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ON METRIC REGULARITY OF MULTIFUNCTIONS

A. JOURANI

The aim of this paper is to give a metric regularity theorem for multifunctions
between metric spaces involving some known results for multifunctions by using the
notion of strict (G, j)-differentiability of multifunctions and a simple convergence
procedure.

0. INTRODUCTION

The notion of metric regularity of multifunctions (see Definition 1.1) plays an im-
portant role in optimisation theory, in particular in mathematical programming prob-
lems (see for example [5, 8, 15, 19, 23, 26, 27, 28]). This concept has been extensively
studied in varying degrees of generality by many authors (see [3, 5, 6, 14, 16, 17, 18,
21, 22, 24]). Probably the first result goes back to Graves [14], stating that a continu-
ously differentiable mapping F between Banach spaces whose derivative DF(xo) at xo
is surjectiveis metrically regular around (xo, F(xo))- Extending the well-known Banach
perturbation lemma [20, Theorem 3 (2.V)], Robinson [24] has made explicit the metric
regularity result for convex multifunctions in Banach spaces. Applying Ekeland's vari-
ational principle [11], Ioffe [16] and Borwein [5] proved some metric regularity results
for Lipschitz mappings between Banach spaces. We can also consider that the results
obtained by the authors [1, 2, 4, 7, 13, 25] are metric regularity results since one can
establish a relationship between the metric regularity and the pseudo-Lipschitzianity
of multifunctions (see [22] and [6]). Robinson [24] established that a multifunction F
between Banach spaces with convex closed graph which is open at a point (xo, J/o) of
its graph is regular around (xo, j/o) and conversely. Without convexity of its graph the
openness of F at (zo> 3/o) is not sufficient to recover the metric regularity of F around
(x0, J/O) (see Example 4.6 in [6]). Recently Penot [22] and Borwein and Zhuang [6]
showed that the openness of F around (xo,yo) is equivalent to the metric regularity
of F around (xo, yo)-

In this paper we study metric regularity properties of multifunctions in metric
spaces. Namely, we show that a multifunction F preserves some properties of its
derivative, in particular the openness and the metric regularity properties.
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To do this we introduce the notion of strict (G, 5)-differentiability of multifunc-
tions. To this end, let us introduce some notation.

Let X, Y and Z be linear spaces equipped with some distance d which is invariant
by translations, that is, d(b + a, c + a) = d(b, c); let F: X =t Y, L: X =t Y and
G: Z =J X be multifunctions and let S: R+ —» R+ be a strictly monotone continuous
function. We denote by

GrF = {(x, y)eXxY:ye F(x)}

the graph of F and by Bx, By and Bz the closed unit balls of X, Y and Z re-
spectively. We denote by F-1 the multifunction whose graph is deduced from GrF by
exchanging x and y and we set

L o G(z) = {y € Y: 3x e G(z);y G L{x)}.

Observe that, for each y G Y,

(L o G ) " 1 ^ ) = G " 1 o L-*(y) = {zeZ:yeLo G(z)}.

DEFINITION 0.1: F is said to be strictly (G, 5)-differentiable at (a50, J/o) G GrF
if there exists a multifunction L: X ={ Y such that for each e > 0, there exists r > 0
such that

LoG(z) DByC F(X + G{z)) -y + eS{d(0, z))BY

for all x G x0 + rBx , y G (yo + rBy) ("I F(z) and z G rBz •

REMARK. When X = Z, G(x) = x and S(t) — t, we recover the notion of strict
differentiability of a multifunction (see [4] and [9]).

1. THE MAIN RESULT

DEFINITION 1.1: A multifunction F is said to be metrically ^-regular around
(so, yo) € GrF if there exist K > 0 and r > 0 such that

d(x, F-^y)) ^ K8~\d{y,

for all x G x0 + rBx and y G J/o + ri?y where

DEFINITION 1.2: F is nicely 5-invertible around y0 G î (a!o) if there exist
a > 0 and a > 0 such that for all y G 2/0 + al?y there exists x G .F"1^) such
that 5(d(x0, x)) < ad(y0, y)-
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REMARK. If F is S-regular around (xo, jfo) € GrF and if S is continuous and strictly

monotone then F is nicely £-inversible around yo G F(xo).

Let us assume that G and £ satisfy the following:

H(G): There exist a > 0 and 6 > 0 such that

G(z) C 6<f(0, z)5jf for each z G

: 6(1) = 1 and for all t, a G [0, +co) ,

EXAMPLE. Z = R+, G(t) = i'-B* and £(<) = t r with s > 1 and r > 0.

THEOREM 1 .3 . Let I be a strict (G, £)-derivative of F at (x0,3/0) 6 GrF.
Suppose that:

(i) X is complete and F has a closed graph.
(ii) LoG is nicely S-invertible around 0 G (L o G)(0).

(iii) G and 5 satisfy respectively #(G) and H(S).

Then F is S-regular around (xo, yo) • More precisely there exist a > 0 and 6 > 0 such

that for some e > 0 t iere is s > 0 witA:

for ali x G xo + «Bx and y G yo + sBy •

PROOF: We follow the lines of Aze [4]. Since L o G is nicely f-invertible there
exist a > 0 and a > 0 (we can choose a as in H{G)) such that for all y G aBy we
can exhibit z G G"1 o L~1(y) satisfying:

(1.3.1) S(d(O, z)) ^ ad(0, y).

From the strict (G, £)-differentiability of F at (x0, yo) it follows that for all e > 0
(with ea < 1) there exists r > 0 such that

(1.3.2) L o G(z) f lByC F{x + G{z)) -y + eS(d(Q, z))BY

for all x G x0 + rBx, y G (yo +rBY) D -F(x) and z G r B z . Choose 77 > 0 such
that max(TJ, (6(ri))/a) ^ min (a, r, r ( l — 5~1(ea))/(65"1(eo))) where 6 is given by
H(G). Let y G yo + (S(ri)/a)By. We shall construct a sequence ((xn, yn)) C GrF such
that ((xn, yn)) converges to (x, y) with y G F(x) and z G (x0 + K8~1(d(y, yo))Bx),
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where K > 0 does not depend on x and y. Put x-\ = XQ- Let n G N be such that,
for each k G [0, n ] ,

3fc G (x0 +rBx), yk G -F(z*), d(y, yk) ^ (eo) <£(y, y0),
(1.3.3) _} t _ i

We want to show that (1.3.3) holds for k = n+l. Since y-yn G (6(T))/O.)BY , we derive
from (1.3.1) the existence of zn G G"1 o i - 1 ( y — yn) such that 5(<i(0, zn)) ^ od(l/, 3/n)-
It follows from (1.3.2) that there exist un G G(zn) and yn+i G F(icn + u n ) such that

(1-3.4) d{y, yn+i)^

Let us set xn+i = xn + un. Then, by assumption H(G), we have

(1-3.5) <*(*»+!, *») = i(0, «„) ^ 640. *»)

^bS'^adiy, yn)).

On the other hand we obtain, by using the induction assumption (1.3.3), H(G) and by
the choice of r\,

(1.3.6) d(xn+i, x0) '•
k=l

In virtue of (1.3.3), (1.3.4), (1.3.5) and (1.3.6) we obtain

xn+i G (zo + rBx), yn+i G F ( x n +

so that (1.3.3) holds for k = n + 1. Observe that, for each n, p G N,

p
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hence (xn) is a Cauchy sequence and then it converges to some x G X. As (yn)
converges to y, it ensues from the dosedness of GrF that [x, y) belongs to GrF
which together with (1.3.6) yields

(1.3.7) y G F(x) and x £ x0 + KS'^diy, yo))Bx

where K = (bS-1 (a))/(l - S~1(ea)). Now pick y G y0 + (S(rj)/2a)BY and xi €
x0 + (r/2)Bx from (1.3.7); F ' ^ y ) ^ 0 and d(xx, F~1(y)) < +oo. Let us consider
yi G F{x\) D (yo + {S{7])/2O)BY); (if this set is empty, there is nothing to prove). The
same argument as above applied to (xj, yi) instead of {XQ, yo) provides the existence
of x G xi + rJ3x such that j / G F(x) and x G xi + K6~1(d(y, yi))Bx- Hence,

and then,

(1.3.8) d(xu F-^y)) < K6-1 (d(y, F(x1)) n

for all xj G xo + (r/2)Bx and y G J/o + (^(77)/2a)-By • As in Rockafellar [25] (see also
Thibault [27]), one can show that there is 7 € (0, r/2) and @ £ (0, S(j})/2a) such that

(1.3.9) d(y, F{Xl) n (w + (S{r,)/2a)BY)) = d(y,

tor all «i G xo +yBx and y G yo +/3By, which completes the proof of the theorem. D

REMARKS. (1) When X = Z, G(x) = x and 8(t) = f ,we recover the results of [4] and

m.
(2) It follows from the proof of Theorem 1.3 that there is 6 > 0 and a > 0 such

that for some e > 0 (with eo < 1) there is s > 0 such that for all y G yo + sBy there

is x € F-\y) satisfying <*(x0, x) < ( M - ^ a ^ f - ' K l f c . »)))/(! - ^-'(eo)) •
The proof of the following theorem is exactly the same as that of Theorem 1.3.

THEOREM 1.4 . Theorem 1.3 remains true if we replace the completeness of X

by the completeness of GrF.

COROLLARY 1 .5 . If in Theorem 1.4 we assume that LoG is S-regular around

(0, 0) G Gr[L o G), then F is 6-regular around (xo, yo) •

PROOF: It suffices to apply Theorem 1.4 since the ^-regularity of L o G implies
the nice tf-inversibility of L o G. u

Borwein and Zhuang [6] have shown that, if for some strictly monotone continuous
function 6', F is approximately S'-open around (x0) yo) (that is, there is a: R+ -» K+
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with limsup fa'"1 («(*)))/(0 < 1 > a n d r > ° a n d V > ° s u c n t n a t for all x 6 xo+rBx

and all i/ G F(z) l~l (t/0 + *7-Br) and all t £ (0, »/),

y + S'(t)BY C cl(F(a: + tBx) + a(t)BY)

where "cl" denotes the closure), then F is 8-regular around (lo, J/o) for all 8 ̂  8' with
lim sup (8(t))/t < +oo.

In the following corollary we obtain the same result but with the condition H(8')
instead of limsup(S(t))/t < +oo. Let us remark that from this corollary one can get

Ho
information about the regularity constant K of F. But first we give the following
lemma:

LEMMA 1.6 . Let c e (0, 1) and 6 satisfy H(6). Then for all b € [l/(£(l/c)), 1)
and all t > 0,

(1.6) 6{ct) ^ b8(t).

PROOF: Consider the failure of (1.6). Then there is b G [l/(5(l/c)), 1) and t > 0
such that 8{ct) > bS(t). This latter is equivalent to 1/6 > 8(1/c) thanks to H(6) and
the strict monotonicity of 6 which contradicts b ̂  l/(£(l/c)). U

COROLLARY 1 .7 . Let 8 satisfy H(8). If F is approximately 8-open around
(zoj Vo) and GrF is complete then F is 6-regular around (x0, J/o).

PROOF: The condition limsup (8~1(a(t)))/t < 1 implies that there are 0 < c < 1
no

and r) > 0 such that a(i) < 8(ct) for all t 6 [0, 17]. Let b 6 [l/(8(l/c)), 1). Then by
Lemma 1.6 and the approximately 8-openness property of F one has the existence of
r > 0 and 7 > 0 (we can assume that 7 = »;) such that.

8(i)BY CF(x + tBx)-y+ (S(ct) - a{t) + a(t))BY

C F(x + tBx) ~y + 8(ct)BY

for all x 6 x0 + rBx, 2/ € (l/o + fBY) D F(x) and t e [0, 7]. Let us set e = b, (e < 1),
Z = R+, G(t) = tBx and L(x) = 8(d(0, x))BY. It is not difficult to see that the
assumptions of Theorem 1.4 are satisfied. D

REMARKS. (1) The result of Corollary 1.7 remains true for every strictly monotone
continuous function 6' ̂  6.

(2) It is not difficult to see that for some strictly monotone continuous function 8'
the approximately ^'-openness of F around (zoj J/O) is equivalent to the following: there
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is c 6 (0, 1), r > 0 and rj > 0 such that for all x G x0 + rBx, y £ (yo + *7#y) D F(as)
and * £ (0,77), y + S'[t)BY C -F(s + *J?x) + 6'(ct)BY.

Frankowska [12] has introduced the concept of high order variations for multifunc-
tions as follows:

(*>,v)—>(*o.vo)

where r > 0 and "lim inf" is taken in the sense of Kuratowski.
In the following corollary we obtain Frankowska's result proved in [13] as a conse-

quence of our main Theorem 1.3 since the 6-regularity implies the ^'-openness for some
6' < 6 (see [6, 22]).

COROLLARY 1 .8 . Let X and Y be two linear metric spaces, X complete and
r > 0. Assume that

0 £ int Fr(xo,I/o).

Then F is 6-regular around (xo, yo) with S(t) = tT.

PROOF: Since 0 £ int FT(x0, yo) then there is c > 0 such that for all 0 < e < c
there exists r > 0 satisfying:

trcBY C F(x + tBx) -y + etTBY

for all x Gxo+rBx, y £ {yo + rBY)DF(x) and t G [0, r]. Put Z = K+, G(t) = tBx,
S(t) = t and L{x) = (d(0, x))TcBx • We easily see that the assumptions of Theorem
1.3 are satisfied. D

The following metric regularity result for closed convex multifunctions is an exten-
sion of Robinson [24].

COROLLARY 1.9. Let X and Y be two linear metric spaces with X complete
and let F be a multifunction from X into Y with closed convex graph. Then the
openness of F at (xo, yo) £ GrF (that is, there exist r > 0 such that yo + rBY C
F(xo + Bx)) is equivalent to the metric S-regularity of F around [xo, yo) G GrF,
with 8{t) = t.

PROOF: In the remainder of the proof we assume for notational convenience that
x0 — 0 and y0 = 0; this simply translates the origins in X and Y. Suppose that F is
open at (0, 0). Then by the convexity of F we have for all 0 < e < r and t G [0,1],

trBY c F{tBx) + £tBY.

So by the convexity of F we have that for all x G (r/2)Bx, t G [0, 1/2] and y G
(l/2)BYnF(x),

trBY C F(x + tBx) -y + etBY.
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As in Corollary 1.7. we set Z = R+, G(t) = tBx, 6(t) - t and L(x) = <£(0, x)rBY •
Applying Theorem 1.3 we obtain the 6-regularity of F which completes the proof since
the other implication is obvious. D

Relying on the remark following Theorem 1.3 we obtain a substraction result for
convex multifunctions.

COROLLARY 1 .10 . If the assumptions of Corollary 1.9 are satisfied and if for
0 < a < B one has y0 + BBY C F(x0 + Bx) + OLBY , then there is a > 0 such that,

yo + (p- <x)sBY C F(X0 + sBx).

PROOF: AS in the proof of Corollary 1.9 we asusme that (xo, 2/o) = (0, 0) and for
r sufficiently small one has

tBBY CF(x+tBx)-y + atBY

for all x G rBx, t £ [0, r] and all y € rBY D F{x). If we set Z = R+, G(t) = tBx

and L(x) = <£(0, x)BY, we have 6 = 1 and a = 1//3 where b is as in H(G) and a is
the invertibility constant of L o G. Then it ensues from the remarks following Theorem
1.3 that there is s > 0 such that for all y e Jfo + (/? - a)aBY there is x £ F'1^)
satisfying:

which completes the proof. D
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