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7> Adequacy of the Calculus of Deduction. It is the pur ­
pose of the calculus described in the preceding section (i) to 
yield as theorems all tautologies which can be formulated in 
t e r m s of the given var iab les , and (ii) to yield no other for­
mulae as theorems . We shall establish present ly that these two 
conditions a re indeed satisfied. However, there a re questions 
of a more general charac ter which can be solved both with regard 
to the present calculus and with regard to many other calculi , 
including some with a more comprehensive vocabulary. One of 
these questions, which is of fundamental importance, is -

(iii) Is the calculus under consideration consistent (non-
contradictory)? Can we perhaps obtain by its use not only tauto­
logies and not only sentences which a r e t rue for some truth values 
of the variables and false for o thers , but even formulae which a r e 
identically false? If so, let X be such a formula and let Y be any 
other formula. Then it will be seen that X P Y is a tautology. 
Hence, if (i) is satisfied, we can derive X=>Y as a theorem, and 
hence, we can derive Y, by 6. 3. It follows that we can derive 
all formulae. Thus, for all calculi which include the present 
calculus of deduction, it is reasonable to define that such a 
calculus is consistent if not all formulae of the calculus a r e 
derivable in it as theorems . In the present case it i s c lear that 
if we establ ish (ii) then we have thereby proved also (iii). 

Another important question is -

(iv) Is the calculus complete in the sense of being saturated 
or maximal? We shall say that the calculus i s incomplete if it is 
possible to add a formula X as an axiom such that the result ing 
calculus is consistent , although X is not a theorem of the original 
calculus. It will be shown that the present calculus is indeed 
complete in this sense . 
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We shall now sketch the proof of the fact that (i) above is 
satisfied. For this purpose it i s required to show first that the 
following are theorems of the calculus. 

7. 1. ( p v ( q v r ) ^ ( ( p v q)^ r) 

((pv q) v r) D (p v ( q v r)) 

7 .2 . ((pv q) A(p v r ) ) o ( p v ( q A r ) ) 

(p v (q A r)) r> ((p V q) A (p v r)) 

7 .3 . ( ^ P v ^ q ) 3 ^ ( p A q ) 

^ ( p A q)=> (~p V /N/ q) 

7 .4 . ( / v p A A / q ^ ' v l p v q ) 

^ ( p v q ) o ( ^ p A ^ q) 

7 .5 . p D ^ /s/p 

, ^ ~ p 3 p 

In this l ist , the connective of conjunction is to be regarded 
as an abbreviation; p A q stands for ^ ( / v p v ^ q ) , 

We shall derive the two formulae of 7 .5 . The derivation 
of the remaining formulae is left to the reader1 s (it is hoped, 
considerable) ingenuity. 

In order to derive the first formula of 7. 5 we first subs­
titute ^y p in (11) of section 6. This yields 

P 
(12) < w p V ~ p 

Next substitute ^ ^ p , then ,^/p in (3) of section 6. This yields 
P " q 

(13) ^ ( A / / v p V ^ p ) v ( / v p V / v v p ) 

Applying the rule of modus ponens 6. 3 to (12), (13), we then 
obtain 

(14) / ^ p V / v A / p 
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which i s the f i r s t formula of 7 . 5 . 

Substituting /v/p in (14) we obtain 
P 

(15) ^*%/p V ^ ~ y ^ / p 

A l s o , making the substitutions ^ p , ^~ ^ p , and £ in (4) 
we obtain P q r 

(16) (/^/p z> ** ~^p)o ( ( p v ^ p ) ^ ( p v A / / v ~ p ) ) 

The impl icans of (16) i s , except for the notation, the 
same a s (15) and s o , again by 6. 3. 

(17) ( p v ^ p ) D ( p v A / A / ^ p ) 

i s a t h e o r e m . N o w p v ^ p i s a t h e o r e m , by (3) and (11) (compare 
the p a s s a g e f rom (12) to (14). Hence p v / v / v ^ p i s a t h e o r e m 
and h e n c e , by the s a m e argument , 

(18) , - ^ ~ ^ p N/ p 

i s a t h e o r e m . But this i s the second formula of 7 . 5 . 

It wi l l be seen that the pa irs of formulae 7 .1 - 7 .5 a r e al l 
of the form X z> Y , Y r> X. To obtain further pa i r s of formulae 
of this type , we only have to substitute arbi trary formulae X, Y, 
Z-^for p , q, r. Other pa ir s can be obtained by m e a n s of the 
fol lowing t h e o r e m s which are again stated here without proof. 

7 . 6 . (p D q) 3 (~ q o -v p) 

7 . 7 . ( p D q ) D ( ( p v r ) 5 ( q \ / r ) ) 

7 . 8 . ( p p q ) D ( ( r A p ) j (rA<j )) 

( P ^ q l ^ f (pA r) 3> (q Ar)) 

For example , if X ^ Y , Y o X a r e t h e o r e m s then we s e e 
f rom ax iom (4) and 7 .7 that (Z V X ) ^ ( Z v Y) , ( Z V Y ) o ( Z v X) , 
and again (X V Z) o (YvZ), (YvZ) D (XvZ) a l s o are t h e o r e m s . 
S i m i l a r l y , if X D Y and Y o X are t h e o r e m s , then by 7. 6 A / Y D ^ X 

and w X o ^ Y a l s o are t h e o r e m s . 
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More general ly, we have the following rule of replacement . 

7 .9 . Let W(p) be a formula which contains the proposit ional 
variable p , possibly more them once. We write W(X), W(Y ) for the 
formula obtained from W(p) by replacing p everywhere by X and Y, 
respect ively. Then if X=> Y and Y z> X a re theorems of the calculus , 
so a r e the formulae W(X) o W(Y) and W(Y)^> W(X). 

Proof. Suppose f irs t that W(p) contains p only once. Then 
W(p) is obtained from p by applying to p the operations of negation, 
~ , and of disjunction with some other formula (which does not 
contain p)successively, in a specified manner . Also , W(X) and 
W (̂Y) a r e obtained by applying the same operations to X and Y 
respect ively. As we have just seen, theorems (4), 7 .6 , and 7.7 
ensure that at each step we obtain formulae X1, Y1, such that 
X1 3 Y1 and Y ! o X1 a r e theo rems . This es tabl ishes 7.9 in the 
par t icular case that p occurs only once in W(p). If p occurs more 
than once, then we replace p in each occurrence by a different 
variable p- which does not occur elsewhere in W, X, or Y. The 
resulting formula may be wri t ten W^p-p p->, • • • PiJ . By what 
has a l ready been proved, we have 

W'(X, p 2 . . . , pk)r> W ' ( Y , p 2 , . . . P k ) 

and 

w<(Y, p 2 , . . . , pk)r> w-(x, p 2 , . . . , pk) 

and moreover 

W'(X, X, . . . . p k ) z> W' (Y, X, . . . p k ) 

W'(Y, X, . . . , pk) o W'(X, X, . . . , p k ) 

W ( Y , Y, . . . , pk)=> W ' (Y , X , . . . , pk) 

W'(Y, X p )=> W ( Y , Y, . . . , p ) 
K • k 

H e n c e , by (5) and 6 . 3 

W'(X, X, . . . p k ) 3 W'(Y, Y , . . . , pk) 

and W ( Y , Y, . . . p k ) s W ( X , X, . . . , pk) 
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Continuing in this manner, we obtain 

W(X)^W(Y) , W(Y)s>W(X). 

Finally, we require the following rules. 

7.10. For any formula X, ~ X v X is a theorem, in par­
ticular A / q v q i s a theorem for any variable q. 

7. 11. For any theorem X, the formula Xv Y also is a 
theorem. 

7. 12. If X vY is a theorem then Y v X also is a theorem. 

7. 13. If X v (Yv Z) is a theorem then ( X v Y ) v Z also is a 
theorem; if ( X v Y ) v Z is a theorem, then Xv (Y v Z) is a theorem. 

7. 14. If X and Y are theorems then X/sY also is a theorem. 

7. 10 follows directly from (11), 7. 11 follows from (2) and 
6 . 3 , 7. 12 follows from (3) and 6 . 3 , 7. 13 follows from 7. 1 and 
6 .3 . 7. 14 requires the prior derivation of the theorem p ^ 
(qs (pA q)) which will be omitted. 

Now let X be a formula which is a disjunction of propositional 
variables and (or) of the negation of each variable taken in any 
order and in any manner of association. Suppose that X represents 
a tautology, then X contains at least one variable, p say, together 
with its negation, *s p. We denote by q, , . . . , q the remaining 
variables of X, or their negations, if the latter appear in X, and 
we use a separate q. for each occurrence of a variable (possibly 
again p or ~ p ) . Then the formula 

X* = ( . . . ( ( ( ~ p v p ) v q i * ) v q 2 * ) V . . . vq^*) 

differs from X (if at all) only in the order of the variables and in 
the manner of their association in disjunction. 

Now X is a theorem by rules 7. 10 and 7. 11. But X can be 
obtained from X by applying the associative and commutative 
laws to the disjunctions. Hence X also is a theorem, by 7. 12 
and 7. 13. 

117 

https://doi.org/10.4153/CMB-1958-013-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1958-013-4


Next, let X be a formula which is in conjunctive normal 
form (see section 4), and which r ep resen t s a tautology. Then 
the conjuncts of X a r e disjunctions of the type just considered 
and each of them is a tautology and hence a theorem. If follows 
that X a lso is a theorem, by 7. 14. 

Now let X be any formula which r ep resen t s a tautology. 
It was shown in section 4 that by means of the equivalences 3. 2, 
3 .4 , 3 . 5 , 3 .7 , 3 .8 , 3. 9, we can t ransform X into a formula X 
in conjunctive normal form such that X also r ep resen t s a taut­
ology. It follows that X is a theorem of our calculus . In order 
to deduce from this fact that X also is a theorem, we only have 
to apply the procedure of section 7 lfin r e v e r s e " . Now the 
possibili ty of carrying out this procedure follows direct ly from 
7. 1 - 7.5 together with the rule of replacement 7 .9 . Fo r example, 
it follows from 7. 3 in conjunction with 7. 9 that in any theorem we 
may replace ~ X v ~ Y b y / ^ ( X A Y ) . In this way we may reduce 
X to X step by s tep, showing that X also is a theorem. This 
set t les (i) above. 

Next, we wish to show that all theorems of the calculus of 
deduction represent tautologies. For this purpose , we check 
f i rs t that the axioms (1) - (4) in section 6 a r e tautologies. Next 
we reflect that the substitutions of an a rb i t r a ry formula in a taut­
ology yields a tautology. Final ly, we observe that the rule of 
modus ponens when applied to tautologies X, X ^ Y yields a taut­
ology Y. This shows that the derivation of new theorems by 
means of 6. 2, 6 . 3 , can only lead to tautologies. Thus, we have 
settled (ii) (see the beginning of this section), and thereby, (iii). 

We shall now show that the calculus is complete in the 
sense defined under (iv). 

Let X be a formula which i s not a theorem of the deductive 
calculus considered so far , and hence, is not a tautology. We 
have to show that the addition of X to the axioms (1) - (4) r ende r s 
the system contradictory. 

Let X be a formula in conjunctive normal form, such that 
X ^ X and X o X a r e tautologies and hence t heo rems . We know 
how to determine X by the rules of section (3) (compare an 
ea r l i e r argument in this section). Then X becomes a theorem 
of the augmented calculus , although it is not a tautology. M o r e ­
over , we may assume that X is of the form X ^ A X 2 where X is 
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a disjunction of variables and (or) of the negation of such variables, 
such that no variable occurs in Xi together with its negation 
(since X is not a tautology.) Then X^ is a theorem, in view of 
the tautology p/s q r> p, i . e . ( ~ p y ~ q ) v p . 

Now suppose that p is a variable which does not occur in X, 
and substitute p for each variable of X^ which occurs without the 
negation sign, and ^ p for each variable which occurs with the 
negation sign. Write p for the double negations ~ ~ p which 
appear after the substitutions. The resulting formula, X3, is 
still a theorem by the rule of replacement, 7.9. 

X3 is a (repeated) disjunction of the single variable p. 
Hence, X3̂ > p is a tautology, and therefore a theorem, and p is 
a theorem. But if so, then any other formula Y is a theorem, 
since it can be obtained from p by means of the substitution _±. 

P 
This completes the discussion of the points raised at the 

beginning of this section. There is another question which is of 
a somewhat less fundamental character, although historically it 
is the question most frequently discussed in axiomatic s - the 
question of the independence of the axioms. It can be shown that 
the four axioms (1) - (4) are indeed independent. That is to say, 
none of them can be derived from the remaining three axioms by 
means of 6.2 and 6 .3 . 

8. Boolean Algebras. While the deductive calculus which 
has been explained in the last two sections is a step in the direction 
of the algebraisation of logic, it cannot be said to be in line with 
the "classical" axiomatic theories of algebra such as the theory 
of groups or the theory of rings. We now present a corresponding 
theory for the logic of propositions. 

A Boolean algebra is a non empty set of objects B in which 
the following two operations are defined. 

For every a, b s B, there exists a uniquely determined 
element c = a \* b (read "a cup b") and for every a £ B there 
exists a uniquely determined b = a1 (read "complement of a,f) 
such that the following conditions are satisfied. 

8 . 1 . For any a, b , e B , ( a t f b ) U c = aV(b U c) . 

This is the associative law for the cup operation. It follows 

119 

https://doi.org/10.4153/CMB-1958-013-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1958-013-4


that the generalized associat ive law is satisfied for any set of 
n 2 3 e lements , and we may write 

a u b u c = a u (b u c) = (a u b) u c , 

a u b u c u d = a u ( b u c u d ) = ( a u b u c ) u d = ( a u b ) u 

( c u d ) = a u (b u c) u d, e tc . 

8 .2 . For any a, b £ B , a u b = b u a . 

This is the commutative law. 

8. 3. For any a, b , c & B , a u b = a entails a u b ! = 
c u c!* 

8 .4 . For any a, b , c e B , a u b1 = c u c ! entails a u b = a. 

(Except for dualisation, this is essential ly the system of 
axioms given by P . C . Rosenbloom in "The Elements of Mathe­
mat ica l L o g i c , " Dover Publ icat ions , New York, 1950). 

The following two proper t ies of Boolean Algebras a r e 
immediate consequences of the ax ioms. 

8 .5 . a u a = a„ 

F o r the proof, substitute a for b and a for c in 8 .4 . This 
yields a u a ! = a u c ! in the hypothesis and a u a = a in the con­
clusion. 

8 .6 . a u a1 i s the same for all a £ B . 

For the proof, substitute a for b in 8 . 3 . This yields a u a 
= a in the hypothesis (which is t r u e , by 8.5) and a u a ! = c u c' 
in the conclusion. 

We denote this uniquely determined element by V, so that 
V = a u a1 for all a a B . The complement of V will be denoted 
by A . , so that J\ = V ! . 

We write b ^ a if a u b = a, for any a, b s B . By 8. 3 and 
8 .4 , an equivalent condition i s a u b ' = V, If a & b and b £. a 
then a u b = a = b , and so a = b . Also , a fca, by 8.5 and a ^ b , 
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b t e entail a <=. c . For according to the assumpt ion a y b - b , 
b u c = c , and so 

a u c = a u ( b u c ) = ( a u b ) u c = b u c = c 

i . e . a 4s c . This shows that the relat ion 4* def ines a part ia l 
ordering in B . 

8 . 7 . F o r a l i a £ B , a ^ V , 

F o r a u V = a u(a u a1) = (a u a) u a ! = a u a1 = V. 

8 . 8 . F o r a l l a £ B , a11 = a. 

Proof . We prove a *- aM and a" £. a. Indeed 

a n u a1 = a1 u aM = a ! u (a1)1 = V and so 

8 . 9 . a ^ a" 

by the second condit ion for the relat ion é= . On the other hand, 
substituting a ! and a" in turn in 8. 9 we obtain the re lat ions 

a1 ± a m and a" ^ a , m . 

Combining the la t ter re lat ion with 8 . 8 , we obtain a fa a I I M , i . e . 
aMit y a i = y , a' u a111.1 = V , a , , f ± a ! . This y i e lds a111 = a1 , 
and further a u a m = a af = V , a11 is. a. Combining the las t 
re lat ion with 8 . 9 , we obtain 8 . 8 . 

8. 10. For al l a, b £ B , a ^ b entai l s b1 ± a1 , and v i c e 
v e r s a . 

Proof . The assumpt ion i s b u a1 = V. Now by 8 . 2 and 8 . 8 , 
this i s equivalent to a1 u b , ! = V , i . e . bf £ a ! . C o n v e r s e l y , if 
b1 {- a ! then by what has a lready been shown a11 ± b 1 1 , i . e . a ± b . 

8 . 1 1 . F o r al l a , b , c ^ B , a fe b entai ls a u c ^ b u c . 

F o r (a u c) u (b u c) = (a u b) u c . It fo l lows that if a 4= b , 
i . e . a u b = b , then ( a u c ) u ( b u c ) = b u c , a u c ^ b u c . 

An example of a Boolean a lgebra i s provided by the se t of 
al l s u b s e t s , a , b , c , . . . of any given set A , if a u b , a1 a r e 
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in terpreted as union and complement in the set theoret ical sense . 
We shall now establish a connection between Boolean a lgebras 
and the deductive calculus of the preceding sect ions. 

Let F be the set of formulae of such a calculus . We define 
a relation X &- Y in F by the condition that Xz> Y and Y => X 
be theorems of the calculus (or, which is the same , that X z> Y 
and Y 3 X represen t tautologies. ) It is not difficult to check that 
c± is an equivalence. Moreover , the relat ion is substitutive 
with regard to the application of the connectives of the calculus 
v and ~ . That is to say, if X ^ X1 and Y ^ Y1 , then ~ X ^ ~ X ! 

and X v Y ^ X1 v Y1. Let B be the set of equivalence c l a s ses 
(a, b , c, . . .) of F with respec t to the relat ion ^ . In B , in t ro ­
duce the operations u and ! by the definitions 

a u b = c if X v Y ^ Z for some (and hence for all) Xe a, 
Y £ b , Z e e ; and 

a1 = b if ~Xû£ Y for some (and hence for all) X g. a, Y£ b . 

It is not difficult to verify that these operations (u, !) do indeed 
yield unique r e su l t s . We claim that they turn B into a Boolean 
a lgebra . In view of the associat ivi ty and commutativity of the 
disjunction, it is in fact immediate that 8. 1 and 8.2 a r e satisfied. 
Coming next to 8. 3, let a , b , c e B , X £ a, Y e b , Z £. c and 
suppose that a u b = a. Then X v Y ^ X and we have to show that 
X v ^ Y c i Z v — Z. Now Z v ^ Z i s a tautology, and for any 
other formula, W say, we have Z v ~ Z d W if and only if W 
also is a tautology. Thus we only have to show that X v ^ Y is 
a tautology provided X V Y c£ X. Now the assumption implies 
that (X Y Y ) o X is a tautology, i. e. ^ (X v Y) v X, and hence, 
that ( ~ X / \ ~ Y ) v X and ( ^ X v X) /\ ( ~ Y v X) and ~ Y v X and 
X v ^ Y all a r e tautologies. The las t -ment ioned fact shows that 
8. 3 holds. 

In order to prove that 8.4 is satisfied, suppose a , b , c e B , 
X £ a, Y £ b , Z £ c, as before, and suppose that X v *>* Y o£ Z 
v ^ Z , which is to say that X v ^ Y, i . e . Y o X , i s a tautology. 
We have to show that in this case , X v Y ^ X. But X o (X v Y) 
is a tautology and so we only have to show that (X v Y) o X also 
is one. But it is easy to check that (Y o X) r> ((X V Y ) P X ) is 
indeed a tautology, and so the fact that the implicans Y z> X, of 
this formula is a tautology, entails the same for the impl ica te , 
X V Y => X. This proves that B is a Boolean a lgebra . 
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It will be seen that the relation ~ of this section is closely 
connected with the relation z& of section 3. Indeed, X o± Y for the 
formulae X and Y if and only if # holds between the corresponding 
t ruth functions. Thus we may say that, in a sense which can 
easily be made p r e c i s e , the t ruth functions of section 3 a lso 
constitute a Boolean algebra . 

Now let B be an a rb i t r a ry Boolean a lgebra . We consider 
formal expressions -p (x, , . . . , x ) which a re obtained from 
Xi, . . . x n by the repeated application of the operations of B. 

i t 
(x L u x 2 ) u x^ 

i s an example of such an expression. T (x, , . . . , x ) r ep resen t s 
in an obvious way a function which is defined on B and which takes 
values on B. Thus, it will be obvious what is meant by "F{a-, , . . . , 
a ) where a, , . . . , a g B . n i n 

We associate with any given T (x, , . . . , x ) a formula 
X = F(pn , . . . , p ) of a deductive calculus, where X is obtained. „ 
from (x j , . . . , x ^ by replacing x-^, . . . , x by propos it iôn̂ arî"* 
var iables p p . . . , p and by replacing u and 'everywhere by v 
and ~* respect ively . Thus the formula which corresponds to 
(x^ u X2)1 u x^1 i s (pi v P2) v / v p . . We claim that if X is a 
theorem of the deductive calculus ( i . e . a tautology) then 

f(ar a ) = V for all a, , . . . , a £ 
n i n B . 

There a r e several proof s of this resu l t . We shall derive 
it he re from the axioms and rules of the deductive calculus. 

As a f i rs t s tep, we prove that if we replace the var iables 
p , q, r in (1) to (4) of 6. 1 by a rb i t r a ry elements of B and the 
connectives v and^/ by u and ! respect ively, then the result ing 
express ions a r e equal to V in B . Indeed, we have, with regard 
to (1) 

(a u a)1 u a = a1 u a = a u a ! = V« 

Also , with regard to (2), 

a1 u (a u b) = (a1 u a) u b = (b1 u b) u b = b1 u b = V 

while for (3) di rect ly , 
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(a u by u (a u b) = V, 

The only case which causes some trouble is (4). We prove f i r s t , 
for a rb i t r a ry a, c e B . 

8. 12. (c u a)1 u c = a1 u c . 

Indeed, a u ( c u a ) = c u a and so a -s c u a , 

and fu r the rmore , (c u a)1 ^ a* by 8. 10. This implies (c u a)1 

u c £ a1 u c by 8 .11 . 

On the other hand, (c u a) ! u (c u a) = V and s o a " u (( c 
u a) ! u c) = V-

This shows that a1 £ ( e u a1) u c. Hence, by 8.11 a1 u c £ 
((c u a !) u c) u c = (c u a !) o c. 

Thus a1 u c ± (c u a)1 u c establishing 8. 12. 

Referring to 6. 1 (4), we have to prove that 

(a1 u b)1 u ((c u a)1 u (c u b)) = V 

is t rue for all a, b , c % B. By 8.2 - 8 .4 , this i s equivalent to 

8. 13 (a1 u b) u (c u a)1 u. (c u b) = (c u a) ! u (c u b) . 

Now, from 8. 12, 8. 11, 

(a1 u b)u (c u a)1 u (c u b) = a1 u c u (c u a)1 u b = (c u a)1 u ( c u b ) , 

This es tabl ishes 8 .13 , and hence 6. 1(4). 

Any other theorem of the deductive calculus is obtained 
from 6 . 1 , (1) = (4), by the application of 6 . 2 , 6 . 3 . Now it is 
c lear that the application of a substitution to the left hand side 
of an identity 

-f(a, b, c, . . . ) = V 

yields another identity with the same right hand side. On the 
other hand, if 

f ( a , b , c, . . . ) = V 
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and (f (a, b , c, . . . ) )» v g (a, b , c, . . . ) = V 

then V = f (a, b , c, . . .) £. g (a, b , c, . . . . ) • B u t g(a> b> c» • • 0 ^ V 
by 8. 7 and so g (a, b , c, . . . ) = V. This shows that the applica­
tion of 6. 3 also leads to identities of the required type. This 
completes the proof. 

We have as a corol lary that if Xci Y for two formulae of 
the deductive calculus then the corresponding expressions in the 
Boolean algebra define the same function. For if X -=> Y and Y=> X 
a re theorems (tautologies) then f (a, b , c, . . . ) £ g (a, b , c, 
. . . ) and g (a, b , c, . . . ) £. T(a, b , c, . . . ) in B and hence 

f ( a , b , c, . . . ) = g ( a , b , c, . . . ) . 

Let B be a Boolean algebra . For any a, b , £ B we define 
a new relation a n b (read "a cap b,f)» 

8. 14. a n b = (a1 u b !) ! 

It is obvious that this operation is commutative. Moreover , 

(a^bVxc = ( ( a , u b , ) % c 1 ) 1 = (a1 u b1 u c')1 = a/%(bnc) 

so that the operation is associa t ive . Also 

8 .15. a n a ! = ( a ^ a " ) " = (af u a)» = V! = A . 

Consider now the condition a/-N b = a. This is equivalent 
to (a1 u b ' ) ! = a and hence, to a1 u b1 = a', and to b ! £=. a!, and, 
finally, to a ^ b . On the other hand, if arvb1 = - c ^ c 1 , for some 
a, b , c, £ B , then (a1 u b11)1 = /± , a1 u b = V, a ^ b . Thus, 
for any a, b , c, £ B , a ^ \ b = a i f and only if a ^ b1 = C/^ c ! . 

It follows from the above that B satisfies the axioms 8 . 1 -
8.4 not only for the operations u and ! but also if we replace 
the former operation by A . Moreover , let us define an opera-
tion u by 

a u* b = ( a ! ^ b1)1 

Then a u b = (a11 u b11)11 = a u b and so u coincides with u. 
Thus , u is obtained from n , mutatis mutandis , in exactly the 
same way as ^ is obtained from v . We conclude that if a general 
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law or theorem is derived for all Boolean algebras in terms of 
the operations u, r\ , ' , then another general law is obtained by 
replacing u everywhere by n and vice versa. Moreover, we may 
include the possibility that the former law includes reference to 
the element V = a u a! in which case this element has to be re­
placed in the second version b y A = a A a1. This is the principle 
of duality for Boolean algebras. In particular, if we have an 
identity between two expressions produced as above from u, n , 
and ', so 

8. 16. f (aj, . . . , an, u, A , ! , V) = g (a^ . . . , an, 
u, A , ' , V) 

which holds for all.a, , . . . , a £. B, then we obtain another 
i n . 

identity by replacing u, A , ' , Von both sides by/% , u, ! , i x 
respectively, in symbols 

8.17. f(a l f . . . ,an ,A , v , ' , / \ ) * g( a i , . . . ,an,A,u, /, A ) 

In view of the connection between Boolean algebras and the 
propositional calculus which was explained above, this leads to 
a corresponding result known as the principle of duality of the 
propositional calculus, which we may formulate either for the 
axiomatic approach or in terms of truth functions. In view of 
p A q çs£ (^ p v~<^ ), we see that the connective of conjunction 
corresponds to the cup operation. Thus we have, in terms of 
truth functions -

v Let t (pj, . . . , Pn, V . M 9~) and g(p^, . . . , p , v , A , ~ ) 
be two truth functions in which we have displayed the connectives. 
Then the equivalence 

f (Pi » • • • i P , V , A , ~ ) « • g ( p . , . . . , p , V , A , ~ ) 
± n i n 

entails that at the same time 

T (Pi> • • • > P » A , v , ~ ) £* g(Pj> • • • » Pn> A. » v P *** ) • 

9. Ideals in. Boolean algebras. Let B, B be two Boolean 
algebras and let a* = T (a) ,a-* a#be a mapping of all elements of 
B into B such that the following conditions are satisfied for all 
a, b in B. 
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9 . 1 f ( a u b) = f ( a ) u f ( b ) 

f (a') = (f (a))' 

Such a mapping i s said to be homomorphic , in agreement with 
the termino logy current e l s e w h e r e in a lgebra . 

Then 

f (V) = f (a u a») = f (a) u ( f (a))1 = V 

where V = c u c1 for all c e B . Thus , V -» V in the h o m o m o r -
p h i s m . 

Let J be the set of al l e l e m e n t s a £ B such that a-* V. 
J i s not empty s ince V £ J. A l s o , if*f.(a) = V, f (b) = V then 

f (an b) = f ((af u b1)1) = (f (a1) u •F(b,))> 

= ((f (a))1 u (f (b))')1 = ( V ' u V ' ) ' = V. 

Hence , 

9 . 2 . For any a, b £ B , if a £ J and b £ J then a^\ b £ J. 
A l s o , if f (a ) = V , then for any b £ B , 

f (a u b) = f (a) u f (b) = V u f (b) = V. Hence , 

9 . 3 . F o r any a, b , £ B , if a £ J then a u b e J. 

A non-empty subset J of a Boolean algebra B i s said to be 
an ideal if it sa t i s f i e s conditions 9. 2 and 9 . 3 . 9. 3 i s equivalent 
to the following: 

9 . 4 . F o r any a, c £ B , i f a £ J and a £ c , then c £ J. 

Proof . Suppose that 9. 3 i s s a t i s f i e d , and a £ J. Then 
a u c = c i f a £ : c , and so a u c = c £ J, by 9. 3. On the other 
hand a £= a u b . Hence , if a £ J, and 9 . 4 i s sa t i s f i ed , then 9 . 3 
a l s o i s sa t i s f i ed , as we can s e e readi ly by taking c = a u b in 9 . 4 . 

(to be continued) 

Hebrew Univers i ty , J e r u s a l e m 
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