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Abstract
We present a modification of the Depth first search algorithm, suited for finding long induced paths. We
use it to give simple proofs of the following results.We show that the induced size-Ramsey number of paths
satisfies R̂ind(Pn)≤ 5 · 107n, thus giving an explicit constant in the linear bound, improving the previous
bound with a large constant from a regularity lemma argument by Haxell, Kohayakawa and Łuczak. We
also provide a bound for the k-colour version, showing that R̂k

ind(Pn)=O(k3 log4 k)n. Finally, we present a
new short proof of the fact that the binomial random graph in the supercritical regime, G(n, 1+ε

n ), contains
typically an induced path of length �(ε2)n.
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1. Introduction
In this article, we give short proofs for two well known problems regarding finding long induced
paths in random graphs.

The first problem concerns the induced size-Ramsey number of paths. For a graph
H, we define the k-colour induced size-Ramsey number of H, denoted by R̂kind(H), as the
smallest number m such that there exists a graph G on m edges such that for every k-
colouring of the edges of G, there is a monochromatic copy of H which is an induced
subgraph of G. In 1987, Graham and Rödl [15] asked if the induced size-Ramsey num-
bers of paths Pn are linear in n (for any fixed number of colours). This was con-
firmed by Haxell, Kohayakawa and Łuczak [16], who showed that R̂kind(Pn)≤ ckn for every
fixed k. Their proof is quite technical and is based on the regularity lemma, hence the derived
constants ck are astronomically large. We revisit this problem and give a short and rather simple
proof of the fact that the induced size-Ramsey numbers of paths are linear. Moreover, we obtain
an explicit absolute constant for the 2-colour version, and give a bound polynomial in k for ck in
the general case, for any fixed number of colours k.

Theorem 1.1. R̂ind(Pn)≤ 5 · 107n for all large enough n.

Theorem 1.2. R̂kind(Pn)=O(k3 log4 k)n.
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The second classical problem we address is finding a linear sized induced path in a binomial
random graphG(n, p) in the supercritical regime, i.e. when p= 1+ε

n for a sufficiently small positive
constant ε. We give a short alternative proof of the following result, originally due to Suen [25].

Theorem 1.3. There exists a constant ε0 > 0 such that for all positive ε < ε0, the random graph
G∼G(n, 1+ε

n ) with high probability1 (whp) contains an induced path of length ε2n
5 .

We remark that the dependency on ε is optimal: it is known that even the length of a (not
necessarily induced) path is whp O(ε2)n (see, e.g., [17]). Let us also note that Suen’s result is
slightly stronger in the sense that 1/5 can be replaced by any constant smaller than 1.

We give some background on those two problems and prove the results above in Sections 3
and 4. The common tool which we use in our proofs is a modified version of the Depth first search
(DFS) graph search algorithm. By nature, DFS is very suitable for finding long paths in graphs. Our
version is tailored for finding long induced paths, specifically in graphs with certain local density
conditions, hence it comes in handy for applications in random graphs. We will first present the
proof of Theorem 1.3, where the DFS algorithm is used directly in the random graph G(n, p).
Subsequently, in the proofs of Theorems 1.1 and 1.2, we apply it in a monochromatic subgraph of
a random graph. Throughout, we treat large numbers like integers whenever this has no effect on
the argument.

2. DFS for induced paths
In the standard DFS algorithm, we explore the vertices one by one, always following one branch
as far as possible, before we start backtracking. Given a graph G, the idea is to keep track of three
sets of vertices U, T, S, where T is the set of unexplored vertices, S is the set of vertices whose
exploration is complete, and the remaining vertices U are kept in a stack. At every step, we look
at the vertex u which is the last one added to U, and try to find a neighbour t of u in T. If we
succeed, we move t to U, and if not, we move u to S. It is easy to see that the vertices in U contain
a spanning path in G[U]. In our modified version of the DFS algorithm (described below), after
finding t, we also check if t has any other neighbours in U except u, and if so, we move t to S. This
ensures that U always spans an induced path in G, and makes the algorithm suitable for finding
long induced paths in sparse expanders.

More precisely, our goal is the following. Given two graphs G′, G on the same vertex set and
with G′ ⊆G, we want to find a long induced path in G, whose edges are all in G′. When G′ =G
this boils down to finding a long induced path in G′, but with the Ramsey question mentioned
before in mind, it will be convenient for us to formulate the algorithm with two input graphs, so
that in this specific instance, G′ will be a monochromatic subgraph of the coloured host graph G.
In applications we usually run the algorithm up to a certain stage, and by analyzing it we conclude
that the input graphs contain a suitable induced path.

The algorithm is a graph search algorithm which visits all the vertices in the following manner.
As input, it receives graphs G′ = (V , E′) and G= (V , E) with E′ ⊆ E, and an ordering π of V . The
algorithm maintains four sets of vertices U, T, S1 and S2. The set T is the set of unvisited vertices,
S1 and S2 are the sets of discarded vertices, while U =V \ (T ∪ S1 ∪ S2) is the set of remaining
vertices which are kept in a stack (the last vertex to enter U is the first to leave). At every stage
of the algorithm, U will induce a path in G with all edges belonging also to G′. In the beginning
we set S1 = S2 =U = ∅ and T =V , and we stop when U = T = ∅. The algorithm is carried out in
rounds, and in each round we proceed as follows.

1That is, with probability tending to 1 as n→ ∞.
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872 N. Draganić, S. Glock and M. Krivelevich

Beginning of round

1. If U is empty, we take the first vertex in T according to π , remove it from T and push it
to U.

2. Otherwise, let u be the vertex on the top of the stack in U. Now we query T for vertices
t ∈ T such that (u, t) is an edge in E′, by scanning T according to the ordering π . We have
one of the following scenarios, given by Steps 3 and 4.

3. If an appropriate t is found, we query U \ {u} for vertices u′ ∈U \ {u} such that (t, u′) ∈ E
by scanning U \ {u} according to the ordering π .

a. If all the answers are negative, remove t from T and push it to U.
b. If we get at least one positive answer, remove t from T and add it to S2.

4. If no such t is found, remove u from U and add it to S1.

End of round
In order to explore all pairs of vertices in the graph, for technical reasons, we also query all the
pairs in V which were not queried before for being in G′ (in the first paragraph of the proof of
Theorem 1.3 it becomes apparent why we want to query all pairs). This completes the algorithm.

The following properties of the algorithm will play an important role in analyzing it in the
sections that follow.

(A) At every point all pairs between S1 and T have been queried, and none of them is in E′.
(B) Every time we enter Step 3, the size of U ∪ S1 ∪ S2 increases by 1, and it never decreases.
(C) At every point, the number of edges in G[U ∪ S1 ∪ S2] is at least 2|S2|.
(D) At every point of the algorithm, U induces a path in G with all its edges being also in G′.

Properties (A), (B) and (D) hold for immediate reasons, while (C) holds since every vertex which
lands in S2 has at least two neighbours in G in the current U, and all the vertices in this current U
either stay at U or go to S1.

Now we give a result which shows that given two graphs G′ ⊆G, if G satisfies a local density
condition, and G′ has a certain expansion property, then G′ contains a long path induced in G.
It follows from analyzing our modified DFS algorithm, and it will be used to prove our Ramsey
results.

Given a graph G and a subset of vertices S, we denote by NG(S) the external neighbourhood of
S, that is, the set of vertices outside S which have a neighbour in S.

Theorem 2.1. Let G, G′ be graphs on the same vertex set with G′ ⊆G, and let s1, s2 and � be positive
integers such that for every set of vertices S the following hold:

• If |S| < s1 + s2 + �, then |E(G[S])| < 2s2;
• If |S| = s1, then |NG′(S)| ≥ s2 + �.

If |V(G)| ≥ � + s1 + s2, then G′ contains a path of length � which is an induced path in G.

Proof. In order to find the path, we run the algorithm described above with input graphs G′ and
G, with an arbitrary ordering of their vertices π . Let us show that at the first point when either
|S1| = s1 or |S2| = s2, U induces a path of length � (observe that such a point exists by the lower
bound on |V(G)|). By (D), U always induces a path in G and all edges in the path are in G′; so this
would give us precisely the path from the statement. Suppose for the sake of contradiction that
|U| ≤ �.
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First, assume that |S2| = s2 (but |S1| < s1) at the observed time. Then, by Property (C) it holds
that |E(G[U ∪ S1 ∪ S2])| ≥ 2|S2| = 2s2, a contradiction with |U ∪ S1 ∪ S2| < s1 + s2 + � and our
first assumption (on G).

Now, if actually |S1| = s1 (but |S2| < s2), by our second assumption (on G′) we have that
|NG′(S1)| ≥ s2 + �. But note that by Property (A) of the algorithm it holds that NG′(S1)⊆ S2 ∪U
and hence |NG′(S1)| < s2 + �, a contradiction. This completes the proof.

3. Long induced paths in the supercritical regime
In this section, we prove Theorem 1.3. Determining the order of a largest induced path/tree in a
random graph is a well-known problem with a long history [7, 9, 10, 11, 13, 14, 21, 23, 24, 25].
Frieze and Jackson [13] showed that for every sufficiently large d, there exists a constant α(d)> 0
such that whp the random graph G(n, d/n) contains an induced path of length α(d)n. Łuczak [23]
and independently Suen [25] showed that one can take α(d)∼ log d

d as d → ∞. This is optimal
up to a factor 2, as can be seen by a simple first moment calculation. Recently, the authors [4]
obtained this ‘missing’ factor in the lower bound, thus showing that whp the length of a longest
induced path is asymptotically 2n

d log d.
Here, we consider the case when d is close to 1 (the so-called supercritical regime). Łuczak [23]

and Suen [25] also showed that for any constant d > 1 whp there is an induced path of linear
length, thus answering a question of Frieze and Jackson [13]. In particular, Suen [25] showed that
one can take α(d) to be any constant smaller than d−1 ∫ d

1
1−y(ξ )

ξ
dξ , where y(ξ ) is the smallest

positive root of y= eξ (y−1). From this, one can derive Theorem 1.3. Our goal here is to present
a simple proof of this result. Suen’s proof is also based on a version of the DFS algorithm; in
particular, he uses it to find large m-ary trees, and then he shows that the depth of one of the
trees is large enough to guarantee a long path. Our version of the algorithm, combined with local
density considerations, makes the analysis shorter and more straightforward.

We will need the following (rather standard) definition, which helps us quantify how far the
components of a graph are from being trees.

Definition 3.1. For a connected graph G, define the excess of G as exc(G)= |E(G)| − |V(G)| + 1.
If G has more than one connected component then let exc(G) be the sum of the excesses of each
of its components.

The excess of a random graph in the supercritical regime typically comes overwhelmingly from
the excess of its giant component, while the typical size of the giant component in terms of number
of edges and number of vertices is well understood. We will use the following lemma (see, for
example, Theorems 2.14 and 2.18 in [12], and set c= 1+ ε, for small enough ε).

Lemma 3.2. There exists a constant ε0 > 0 such that for all positive ε < ε0, for the random graph
G∼G(n, 1+ε

n ) it holds whp that exc(G)≤ ε3n.

We are now ready to prove Theorem 1.3. The argument follows closely that of Krivelevich and
Sudakov [20] in the non-induced case. One key idea is to construct the random graph ‘on the
fly’ while the DFS algorithm is executed. The source of randomness is a sequence of independent
Bernoulli random variables which is used to answer the queries made by the algorithm. We use
the same notation as in Section 2.

Proof of Theorem 1.3.Wewill run the algorithm defined in the previous section withG′ =G and
an arbitrary ordering of the vertices π . We feed the algorithm with a sequence of i.i.d. random
variables {Xi}i∈N which follow a Bernoulli distribution with mean p= 1+ε

n , whereN = (n
2
)
, so that

the i-th new query of the algorithm is answered positively when Xi = 1, and otherwise negatively.
By new query, we mean a query made to a pair which has not yet been queried before (as in the
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third step we might query an already exposed pair, and there we just take its previous answer).
Therefore, the explored graph obviously follows the distribution of G(n, p), so our problem boils
down to studying the properties of the random sequence {Xi}i∈N .

First, let us show that the number of vertices in S2 is always at most the excess of G. Each
vertex in S2, before leaving T, was adjacent to at least two vertices on the path induced by U, so
it contributes at least one to the excess of G, as it adds one vertex but at least two edges to its
own connected component. Crucially, notice that the sets of contributing edges for each vertex
S2 are disjoint, as the at least two neighbouring vertices in U are never added to S2. Since whp
exc(G)≤ ε3n, we have the same bound on |S2| whp.

Suppose for the sake of contradiction that we always have |U| ≤ ε2n
5 . For the analysis of the

algorithm, we will focus on the pairs (u, t) which were queried when u was in U and t was in
T, i.e. the pairs queried in Step 2 of the algorithm. Let us show that whp at the point when we
queried N0:= εn2

2 pairs of this type, then U is of size at least ε2n
5 + 1, which would mean we are

done by (D). Observe that we can assume that at some point we queriedN0 pairs of the mentioned
type; indeed, when say |T| = n/2, by (A), we queried at least |T||S1| = n

2 (
n
2 − |S2| − |U|)> n2

8 such
pairs.

Now, we observe that when we have queried N0 pairs of the mentioned type, then |S1 ∪ S2| <
n/3; if this is not the case, then at some point before wemust have had |S1 ∪ S2| = n/3. Since |T| =
n− |S1| − |S2| − |U| > n/2, by (A) we have queried more than |T||S1| > |T|(n/3− ε3n)> n2/10
pairs of the observed type, which is larger than N0, a contradiction. So |S1 ∪ S2| < n/3.

When we queried precisely N0 of our pairs (in Step 2), the expected number of positive
answers among them is ε(1+ε)n

2 , hence, using Chernoff bounds we whp get at least ε(1+ε)n
2 − n2/3

edges among the queried pairs, and hence at least this many vertices in U ∪ S1 ∪ S2, thanks to
Property (B). Hence, we also have |S1| ≥ ε(1+ε)n

2 − n2/3 − ε2n
5 − ε3n.

By (A) we have at least |S1||T| = |S1|(n− |S1| − |S2| − |U|) queried pairs of the observed type,
so we have:

N0 ≥ |S1|
(
n− ε3n− ε2n

5
− |S1|

)

≥
(

ε (1+ ε) n
2

− n2/3 − ε2n
5

− ε3n
) (

n− ε (1+ ε) n
2

+ n2/3
)

>
εn2

2
+ ε2n2

20
−O(ε3)n2

(where the second inequality uses ε(1+ε)n
2 − n2/3 − ε2n

5 − ε3n≤ |S1| < n/3, so the product grows
with |S1|), contradicting the assumption on N0 for all small enough ε > 0, which completes the
proof.

4. Induced size-Ramsey number of paths
The size-Ramsey number of H, denoted by R̂(H), is the smallest number m such that there exists
a graph G on m edges with the property that for every 2-colouring of the edges of G, there is a
monochromatic copy of H in G. This notion was introduced by Erdős, Faudree, Rousseau and
Schelp [8], and over the past few decades there has been a lot of research devoted to studying
this and other related Ramsey functions. One of the classical problems posed by Erdős was to
determine the order of magnitude of R̂(Pn), and he actually conjectured that R̂(Pn)

n → ∞, which
was disproved by Beck [2] who showed R̂(Pn)=O(n). Since then, there has been a series of papers
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concerned with giving more precise bounds on R̂(Pn); for lower bounds see [1, 2, 3, 6], and for
upper bounds see [2, 3, 5, 6, 22]. The current records for lower and upper bounds are given by Bal
and DeBiasio [1], and by Dudek and Prałat [6], respectively:

(3.75+ o(1))n≤ R̂(Pn)≤ 74n.

For the k-colour version of the size-Ramsey number of paths, almost tight asymptotic bounds
are known in terms of k [5, 6, 18, 19]:

�(k2)n≤ R̂k(Pn)≤O(k2 log k)n.

Concerning the induced size-Ramsey number of paths, Haxell et al. [16] showed that R̂kind(Pn)
is linear for any fixed k, but no reasonably small constant can be extracted from their proof even
if k= 2, as it relies on the regularity lemma.2 We improve upon this considerably, showing that
R̂2ind(Pn)≤ 5 · 107n and R̂kind(Pn)≤O(k3 log4 k)n. As in previous proofs, our ‘host graph’ will be a
sparse random graph G(n, c/n), where c is a sufficiently large constant. We have already seen in
the last section that whp there is an induced path of linear length. The additional challenge here
is to guarantee such a path even if an adversary may delete half of the edges, say. Fortunately, the
DFS algorithm presented in Section 2 is very robust and does not require the full randomness of
the host graph, but performs well in ‘locally sparse’ graphs with a mild expansion property (cf.
Theorem 2.1). After a simple cleaning step, we can always guarantee such a pseudorandom graph
in the densest colour class. Hence, our results are density-type results, i.e. we prove that a subset
of edges forming an appropriate percentage of the whole graph contains a long path induced in
the host graph.

4.1 The two-colour result
We first show a simple lemma which collects several useful properties of a random graph with
parameters tailored for the proof of Theorem 1.1.

Lemma 4.1. Let G∼G(n, 64/n). Then G has the following properties whp.

1. Every vertex set S of size at most 196n
107 spans less than 12

7 |S| edges.
2. Every two disjoint vertex sets S, T of sizes |S| = 21n

107 and |T| ≤ 175n
107 satisfy e(S, T)< 95

7 |S|.
3. G has (1+ o(1))32n edges and �(n) isolated vertices.

Proof.

1. Let p= 64/n and let t = 196n
107 . We bound the probability of the existence of a set S of size at

most t which spans at least 12
7 |S| edges by using the following simple union bound

∑
i≤t

(
n
i

)(( i
2
)

12
7 i

)
· p 12

7 i ≤
∑
i≤t

(en
i

)i · (7eip
24

) 12
7 i =

∑
i≤t

[
en
i

·
(
7 · 64ei
24n

) 12
7
]i

≤
∑
i≤t

[
2280

(
i
n

) 5
7
]i

.

The part of the sum for i<
√
n is dominated by

∑
i≤√

n

(
1

n1/4

)i → 0. Otherwise, the i-th

summand is bounded by
(
2280

( 196
107

)5/7)i
< 0.99i = o(1/n), which finishes the proof.

2On the other hand, their argument actually gives the stronger result that R̂k
ind(Cn)=O(n) for any fixed k.
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2. We again use a union bound, now over all disjoint S and T of sizes s= 21n
107 and t = 175n

107
respectively (note that it suffices to consider sets T of size exactly t). We get that the
probability of a bad outcome is at most(
n
s

)(
n
t

)(
ts

95s/7

)
p95s/7 ≤

(
107ne
21n

) 21n
107

(
107ne
175n

) 175n
107

(
7 · 175ne
95 · 107

)95s/7 (
64
n

)95s/7

=
⎡
⎣(

107e
21

) 21
107

(
107e
175

) 175
107

(
1225e · 64
95 · 107

) 95·21
7·107

⎤
⎦
n

< (1− 10−7)n.

3. These are standard facts, so we omit the proofs.

Proof of Theorem 1.1. We will show that for large enough n we have that R̂ind(P7n/107)≤ (1+
o(1))32n, which gives R̂ind(Pn)≤ 5 · 107n.

For large enough n, let G be a fixed graph on n vertices which satisfies all the properties given
by Lemma 4.1. Let � = 7n

107 , s1 = 3�, and s2 = 24�; these are the parameters which we will use when
applying Theorem 2.1.

Consider an arbitrary 2-colouring of G and let G1 be the subgraph induced by the major-
ity colour (and containing no isolated vertices); note that G1 is of order at most (1− ε)n for
some fixed ε > 0, and has at least (1− o(1))16n edges. Let G′ be the graph obtained from G1
by successively removing vertices of degree at most 16, for as long as there are such vertices.
G′ is not empty, as otherwise G1 contains at most (1− ε)16n edges. Furthermore, we have that
|E(G′)| ≥ δ(G′)|V(G′)|/2≥ 17

2 |V(G′)|, so by Property 1 of Lemma 4.1 we have that |V(G′)| >
196n
107 = � + s1 + s2.
We will apply Theorem 2.1 to the graphs G′ and G[V(G′)]. Notice that Property 1 from

Lemma 4.1 translates directly to the first condition of Theorem 2.1; let us now show that the
second condition is also satisfied. Suppose towards a contradiction that there is a set S⊆V(G′)
such that |S| = s1 = 21n

107 and |NG′(S)| < s2 + � = 175n
107 . Note that

eG
(
S,NG′(S)

) ≥ δ(G′)|S| − 2 · eG′(S)≥ 17|S| − 2
12
7

|S| ≥ 95
7

|S|,
where the second inequality follows from Property 1; this gives a contradiction with Property 2
applied to the sets S and NG′(S). So we can apply Theorem 2.1, and find the required monochro-
matic path in G′, which is induced in G. Since G has at most (1+ o(1))32n edges, and we can
always find an induced path of length � = 7n

107 in any 2-colouring of E(G), this gives the required
bound on R̂ind(P7n/107).

4.2 Themulticolour result
In this section, we again show an auxiliary lemma about random graphs with certain parameters,
which is then used to prove Theorem 1.2.

Lemma 4.2. There exists c> 100 such that for all k≥ e13 the following holds whp for G∼
G

(
kn, c log kn

)
.

1. Every vertex set S of size at most 2n
c3k log2 k spans less than

2 log k
log k+2 |S| edges.

2. Every two vertex sets S, T of sizes |S| = n
c3k log3 k and |T| ≤ 2n

c3k log2 k satisfy e(S, T)< 8|S| log k.
3. G has

( 1
2 + o(1)

)
cnk2 log k edges.
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Proof.We choose c to be a large enough constant not depending on k.

1. Let t = 2n
c3k log2 k and let α = 2 log k

log k+2 > 5
3 and note that α < 2, and let p= c log k

n . As before,
we bound the probability of the existence of a set S of size at most t which spans at least
α|S| edges:

∑
i≤t

(
kn
i

)(( i
2
)

αi

)
· pαi ≤

∑
i≤t

(
ekn
i

)i
·
(
eip
2α

)αi
=

∑
i≤t

[
ekn
i

·
(
cei log k
2αn

)α]i

≤
∑
i≤t

[
10c2k log2 k

(
i
n

)α−1
]i

≤
∑
i≤t

[
10c2k log2 k

(
2

c3k log2 k

)1− 4
log k

]i

.

The part of the sum for i<
√
n we crudely bound by

∑
i≤√

n

(
1

n1/4

)i → 0, by looking at
the penultimate sum above and using the bound on i and α > 5

3 . For the remaining part of
the sum, the i-th summand is bounded by

( 1
2
)i = o(1/n) since 1− 4

log k > 2/3 and c is large
enough, which finishes the proof.

2. Using a union bound over all disjoint S and T of sizes s= n
c3k log3 k and t = 2n

c3k log2 k
respectively, we get that the probability of a bad outcome is at most(

kn
s

)(
kn
t

)(
ts

8s log k

)
p8s log k ≤

(
ekn
t

)2t ( et
8 log k

)4t ( c log k
n

)4t
=

(
c2e3kt
26n

)2t
→ 0.

3. This is a standard fact, so we omit the proof.

Proof of Theorem 1.2. Obviously, we can assume that k is large enough, so let k≥ e13. The proof
will follow from the previous lemma and Theorem 2.1, along the lines of the proof of Theorem 1.1,
by using the parameters � = s1 = n

c3k log3 k and s2 = n
c3k log2 k . Indeed, let c be given by Lemma 4.2,

now fix any k≥ e13 and let n be large enough such that there exists a graph G on kn vertices which
has the three properties given by the previous lemma.

Fix any k-colouring of the edges of G, and let G1 be the graph induced by the densest colour
class. Notice that G1 has at least ckn log k/4 edges, so the average degree in G1 is at least d =
c log k/2. Now we obtain the graph G′ from G1 by successively removing all vertices of degree at
most d/4 until there are none. It is easy to show, by using the first property from Lemma 4.2, that
G′ has at least s1 + s2 + � vertices. As in the proof of Theorem 1.1, we want to show that the two
conditions of Theorem 2.1 hold for the graphs G′ and G[V(G′)].

The first one directly follows from the first property of G. For the second one, let S⊆V(G′)
with |S| = s1, and suppose |NG′(S)| < s2 + � < 2s2. We reach a contradiction again as in the proof
of Theorem 1.1, by using the first and second property ofG, and theminimumdegree condition on
G′. Hence we can apply Theorem 2.1, and get an induced path in G′ of length �, which completes
the proof.
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