

Therefore, $65 \cdot 16$ cub. c. of alcohol vapour weigh $\cdot 1389 \mathrm{grm}$. but $\quad 65 \cdot 16$ cub. c. of air weigh 0843 grm .

$$
\text { Vapour density of alcohol }=\frac{\cdot 1389}{\cdot 0843}=1 \cdot 648
$$

The authors have extended their experiments to acetic acid and other substances. At low temperatures the vapour-density of acetic acid approximates to $4 \cdot 00$, no matter how much hydrogen be employed. At higher temperatures, an approximation to 2.00 is obtained, but without heating so high as Cahours found necessary.

The authors are continuing these researches.

2. Memoir of Sir Thomas Makdougall Brisbane. By Alexander Bryson.

The following Donations were laid on the Table:-
Journal of Proceedings of the Linnean Society-Supplement to Vol. V.-Botany. 8vo.-From the Society.
Bulletin de la Société des Sciences Naturelles de Neuchatel. Tome, V., Pt. 2. 1860. 8vo.-From the Society.

Quarterly Report of the Meteorological Society of Scotland, for the quarter ending 30th September 1860.-From the Society.
Monthly Notices of the Royal Astronomical Society. Vol. XXI. No. 2.-From the Society.
Proceedings of the Royal Society of London, Vol. XI., No. 42. 8vo.-From the Society.
Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences. Tome LII., No. 1,-From the Academy.
Monthly Return of Births, Deaths, and Marriages in Scotland. December 1860.-From the Registrar-General.
Catalogue of the Edinburgh Medical Society's Library. 2 vols., 1837 and 1845. 8vo.-From the Society.

