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7. Adequacy of the Calculus of Deduction. It is the pur-
pose of the calculus described in the preceding section (i) to
yield as theorems all tautologies which can be formulated in
terms of the -given variables, and (ii) to yield no other for-
mulae as theorems. We shall establish presently that these two
conditions are indeed satisfied. However, there are questions
of a more general character which can be solved both with regard
to the present calculus and with regard to many other calculi,
including some with a more comprehensive vocabulary. One of
these questions, which is of fundamental importance, is -

(iii) Is the calculus under consideration consistent (non-
contradictory)? Can we perhaps obtain by its use not only tauto-
logies and not only sentences which are true for some truth values
of the variables and false for others, but even formulae which are
identically false? If so, let X be such a formula and let Y be any
other formula. Then it will be seen that X>Y is a tautology.
Hence, if (i) is satisfied, we can derive XY as a theorem, and
hence, we canderive Y, by 6.3. It follows that we can derive
all formulae. Thus, for all calculi which include the present
calculus of deduction, it is reasonable to define that such a
calculus is consistent if not all formulae of the calculus are
derivable in it as theorems. In the present case it is clear that
if we establish (ii) then we have thereby proved also (iii).

Another important question is -

(iv) Is the calculus complete in the sense of being saturated
or maximal? We shall say that the calculus is incomplete if it is
possible to add a formula X as an axiom such that the resulting
calculus is consistent, although X is not a theorem of the original

calculus. It will be shown that the present calculus is indeed
complete in this sense.
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We shall now sketch the proof of the fact that (i) above is
satisfied. For this purpose it is required to show first that the
following are theorems of the calculus.

7.1. (pvigvr)s(pv @) v x)
((pvavr)o(pvigvr)
7.2. ((pvaalpvr))o(pviqgar))
(pvigar))o((pvaalpvr))
7.3. (~pv~qQ>o~(pAQ)
~(pAQq)>(~pV~aq)
7.4. (~PA~Q)D~(pva)
~ (pvq)>(~PA~q)
7.5. po>~~p
~~P 2P

In this list, the connective of conjunction is to be regarded
as an abbreviation; p Aq stands for ~(~pV ~q).

We shall derive the two formulae of 7.5. The derivation
of the remaining formulae is left to the reader's (it is hoped,

considerable) ingenuity.

In order to derive the first formula of 7.5 we first subs-
titute ~ p in (11) of section 6. This yields
P

(12) ~ ~DpV ~Dp

Next substitute ~~ p , then ~p in (3) of section 6. This yields
P q

(13) ~ (~~pPVAp)v(~vp VA ~P)

Applying the rule of modus ponens 6.3 to (12), (13), we then
obtain

(14) ~PVAAD
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which is the first formula of 7.5.
Substituting ~p in (14) we obtain
P

Also, making the substitutions ~p, ~~ ~p , and P in (4)
we obtain P q r

(16) (~p2~~~p)s ((Pv~ p)2 (PVA ~ ~p))

The implicans of (16) is, except for the notation, the
same as (15) and so, again by 6. 3.

(17) (pv~p)d> (pv~ ~ ~D)

is a theorem. Now pv ~ p is a theorem, by (3) and (11) (compare
the passage from (12) to (14). Hence pva~ ~ ~ p is a theorem
and hence, by the same argument,

is a theorem. But this is the second formula of 7.5.

It will be seen that the pairs of formulae 7.1 - 7.5 are all
of the form X> Y, Y o X. To obtain further pairs of formulae
of this type, we only have to substitute arbitrary formulae X, Y,
Z ,for p, q, r. Other pairs can be obtained by means of the
following theorems which are again stated here without proof.

7.6. (p>q)>(~q>~p)
7.7. (pogq)o((pvr)s(qvr))
7.8. (poqo( (rap)> (raq )

(poq)>( (p(\r)a (qAar))

For example, if XoY, Yo X are theorems then we see
from axiom (4) and 7.7 that (ZVX)2(Z2VvY), (ZVY)>(ZV X),
and again (XV Z)2 (YvZ), (YVZ)D(XvZ) also are theorems.
Similarly, if X>Y and Y5 X are theorems, then by 7.6 ~Y>s~X
and ~X>~Y also are theorems.
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More generally, we have the following rule of replacement.

7.9. Let W(p) be a formula which contains the propositional
variable p, possibly more than once. We write W(X), W(Y) for the
formula obtained from W(p) by replacing p everywhere by X and Y,
respectively. Then if XoY and Y> X are theorems of the calculus,
so are the formulae W(X)> W(Y) and W(Y)> W(X).

Proof. Suppose first that W(p) contains p only once. Then
W(p) is obtained from p by applying to p the operations of negation,
~ , and of disjunction with some other formula (which does not
contain p)successively,in a specified manner. Also, W(X) and
W\(Y) are obtained by applying the same operations to X and Y
respectively. As we have just seen, theorems (4), 7.6, and 7.7
ensure that at each step we obtain formulae X', Y', such that
X!'> Y'and Y'D X' are theorems. This establishes 7.9 in the
particular case that p occurs only once in W(p). If p occurs more
than once, then we replace p in each occurrence by a different
variable p; which does not occur elsewhere in W, X, or Y. The
resulting formula may be written W'(p, Pps - +- pk). By what
has already been proved, we have

wY(X, Pp--- > pk)D WYY, py, . Py)
and

WY, pps vvv s pk)D W'(X,pz, ,pk)
and moreover

wY(Xx, X,..., pk)D wH Y, X, ...pk)

wYY, X, ..., pk)D WYX, X, ..., pk)

~W‘(Y, Y,..., pk): WYY, X, ..., pk)

WYY, X, ..., pk)a wyy, Y, pk)

Hence, by (5) and 6.3
WX, X, ... p) 2 WHY, Y, ..., py)

and wY Y, Y, ...pk)b wNX, X, ..., pk)
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Continuing in this manner, we obtain
W(X)> W(Y) , W(Y)> W(X).
Finally, we require the following rules.

7.10. For any formula X, ~Xv X is a theorem, in par-
ticular ~ qv q is a theorem for any variable q.

7.11. For any theorem X, the formula Xv Y also is a
theorem.

7.12. I1f XvY is a theorem then Yv X also is a theorem.

7.13. IfXv(Ywv Z) is a theorem then (Xv Y)v Z also is a
theorem; if (Xv Y)v Z is a theorem, then Xv (Yv Z) is a theorem.

7.14, If X and Y are theorems then XAY also is a theorem.

7.10 follows directly from (11), 7.11 follows from (2) and
6.3, 7.12 follows from (3) and 6.3, 7.13 follows from 7.1 and
6.3. 7.14 requires the prior derivation of the theorem p >
(g@> (pA q)) which will be omitted.

Now let X be a formula which is a disjunction of propositional
variables and (or) of the negation of each variable taken in any
order and in any manner of association. Suppose that X represents
a tautology, then X contains at least one variable, p say, together
with its negation, ~» p. We denote by qys --- 5 Q the remaining
variables of X, or their negations, if the latter appear in X, and
we use a separate q; for each occurrence of a variable (possibly
again p or ~p). Then the formula

X¥=(... (({ ~pvP)va¥)vg,¥)v ... vq ¥)

differs from X (if at all) only in the order of the variables and in
the manner of their association in disjunction.

*
Now X is*a theorem by rules 7.10 and 7.11. But X can be
obtained from X by applying the associative and commutative

laws to the disjunctions. Hence X also is a theorem, by 7.12
and 7.13.
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Next, let X be a formula which is in conjunctive normal
form (see section 4), and which represents a tautology. Then
the conjuncts of X are disjunctions of the type just considered
and each of them is a tautology and hence a theorem. If follows
that X also is a theorem, by 7. 14.

Now let X be any formula which represents a tautology.
It was shown in section 4 that by means of the equivalences 3. Z
3.4, 3.5, 3.7, 3.8, 3.9, we can transforrn X into a formula X*
in conjunctive normal form such that X* also represents a taut-
ology. It follows that X* is a theorem of our calculus. In order
to deduce from this factthat X also is a theorem, we only have
to apply the procedure of section 7 '"in reverse''. Now the
possibility of carrying out this procedure follows directly from
7.1 - 7.5 together with the rule of replacement 7.9. For example,
it follows from 7.3 in conjunction with 7.9 that in any theorem we
may replace ~X v ~Y by ~(XAY). Inthis way we may reduce
x*to X step by step, showing that X also is a theorem. This
settles (i) above.

Next, we wish to show that all theorems of the calculus of
deduction represent tautologies. For this purpose, we check
first that the axioms (1) - (4) in section 6 are tautologies. Next
we reflect that the substitutions of an arbitrary formula in a taut-
ology vields a tautology. Finally, we observe that the rule of
modus ponens when applied to tautologies X, X> Y yields a taut-
ology Y. This shows that the derivation of new theorems by
means of 6.2, 6.3, can only lead to tautologies. Thus, we have
settled (ii) (see the beginning of this section), and thereby, (iii).

We shall now show that the calculus is complete in the
sense defined under (iv).

Let X be a formula which is not a theorem of the deductive
calculus considered so far, and hence, is not a tautology. We
have to show that the addition of X to the axioms (1) - (4) renders
the system contradictory.

Let X**be a formula in conjunctive normal form, such that
Xo>X and X o X are tautologies and hence theorems. We know
how to determine X" by the rules of section (3) (compare an
earlier argument in this section). Then X* becomes a theorem
of the augmented calculus, although it is not a tautology. More-
over, we may assume that x* is of the form XI/\XZ where X1 is
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a disjunction of variables and (or) of the negation of such variables,
such that no variable occurs in X, together with its negation

(since X* is not a tautology.) Then X, is a theorem, in view of

the tautology pA q> p, i.e. (~pVv ~q) vp.

Now suppose that p is a variable which does not occur in X,
and substitute p for each variable of X; which occurs without the
negation sign, and ~p for each variable which occurs with the
negation sign. Write p for the double negations ~ ~p which
appear after the substitutions. The resulting formula, X3, is
still a theorem by the rule of replacement, 7.9.

X3 is a (repeated) disjunction of the single variable p.
Hence, X3o p is a tautology, and therefore a theorem, and p is
a theorem. But if so, then any other formula Y is a theorem,

since it can be obtained from p by means of the substitution Y,

p
This completes the discussion of the points raised at the

beginning of this section. There is another question which is of
a somewhat less fundamental character, although historically it
is the question most frequently discussed in axiomatics - the
question of the independence of the axioms. It can be shown that
the four axioms (1) - (4) are indeed independent. That is to say,
none of them can be derived from the remaining three axioms by
means of 6.2 and 6.3,

8. Boolean Algebras. While the deductive calculus which
has been explained in the last two sections is a step in the direction
of the algebraisation of logic, it cannot be said to be in line with
the ''classical' axiomatic theories of algebra such as the theory
of groups or the theory of rings. We now present a corresponding
theory for the logic of propositions.

A Boolean algebra is a non empty set of objects B in which
the following two operations are defined.

For everya, b g B, there exists a uniquely determined
element c = a u b (read '"a cup b'") and for every a ¢ B there
exists a uniquely determined b = a' (read '"complement of a'")
such that the following conditions are satisfied.

8.1. Foranya,b,&e B, (aub)uc=avibuc).

This is the associative law for the cup operation. It follows
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that the generalized associative law is satisfied for any set of
n 2 3 elements, and we may write

aubuc = au(buc) = (aub)ucg,

aubucud = au(bucud) = (avbuc)ud = (aub)u
(cud) = auv(buc)ud, etc.

8.2. Foranya, bgB , aub = bua
This is the commutative law.

8.3. Foranya, b,ce B, auvb = aentailsaub' =
cuc'.

8.4. Foranya, b, c e B, aub'=cuc'entailsauvb=a.

(Except for dualisation, this is essentially the system of
axioms given by P.C. Rosenbloom in '""The Elements of Mathe-
matical Logic, ' Dover Publications, New York, 1950).

The following two properties of Boolean Algebras are
immediate consequences of the axioms.

8.5. ava = a.

For the proof, substitute a for b and a for ¢ in 8.4. This
yields a u a' = a u c¢' in the hypothesis and a v a = a in the con-
clusion.

8.6. a u a'isthe same for all a ¢ B.

For the proof, substitute a for b in 8.3. This yieldsa u a
= a in the hypothesis (which is true, by 8.5) anda v a'=cu ¢!
in the conclusion.

We denote this uniquely determined element by V, so that
V=aua'forallag B. The complement of V will be denoted
by /\., sothat /A = V!'.

We write be aifaub=a, foranya, be B. By 8.3 and
8.4, an equivalent conditionisa ub'=V. Ifa< bandbs a
thenaub=a=>b, and soa=b. Also, a «£a, by 8.5and a ¢« b,

120

https://doi.org/10.4153/CMB-1958-013-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1958-013-4

b « c entail a« c. For according to the assumptiona u b = b,
buc=c, and so

auc = au(buc)=(aub)uc=buc=c

i.e. a &«c. This shows that the relation &« defines a partial
ordering in B.

8.7. Forallae B, a<&£V.

ForauvuV =aulaua')=(auva)ua'=zaua'=V,.
8.8. Foralla ¢ B, a''=a.

Proof. We provea ¢« a''and a'' « a. Indeed
a'va'=a'ua=a'v (a')! =V and so

8.9. a«a

by the second condition for the relation « . On the other hand,
substituting a' and a'' in turn in 8.9 we obtain the relations

al & all! and a” ' allll.
Combining the latter relation with 8.8, we obtaina &« a'''!, i.e.
a''""ypa'=V,alva =V, a'"" &« a'. This yields a''' = a',
and furtherauv a'''=a a'=YV, a''«z a. Combining the last

relation with 8.9, we obtain 8. 8.

8.10. Foralla, b & B, a «b entails b'« a', and vice
versa.

Proof. The assumptionis b ua'=V. Now by 8.2 and 8.8,
this is equivalent toa' u b'' =V, i.e. b'< a'. Conversely, if
b' « a' then by what has already been shown a''« b'!, i.e. a& b.

8.11. Foralla, b, c ¢ B, aebentailsavce buec.

For(auc)u(buc)=(aub)uc. Itfollows that if a « b,
i.e.aub=D>b, then(auc)u(buc)=buc,avecaebuc.

An example of a Boolean algebra is provided by the set of

all subsets, a, b, ¢, ... of any given set A, ifau b, a' are
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interpreted as union and complement in the set theoretical sense.
We shall now establish a connection between Boolean algebras
and the deductive calculus of the preceding sections.

Let F be the set of formulae of such a calculus. We define
a relation X =2 Y in F by the condition that X=> Y and Y=> X
be theorems of the calculus (or, which is the same, that X2 Y
and Y > X represent tautologies.) It is not difficult to check that
22 is an equivalence. Moreover, the relation is substitutive
with regard to the application of the connectives of the calculus
vand ~ . That is to say, if X== X'and Y= Y', then ~ Xz¥~X!
and X v Y& X' v Y'. Let B be the set of equivalence classes
(a, b, ¢, ...) of F with respect to the relation =2 . In B, intro-
duce the operations u and ' by the definitions

avb=c ifX v Y= Z for some (and hence for all) X¢ a,
Yeb, Zec; and

a'=b if ~X =Y for some (and hence for all) X ¢ a, Yg b.

It is not difficult to verify that these operations (v, ') do indeed
vield unique results. We claim that they turn B into a Boolean
algebra. In view of the associativity and commutativity of the
disjunction, it is in fact immediate that 8.1 and 8.2 are satisfied.
Coming next to. 8.3, leta, b, ce B, Xg a, Ye b, Z ¢ c and
suppose that a u b=a. Then X v Y= X and we have to show that
Xv ~Y Zv ~Z. Now Z v ~ Zis a tautology, and for any
other formula, W say, we have Zv ~ Z2= W if and only if W
also is a tautology. Thus we only have to show that X v ~ Y is
a tautology provided X v Y &2 X. Now the assumption implies
that (X v Y)> X is a tautology, i.e. ~ (X v Y) v X, and hence,
that (~XA~Y)vXand (X vX)A (~Yv X)and ~Y v X and
X v ~ Y all are tautologies. The last-mentioned fact shows that
8.3 holds.

In order to prove that 8.4 is satisfied, suppose a,b, ¢ € B,
X e a,Y¥Ye b, Z & c, as before, and suppose that X v ~ Y=< Z
v ~Z, whichisto saythat Xv ~ Y, i.e. Y D X, is a tautology.
We have to show that in this case, X v Y= X. But Xo(XvY)
is a tautology and so we only have to show that (X v Y)> X also
is one. But it is easy to check that (Y2 X)> ((X v Y) o X) is
indeed a tautology, and so the fact that the implicans Y o X, of
this formula is a tautology, entails the same for the implicate,
X v Y o X. This proves that B is a Boolean algebra.

122

https://doi.org/10.4153/CMB-1958-013-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1958-013-4

It will be seen that the relation = of this section is closely
connected with the relation = of section 3. Indeed, X = Y for the
formulae X and Y if and only if & holds between the corresponding
truth functions. Thus we may say that, in a sense which can
easily be made precise, the truth functions of section 3 also
constitute a Boolean algebra.

Now let B be an arbitrary Boolean algebra. We consider
formal expressions -F(xl, ... , x_) which are obtained from
Xy, ... X, by the repeated application of the operations of B.

1

1
(x1 U XZ) v x3

is an example of such an expression. ‘F(xl, ... , X_) represents
in an obvious way a function which is defined on B and which takes
values on B. Thus, it will be obvious what is meant by 'F(al, .
an) where ays eee s a &€ B.

We associate with any given 'F(xl, e, Xn) a formula
X = F(pl, e s pn) of a deductive calculus, where X is obtained. .
from (%}, ..., xp) by replacing x;, ... , x by propositichet”
variablés P1s» ++« » Py and by replacing v and 'everywhere by v
and ~ respectively. Thus the formula which corresponds to
(x3 v x53)'uxz'is (py v pyl)v ~Ps- We claim that if X is a
theorem of the deductive calculus (i.e. a tautology) then

f(al, e an)=Vfora11al,... , ang B.

There are several proofs of this result. We shall derive
it here from the axioms and rules of the deductive calculus.

As a first step, we prove that if we replace the variables
P> q, r in (1) to (4) of 6.1 by arbitrary elements of B and the
connectives v and~ by u and ! respectively, then the resulting
expressions are equal to V in B. Indeed, we have, with regard
to (1)

(ava)va=a'va=auva'=V.
Also, with regard to (2),
a'u(aub)=(a'va)ub=(b'ub)ub=Db'ub=V

while for (3) directly,
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(aub)"u(aub)=V.

The only case which causes some trouble is (4). We prove first,
for arbitrary a, c € B.

8.12. (cua)luc=a'vec.
Indeed, au(cua)=cuaandsoa<« cuvua,

and furthermore, (c v a)' ¢ a' by 8.10. This implies (c v a)'
uc e a'ucby8.11.

On the other hand, (cua)'u(cua)=Vandsoa'uv((c
va)luc)=V. '

This shows thata'z (cua')vc. Hence, by 8.11a'vc <
({cvaYuc)uc=(cua')yuvc.

Thus a' u c £ (c v a)' u c establishing 8.12.
Referring to 6.1 (4), we have to prove that
(a'ub)lu((cua)lu(cub))=V
is true for alla, b, ¢ ¢ B. By 8.2 - 8.4, this is equivalent to

8.13 (a'ub)u(cua)u(cub)=(cuva)u(cub).
Now, from 8.12, 8.11,

(2'ublu (cva)'u(cub) =atucu (cua)lub=(cua)u(cub).
This establishes 8.13, and hence 6. 1(4).

Any other theorem of the deductive calculus is obtained
from 6.1, (1) = (4), by the application of 6.2, 6.3. Now it is
clear that the application of a substitution to the left hand side
of an identity

-F(a, b, ¢, ...) =V

yields another identity with the same right hand side. On the
other hand, if
f@a, b,¢c, ...) =V
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and (f(a, b, c, ... )) vgla,b,c, ...)=V

then V ='F(a., b,¢, ...) 2 gla, b, c, ...). But g{a,b,c,...)eV
by 8.7and so g(a, b, ¢, ...)=V. This shows that the applica-
tion of 6.3 also leads to identities of the required type. This
completes the proof.

We have as a corollary that if X2 Y for two formulae of
the deductive calculus then the corresponding expressions in the
Boolean algebra define the same function. For if X o Y and Y= X
are theorems (tautologies) then £ (a, b, ¢, ...) & g(a, b, c,
...)and g(a, b, c, ...) & 'E(a, b, ¢, ...) in B and hence

fa,b,c, ...)= gla, b, c, ...).

Let B be a Boolean algebra. For anya, b, ¢ B we define
a new relation a n b (read '"a cap b'").

8.14. anb = (a'ub')
It is obvious that this operation is commutative. Moreover,
{(anb)ac = ((a'ub")''yc"')' = (a' u b' u c'")! = an(bac)
so that the operation is associative. Also
8.15. ana' =(a'va™" =(a'uva) =V' =A\ .
Consider now the condition a ~ b = a. This is equivalent
to (a' u b')! = a and hence, toa' u b' =3, and to b' &« a', and,
finally, to a« b. On the other hand, if anb' =.c~c!, for some
a, b, ¢, € B, then (a' u b'"')! =A ,alub=V, a<«b. Thus,

for anya, b, c, &€ B, a~b=aif and onlyifa~ b'=cA c'.

It follows from the above that B satisfies the axioms 8.1 -
8.4 not only for the operations u and ' but also if we replace
the former operation by n . Moreover, let us define an opera-
tion u™ by

a, ¥ b= (a'A b')M
Then av¥b= (a'" u b'"")"" = a u band so v* coincides with u.

Thus, u is obtained from A , mutatis mutandis, in exactly the
same way as A is obtained from v. We conclude that if a general
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law or theorem is derived for all Boolean algebras in terms of
the operations u, n , ', then another general law is obtained by
replacing u everywhere by n and vice versa. Moreover, we may
include the possibility that the former law includes reference to
the element V = a u a' in which case this element has to be re-
placed in the second version by /A = a A a'. This is the principle
of duality for Boolean algebras. In particular, if we have an
identity between two expressions produced as above from u,n ,

and ', so

8.16. 'F(al, cee @, U, A, ', V)= g(al, SR
ua, N, l: V)
which holds for all,al, ... ;a_ g B, then we obtain another
identity by replacing u, n , ' , V on both sides by n , u, ', A

respectively, in symbols

8.17. f(a},....an,Aw LA ) = glal, ..y, A )

In view of the connection between Boolean algebras and the
propositional calculus which was explained above, this leads to
a corresponding result known as the principle of duality of the
propositional calculus, which we may formulate either for the
axiomatic approach or in terms of truth functions. In view of
PAqQ = (~pv~q), we see that the connective of conjunction
corresponds to the cup operatxon Thus we have, in terms of
truth functions -

R Letf(p,...,p,v,A,N)andg(p ..,p,v,A y~ )
be two truth funct1ons in wh1ch we have dlsp}ayed the connectives.
Then the equivalence

'F(Plr--- ,Pn ,v,A,N)Q’; g(pl"'° ,pn,V:/\»N)'
entails that at the same time
-F(plﬁ e o0 ,pnrl\ s Vv ,N)” g(pl' e o e )pn)A ,V’~)’

%

9. Ideals mﬁoolgg n algebras. Let B, B be two Boolean
algebras and let a* 'f(a) a-» a¥*be a mapping of all elements of
B into B¥* such that the following conditions are satisfied for all
a, bin B. : '
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9.1 faub)= fa)v f(b)
f (2 = (f (2

Such a mapping is said to be homomorphic, in agreement with
the terminology current elsewhere in algebra.

Then
fwvy=Ffavay= f@ v (fan =7

where V=cuc'forall ce Bf Thus, V- V in the homomor-
phism.

Let J be the set of all elements a & B such that_é—> V.
J is not empty since V& J. Also, iff (a) =V, 'F(b) = V then

flanb) =f (@ v b)) = () v (b))
= (f @) o fF BN = (Fr v T =7,

Hence,

9.2, For anya, be B, ifag Jand be Jthenanbe J.
Also, if 'F(a.) =V, then for any b ¢ B,

faub) = 'F(a) uf(b) =V uf(b) = V. Hence,

9.3. Foranya, b,e B, ifae Jthenaube J.

A non-empty subset J of a Boolean algebra B is said to be
an ideal if it satisfies conditions 9.2 and 9.3. 9.3 is equivalent
to the following:

9.4. Foranya, ce B,ifae Janda & c, thenceg J.

Proof. Suppose that 9.3 is satisfied,anda & J. Then
auc=cifasc,andsoauvc=ce J, by 9.3. On the other
hand a &£ a v b. Hence, ifa & J, and 9.4 is satjsfied, then 9.3

also is satisfied, as we can see readily by taking c = a u bin 9.4.

(to be continued)
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