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ABSTRACT 
The digitalization trend is finding its way more and more into product development, resulting in new 
frameworks to enhance product engineering. An integral element is the application of new techniques 
to existing data, which offers an enormous potential for time and cost savings, because duplicate work 
in product design and subsequent steps is avoided. The reduction of costs can be further increased 
through the application as early as possible in the product development process. One solution is outlined 
in this publication, where the source of available data is principle sketches from engineering design. 
These represent the basic solution for technical products in a simplified way and are often deployed in 
the early stages of the development process. This representation enables not only a search of similar 
sketches but also other fields of interest such as product optimization or the search of CAD-geometries. 
To utilize this data in a practical way, a procedure is presented which recognizes the symbols of the 
sketches and subsequently converts them into graphs. An exemplary dataset from different gearbox 
layouts is used to present the application opportunities by performing similarity searches with multiple 
input formats. 
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1 INTRODUCTION 

The digitalization influences many people in their daily lives, for example through the invention of 

smartphones, a new media landscape or working environment was established. This trend is also 

reflected in product design, as new tools and methods are constantly introduced to further improve 

product engineering and increase its efficiency. In addition to the development and conception of new 

methods, the use of existing data is an essential step for the implementation of digitalization. 

Especially in product development, the amount of virtual and physical data is enormous, but its 

automated utilization is often difficult. 

Since drawings and sketches are common in the engineering of new components and usually represent 

the entire product in a condensed way, they are very well suited for automatic evaluation. To ensure 

that the existing data is effectively utilized, it must be recognized and automatically processed to assist 

the design task, for example through a search for similar sketches and the retrieval of linked data. The 

approach presented in this paper aims to solve this issue for principle sketches. These are applied very 

early in the product development process which leads to a high cost-saving potential compared to the 

subsequent phases.  

An expansion of the symbol detection in technical sketches is presented in the following. Additionally, 

this paper introduces the transformation of the recognized symbols into graphs, which in turn can be 

used for text or image-based search. The whole procedure is demonstrated on a dataset of different 

gearbox layouts. 

2 STATE OF THE ART 

Symbols are a commonly employed way to quickly communicate specific domain expertise. In the 

field of engineering, each subdivision has developed its own symbols, which are understood by 

educated personnel, with examples of simple drawings with specific symbols given in Figure 1. The 

examples vary from illustrations of products from the field of mechanical engineering to flowcharts in 

computer science or architectural plans like the illustrated bedroom. The individual drawings are 

generated on a PC or by hand and therefore vary in size, format and complexity.  

Figure 1: Overview of different types of engineering drawings 

2.1 Symbols in engineering 

In product development, symbols are often used in the early stages when the geometry is not yet 

finalized. In the development process, principle sketches are derived from the principle solution, 

which describes a rough and basic solution for a design task. They can offer solutions for the entire 

system or parts of it and serve as the basis for the embodiment phase and thus the creation of the 

product. Fundamental innovations or new designs are often developed with the help of principle 

sketches. (Roth, 2001) 

The VDI 2222 (1997) lists various representation ways for principle solutions, e.g. standardized 

symbolic sketches, free line sketches, 3D freehand sketches or unscaled rough drafts. The difference 

between a principle sketch and a technical drawing depicts Figure 2. The sketch on the left shows a 

solution for the task of converting a translational motion into a rotational one. The technical drawing 

on the right illustrates an engineered connecting rod, which is marked in the sketch as component (a). 

In comparison, the principle sketch represents the solution of the problem more simplified, but offers 

the advantage of rapid creation of variants and different solutions.  

https://doi.org/10.1017/pds.2023.198 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.198


ICED23 1977 

 

Figure 2: Example of a principle sketch and the resulting technical drawing of a  
designed part 

Therefore, the goal is to recognize and transform principle sketches in an automated way, to use the 

available information. This conversion offers the possibility to quickly and automatically access 

existing amount of data and to sustainably improve the product development process. 

2.2 Engineering drawings digitalization and contextualisation 

Due to the complexity and variety of engineering drawings, the transformation into a digital 

environment is a difficult task but could provide a rich source of data and information. A framework 

for this problem statement was developed by Moreno-Garcia et al. (2017), which differs between the 

digitalization and contextualisation of engineering drawings. The first element of the framework 

focuses on the preparation of drawings, the detection of symbols and the assignment of the recognized 

symbols to class labels. In the second step, the contextualisation, the prepared drawings are further 

processed to extract information from them. The following state of the art section is organized 

according to this structure: first, the symbol detection is discussed in more detail, followed by the 

contextualisation. 

2.2.1 Symbol detection 

The idea of using computers to detect symbols in drawings reaches back to the 1980s when Okazaki et 

al. (1988) stated a new method to detect symbols in circuit diagrams. These older approaches often 

depend on heuristics for symbol recognition, such as Kasturi et al (1990). As a result, these methods 

are not flexible and difficult to adapt to new symbols or tasks. 

In recent years, domain-specific solutions have been increasingly presented, which frequently rely on 

Deep Learning (DL) or Machine Learning (ML) for symbol recognition to address this issue. In the 

field of piping and instrument diagrams (P&ID), Elyan et al. (2018) have applied Convolutional 

Neural Networks (CNN) and other Machine Learning methods for detecting different symbols. In the 

same environment, Moon et al. (2021) presented a method that identifies different lines and arrows in 

P&ID drawings. The recognition of the respective line types is done by RetinaNet. Another approach 

focusing on valve and instrument symbol detection, was presented by Yun et al. (2020). This method 

utilizes a Regional Convolutional Neural Network (R-CNN) for symbol identification and deep 

adaptive clustering for the classification of the symbols. 

For UML diagrams, which are widely used in the field of computer science, various approaches with 

Machine or Deep Learning were also developed. Ho-Quang et al. (2014) developed a procedure to 

evaluate the components of UML diagrams using classical line detection and then classify them by 

different ML classifiers. Another procedure was proposed by Shcherban et al. (2021), where different 

CNN architectures were compared using transfer learning to recognize different types of UML 

diagrams from a dataset. However, all Deep Learning methods have a disadvantage: the data set 

required for training. The data set is either too small, not publicly accessible or has to be prepared 

manually. According to Moreno-Garcia et al. (2017), one possibility to solve the problem is data 

augmentation, but this also requires a dataset with labelled data. A new approach for the mechanical 

engineering sketches was presented by Bickel et al. (2021), which generates a large synthetic dataset 

for the training of a principle sketch object detection algorithm. For the identification of tolerance 

symbols on technical drawings, Deng et al. (2020) presented a CNN approach that extracts the symbol 

from the drawing through image preprocessing and subsequently applies symbol and text 

segmentation. However, the pure recognition of the symbols does not necessarily provide much 

additional benefit, so the next chapter introduces the contextualisation of the detected symbols. 
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2.2.2 Contextualisation 

The procedures for contextualising the recognized symbols are specialized and, compared to symbol 

detection, fewer frameworks were published. An example from mechanical engineering is the 

Celesstin system by Vaxiviere and Tombre (1992). This system is able to divide a 2D technical 

drawing of shafts and bearings into different components by vectorization. These modules are then 

prepared and transferred to the CATIA CAD system, which generates a 3D geometry of the specific 

components.  

In addition to this very specific solution system, Moreno-Garcia et al. (2017) also describe methods 

that transform the found symbols into a graph through a netlist. This approach was implemented by 

Yu et al. (1997) for piping diagrams and by Bailey et al. (1995) for electrical circuit diagrams. Another 

concept for piping diagrams and netlists was presented by Wen et al. (2016), which uses graphs to 

match 2D with 3D process plants. 

For detecting hand-sketch and computer-generated diagrams, Fu and Kara (2011) created a method, 

where the user produces a synthetically enlarged training data. The results were transformed into a 

graph to derive Simulink or SimMechanics models. Another approach that takes advantage of graphs 

was presented by Mizanur Rahman et al. (2021). This method applies anomaly detection to the 

generated graphs to improve the detected symbols and to identify and correct possible errors. 

The presented state of the art reveals that many frameworks and methods were developed for other 

domains, but in the early stages of the product development process, there is still no procedure for 

automatically recognizing principle sketches from product development and transferring them to a 

graph. Converting the image into a neutral format, such as a graph, facilitates and enables many 

possibilities that a plain image-based comparison would not allow. During the problem solving 

process, the specific properties of principle sketches must be taken into account, so they are 

represented in the resulting graph and are available for further applications like a similarity search or 

graph-based robust design. In the following, a procedure is presented and explained in detail, to solve 

the stated problem. 

3 APPROACH EXTENSION 

The first part of the method is built on previous work from Bickel et al. (2021) and is focused on 

training the Deep Learning model for symbol recognition. Compared to this previous approach, the 

synthetic data generation for the symbol detection was significantly improved for better applicability 

to principle sketches with background lines. The transfer of the sketches into graphs is a new process 

stage and therefore presented and investigated in this paper. In Figure 3 the general approach is 

depicted, with the novel steps highlighted in dotted frames. 

 

Figure 3: Overview of the general approach, based on Bickel et al. (2021) 

Transferring sketches to graphs offers a wide range of applications. The conversion enables a 

similarity search with different input formats, for example text, images or graphs. All three search 

inputs can be compared with a database of graphs to find the most similar sketch. The retrieved 

sketches can be used to troubleshoot a current design task by quickly presenting multiple variants or to 

access linked data of the principle sketch and thus get CAD files, technical drawings or even the 

technical requirements. In addition to searching for the entire sketch, it is also possible to perform a 

query for sub-graphs, for example, if only certain elements in an assembly is relevant for the engineer. 

For this purpose, sub-graph matching can be utilized to find all relevant overall systems that contain 

the searched combination of elements. 
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A necessary requirement for this transformation is a high classification accuracy of the different 

symbols, which calls for an adaption of the symbol recognition. The improvement of the existing 

procedure is explained first, followed by the new approach for the graph transformation. 

3.1 Symbol detection 

The pure recognition of symbols functions well, but a revision of the original procedure for data 

generation is necessary because it can lead to an incorrect classification of connecting lines. The 

straight lines of an enclosure for example can easily be interpreted as a symbol from the object 

detection model. 

To fix this problem, a background generator was added to the training data generation. This inserts 

random lines and objects in any number and thickness as background. Subsequently, the objects 

including the bounding box information are placed over this background. The additional segment to 

the approach is displayed in Figure 4.  

 

Figure 4: Augmentation of the training data generation method 

Furthermore, new symbols are implemented into the data generation to extend the whole approach to a 

wider range of applications. In total 16 different symbols are generated in each training set. The new 

principle sketch icons are primarily from the field of gear theory and therefore they include different 

gears and bearings. The results of the new data generation are shown in Figure 4. After the enhancement 

of the data generation method, the following chapter explains the conversion of the results into a graph. 

3.2 Graph transformation 

The idea of the transformation is to capture the content of the principle sketch in the best quality 

possible. Therefore, the recognized symbols are supposed to be linked to each other, which requires 

the connecting lines on the drawing. These must be extracted and identified first and can then be 

combined with the bounding boxes to a resulting graph. The procedure is based on Fu and Kara (2011) 

and includes the first step of their method. The detected symbols including the associated bounding 

boxes serve as the starting point for the procedure. The entire process is displayed in Figure 5. 

 

Figure 5: Different steps of the graph transformation procedure 

 

https://doi.org/10.1017/pds.2023.198 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.198


1980  ICED23 

First, the bounding boxes are trimmed out of the sketch so only the connecting lines remain. These 

lines are then skeletonized to improve the subsequent detection of the strokes. A dbscan cluster 

algorithm (Ester et al. 1996) offers the possibility to filter the open lines through the number of 

necessary neighbour points and thus determines the recognized lines in the sketch. This allows to 

consider very small elements or to ignore them, depending on the use case. Subsequently, the open 

endpoints are determined for each cluster. This is performed by a hit or miss transformation, which is 

able to detect even multiple open ends of a line, which is a necessary requirement for principle 

sketches. Subsequently, the open endpoints are compared with the bounding boxes via collision 

detection to find connecting lines between the boxes. The size of the endpoints can be chosen as 

desired. A larger size leads to better collision detection but also to wrong connections. In addition, the 

overlap of the individual bounding boxes is examined and also used for the graph transformation. 

Based on these two results, a graph can be generated that represents the linkage of the symbols and the 

respective symbol type. The nodes represent the symbols including their class and the edges connect 

them, depending on the relationship in the sketch. 

4 DEMONSTRATOR 

To demonstrate the presented approach and its application possibilities, a collection of principle 

sketches of gearboxes is used to show the potential offered by a graph conversion. A total of 29 

gearbox variants were developed, which can be roughly sorted according to their stage. Figure 6 

shows five examples of different gearbox designs. The principle sketches consist of the symbols: 

bearing, straight-toothed gear, helical-toothed gear and bevel gear. Furthermore, the housing of the 

respective gearbox is illustrated in simplified form.  

Figure 6: Example of different sketches for gearbox layouts 

4.1 Comparison of different training datasets 

The 29 drawings have been labelled by hand and then classified with two differently trained MASK R-

CNN models, to test the new synthetic data generation. The backbone network and the starting 

weights are identical for both networks, using the resnet50 and the starting weights of the COCO 

dataset (Lin et al. 2014). Only the training data is varied, one with and one without the changing 

background, but both containing the same 16 different symbols, as shown in the symbol collection in 

Figure 4. 

For the training of the detection model a workstation PC, with an Nvidia Titan V GPU, 32 GB RAM 

and an Intel Xeon W-2125 CPU was used. The training datasets consist of 200,000 images, generated 

with both approaches where each is split into 180,000 images for training and 20,000 for validation.  
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To compare the detection capabilities, the metrics of the COCO Dataset are considered, which consist 

of the intersection over union (IoU), the mean average precision (mAP) and the mean recall (mRc). 

The IoU value calculates the overlap between the predicted bounding box and the ground truth 

bounding box. If the IoU is above a certain threshold, which is stated behind the comparison metric 

(e.g. mAP 75 means a minimum of 75 % IoU) the detection is valid. Otherwise, the classified 

bounding box is not taken into account. For calculating the average precision (AP) a 101-point 

interpolated AP definition is used, which is computed at different IoU thresholds. The mean of all AP 

values is stored in the mAP variable. For the comparison of the different training datasets, the IoU 

threshold was set to 0.50 % and 0.75 %. The results are displayed in Figure 7.  

The comparison of the average precision and the average recall shows very clearly that the new 

approach offers significant advantages. In all comparative metrics presented, it outperforms the 

previous one. The poor results of the old approach are not due to bad recognition of symbols in 

general, but to the confusion of the housing with a symbol. Since there is no background in the data, 

the trained model always tries to assign a symbol to the casing lines. In contrast, the model trained 

with the new data identifies the symbols more distinctly which results in a high mAP value. The 

decreasing precision values for higher IoU values in the new dataset model are partly due to the model 

itself, as it sometimes has problems with long symbols, e.g. gears, and the distinction between straight 

and helical gears. Another influence is the manually labelled data, where the bounding boxes are never 

positioned as accurately as synthetically generated data and therefore the overlap is never perfect. 

 

Figure 7: Comparing the results with different training datasets 

4.2 Transformation to graphs 

After the successful recognition of the symbols, all sketches were converted into graphs. The whole 29 

principle sketches of the different gear setups are transformed, following the procedure from section 

3.2. For the representation of the graphs, the networkX package in python was chosen. An example 

transformation is shown in Figure 8, where the different node colours represent the symbol classes. 

These nodes are connected to each other via edges. The transformed graph clearly displays the 

respective gear pairs, which are connected via the bearings. The resulting graph database offers many 

options for evaluation and analysis. In the following, potential implementations for different similarity 

searches or rule-based checks of the graphs are presented. 

 

Figure 8: Transformation example of a sketch from the database 
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4.2.1 Text-based search 

The first way to perform a search is based on text input. By simply counting the individual nodes, it is 

possible to derive a table from the graphs and to search or filter for specific properties. A general 

categorization can be made, for instance, based on the number of bearings, the gear stages, and the 

number of specific gear types. In addition, a simple check of the imported data is feasible. In the 

context of the gearboxes, a comparison of the individual gears in contact would be possible, to 

determine whether both have the same gear type. If this is not the case, the identified graph is not 

included in the database or should be checked again manually by an engineer and adjusted if 

necessary. For the presented dataset of gearbox drawings, an example search query could be: gear 

stage equals five and the results are sorted by bevel and helical gears. Figure 9 represents the results of 

this search query in form of a dataframe. The most fitting result is listed as the first entry in the table, 

followed by the less similar results.  

 

Figure 9: The results for an example text-based search query 

4.2.2 Graph-based search 

Another way to use the similarity search is with a graph as a query input. This graph can be generated 

in various ways. The ideal graph itself can be created by setting the nodes and edges according to the 

current design. Furthermore, a principle sketch can be drawn and then converted as stated in the 

section 3.2. The presented method offers the possibility to recognize hand sketches as shown by the 

sketch query in Figure 10. The example image was only converted to a grayscale image using image 

thresholding (50%) and then passed to the trained model. The accuracy for this type could be 

improved significantly by taking hand drawn symbols into account in the data generation. Despite the 

error in the classification of the symbols the example of the similarity search in Figure 10 illustrates 

that the results retrieved match the query, since all outputs have the same gear stages. The third and 

fourth results have an equal similarity score, therefore there both ranked third.  

 

Figure 10: Example of a similarity search with a hand drawn sketch as input query 

Independently from the creation of the search graph, many methods were developed for similarity 

search with a graph as input. The special characteristic of graphs derived from principle sketches are 

the attributes of the individual nodes. These are the class labels of the bounding boxes and must be 

taken into account in the search, which makes straightforward topology comparisons unsuitable. For 

this reason, the Graph Edit Distance (GED) was chosen as a similarity measure for this demonstrator 

(Abu-Aisheh et al. 2015). This metric can take into account the attributes of the graph and describes 

the smallest change path for two graphs to be isomorphic. It is based on the Levenshtein distance 

(Levenshtein, 1966), which describes the number of change operations for words. The costs for the 

different operations on the graph (node or edge, add or remove) can be freely chosen, but for this 

example, they have all been weighted equally. 
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Another advantage of the graph-based search is that sub-graphs can be included in the search. The 

algorithms for this are often called sub-graph matching and test whether the search graph occurs in one 

of the database graphs. For the demonstrator, a VF2 algorithm (Cordella et al. 2001 and Cordella et al. 

2005) was applied, which again considers the node attributes of the graphs.  

4.2.3 Further applications and discussion 

The previously mentioned examples mainly include the similarity search combined with the retrieval 

of additional information. But the converted graph is also suitable for other tasks. For example, it can 

be automatically extended with knowledge using ontologies. This requires product or domain specific 

ontologies, which recognize correlations and transfer them into the graph. One example is the system 

developed by Goetz et al. (2018), which combines robust design and tolerance management. For this 

system, the presented approach can be leveraged to achieve further automation of the process. 

The potential of transferring a sketch to an independent format can be expanded. Another promising 

field of application is the transfer of other results of the product development process into graphs, 

which enables a format skipping similarity search and therefore time and cost savings. Especially 

suitable for this purpose is geometry in the form of assemblies, because they could be transferred into 

graphs by contact detection (Lupinetti et al. 2016) and component classification (Bickel et al. 2022). 

These assembly graphs could then be compared to sketch graphs using similarity metrics, which 

would enable sketch-based searches of geometries. 

In addition to the broad application potential, the presented approach still has drawbacks, primarily 

caused by the high dependence on very good symbol recognition accuracy. During the application on 

the demonstrator, it was noticed that the detection of identical symbols arranged next to each other, 

e.g. two bearings, is sometimes difficult. This can lead to unidentified symbols or very large bounding 

boxes. The error may be corrected either through drawings with more space between the symbols or 

by increasing the variance of the symbols in the generated data. It also happens more rarely that the 

location of the symbols is correct, but the class label is incorrect, e.g. that helical and straight gears are 

mixed up. However, the problem of misclassified symbols can be filtered out easily with specific 

domain knowledge, as shown in section 4.2.1. Since it is not possible for two gears in mesh to have 

different tooth shapes, the error is quickly detected and corrected. 

5 CONCULSION AND OUTLOOK 

In summary, this paper has presented an approach that enables the transformation of principle sketches 

into graphs. Furthermore, the application potential of these graphs was shown through a demonstrator 

dataset. The method includes the detection of symbols in principle sketches using a Deep Learning 

model. The training data generation for the DL model is also part of the procedure since synthetic data 

is used for the model. Subsequently, the recognized symbols form the basis for a transformation into a 

graph, which is implemented with the help of computer vision algorithms. Afterwards, a demonstrator 

database with different gearbox sketches is provided to show the possibilities with the new graphs by 

performing similarity searches with different input formats. 

The next step could be to build another demonstrator to show the versatility of the method, for 

example, a mechanical gripper or coin press machine. Additionally, the ability to recognize hand 

sketches could be investigated in more detail, for which studies with several samples would be 

necessary to test the applicability extensively. Finally, the graphs could be further developed for 

specific use cases through the implementation of domain-specific knowledge. This would create an 

expert system that combines the existing knowledge with the detected graph via ontologies. 
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