to Theorem 2.
Let X*• * be the double complex defined by JTP-« = £ Kp> «'•r> with

q' +r' = q
differentiations dx and d2+d3. Then (10) defines maps of double complexes

v-*, * ji v-*, * JI v*. *

and hence, by (1) XV 6., maps of spectral sequences

;£(X,) ii. '£(jf) 4£ 'E(K2), (13)

taking the first filtration of each double complex.
The Ep

2- " terms in (13) are

*'• *" j\ ' r / p m ^ * ' , *" Jz >ui>"fj1tr*'Hp"HqK?' *" JJ> 'Hp"Hqtf *'• *" i± 'Hp"HqKt' *", (14)

which are just the maps of the />th cohomology of <% induced by the maps of
local coefficients (11) over simplexes s of %. Therefore j 2 in (14) is bijective and
hence, by (1) XV 3.2., j 2 in (13) is an isomorphism of spectral sequences.

Thus j j 1 .ji'. 'E{K^)^<-'fi{K2) is a map of spectral sequences induced in the
E2 terms by the maps of local coefficients (12) for simplexes s of %; which
completes the proof of the theorem.

In conclusion, I wish to thank Sir William Hodge for much helpful advice.
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