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A CHARACTERIZATION OF SPACES HAVING BASES OF 
COUNTABLE ORDER IN TERMS OF PRIMITIVE BASES 

H. H. WICKE AND J. M. WORRELL, JR. 

1. I n t r o d u c t i o n . T h e main theorem of this paper characterizes the class 
38 of essentially 7 \ spaces having bases of countable order as those spaces of 
the class 3P of essentially 7 \ spaces having primitive bases in which closed sets 
are sets of interior condensation. In addit ion we deduce some corollaries of 
this theorem, derive some other characterizations, and prove a lemma con
cerning primitive sequences which is a key to the proof of the main theorem 
and has other applications. 

T h e class 38 has, in the pas t decade, been perceived to be a fundamental 
class of spaces. Some initial reasons for this perception may be found in the 
following two theorems. 

1.1. T H E O R E M [Arhangel'skii, 1]. A T2 paracompact space is metrizable if and 
only if it has a base of countable order. 

In [20] it was shown tha t if essentially 7 \ is added to base of countable order, 
then the presence of such a base can be expressed by means of a sequence of 
covers. This brought out clearly the resemblance to and dist inction from 
developable spaces and showed the anticipation of the concept by N. Aronszajn 
[2] in an axiom (which incorporated some completeness) formulated for the 
express purpose of proving an arc theorem. A precise connection with develop
able spaces is given next. 

1.2. T H E O R E M [20]. A space is developable if and only if it is essentially 7 \ , 
6-refinable, and has a base of countable order. 

We think a part icularly significant aspect of 1.1 and 1.2 is t ha t there are 
spaces having bases of countable order which are not even weakly 0-refinable, 
e.g., the space Œ0 of countable ordinals with the order topology. T h u s 1.1 
achieves a factorization of metrizabili ty in which a covering proper ty and a 
base proper ty are isolated with little obvious overlap; this is in contras t to 
factorizations involving developability which carries the covering proper ty of 
subparacompactness with it. 

Since [20], the theory has undergone generalization to non-first-countable 
cases and the underlying techniques have been systematized [7-13; 19]. In 
rough terms, what has been shown is t ha t concepts such as developable space, 
^-space, and wA-space, which involve sequences S^ of open covers and arb i t ra ry 
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PRIMITIVE BASES 1101 

representatives G of & with nonempty intersection, permit generalization to 
concepts involving monotonically contracting sequences & of open covers and 
their monotone decreasing representatives, i.e., there is a transition from finite 
intersection type properties to monotone ones. The possibility of such a transi
tion involves techniques illustrated below. The resulting "monotone" theories 
are more general and, in a sense, more harmonious. The results tha t have been 
obtained for SS are typical: invariance, for the regular case (subsequently, 
pararegular [14]), under open, continuous, uniformly monotonically complete 
mappings [10], characterization of the 7 \ elements of Se as images of metrizable 
spaces under such mappings [10], a theory of complete T2 members of Se [12], 
invariance under perfect mappings [25], hereditarity, countable productivi ty, 
and "local implies global". Many of these theorems have been generalized to 
non-first-countable cases in [7; 8; 11; 13; 22]. 

T h e class SP properly includes Se and has a theory of comparable richness 
[15; 16; 17; 23 ; 24]. The fundamental technique of base of countable order 
theory takes a place in its very definition and an even more general theory is 
obtained which also has a non-first-countable counterpar t [18]. The main 
purpose of this paper is to characterize those members of 0 which are also in 
Se. A notable aspect of SP is tha t it includes both 3 and the class of essentially 
T\ quasi-developable spaces, or, what is equivalent, by [4], the class of essen
tially T\ spaces having 0-bases [20]. 

We here analyze the property of membership in Se into two factors: 

(1) having a primitive base, and 
(2) closed sets are sets of interior condensation. 

This may be compared with the two (equivalent) factorizations of developable 
into (1) quasi-developable, (2) closed sets are GVs [3], or into (1') 0-base, and 
(2) [20]. 

Section 2 provides information on primitive bases and sets of interior con
densation, respectively. We prove a key lemma in Section 3 and the main 
theorem in Section 4. Section 5 contains another point of view concerning the 
distinction between developable spaces and the members of Se and SP. 

Our set-theoretic usage is close to tha t of [5]. The letter TV denotes the set of 
natural numbers. We use < and ^ ambiguously to denote orderings whose 
fields are contextually clear. We frequently use single letters to denote se
quences. Given a sequence T, by a representative of T we mean a sequence A 
such tha t Aw £ Tn for all n £ N. A decreasing representative A is one such tha t 
Aw 3 An+i for all n £ N. A space is essentially 7 \ [20] if and only if for all 
x, y £ X, x G {y} implies y £ {x}. For other concepts not defined here see 
[7; 12; 20; 22]. 

2. Primitive base, primitive sequences, sets of interior condensation. 
In this section we define primitive base, some terminology of primitive sequence 
theory, and sets of interior condensation. We also s tate several theorems in-
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volving these concepts, some of which we apply in the proof of the main 
theorem. 

2.1. Definition [21]. A space X has a primitive base if and only if there exists 
a sequence W oi well-ordered collections of open sets such t h a t for each x (E X, 
if U is open and x £ U, then there exist k £ N and n G N such tha t x belongs 
to a t least n elements of ^Wk and the n-th such element is a subset of U. 

2.2. T H E O R E M [17]. Spaces having bases of countable order and quasi-develop
able spaces (equivalently [4], spaces with d-bases) have primitive bases. 

2.3. Example [17]. The topological sum and topological product of the 
Michael line [6, p. 90], and the space of countable ordinals with the order 
topology are spaces having a primitive base bu t neither a base of countable 
order nor a 0-base. 

2.4. Definition [17]. Suppose (3f, ^ ) is a well-ordered collection of sets. 
For each W G 2? let 

p(W,&) denote {x £ W: if W G 3f and W < W, then x $ W'}. 

2.5 Definition [11]. Suppose X is a set and AT Ç X . A primitive sequence of M 
in X is a sequence J ^ o f well-ordered collections of subsets of X which cover M 
such tha t for each n G N\ 

(a) For all H G X n MC\p(H,$fn) ^ 0. 
(b) If j < » a n d i n ^ ( f l X ) n M ^ ) ^ 0, then i f Ç # ' . 

In case i f = X,$f is called a primitive sequence of X . 

2.6 Definition [17]. If (X, r ) is a space and M ^ X, then an o£>ew primitive 
sequence of M in X is a primitive sequence J ^ o f M in X such t ha t each $fn Ç r. 

2.7 Definition. L e t J ^ be a primitive sequence of AT in X . A primitive repre
sentative of ffl is a sequence i f such t ha t for all n £ TV, 

p(Hn,j?n) n p(Hn+ujfrn+1) n M ^ 0. 

Notation. If J ^ is a primitive sequence of M in X} P R ( ^ ) denotes 

{ff: i f is a primitive representat ive oiffl\. 

2.8 Definition [17]. If ^ is a primitive sequence, then for all H £ P R p O , 
pc( i f ) denotes f^neNp(Hn, Jti?n). Th i s set is called the primitive core oî Jif. 

2.9 T H E O R E M [17]. /I topological space is essentially T\ and has a primitive 
base if and only if it has an open primitive sequence ffl such that for all H £ 
P R ( J ^ ), if pc(ff) 9^ 0, then {Hn: n £ N) is a base at each element of C\n<zNHn. 

2.10 Definition. A sequence ^ r e l a t e d to a space X as in 2.9, will be called a 
primitive sequence {of X) of basic type. 
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2.11 THEOREM [20]. A space X G 36 if and only if there exists an open primi
tive sequenced of X such that for all H G P R ( i f ), if Dn^Hn ^ 0, then 
{Hn: n G N} is a base at each point of C^n^NHn. 

2.12 Definition [7 ; 11]. A subset i f of a space X is a set of interior condensa
tion in X if and only if there exists a sequence s/ of collections of open sets 
covering M such that: 

(1) For all n G N and x G M, if x G A G ^ n , then there exists 
^4' G ^ n + i such that x G ,4' C A, and 

(2) if for each n £ N, An (: s/n and 4n+i Ç ^4n, then Pine^n ^ ^f. 

The next theorem is proved in [19]. A proof may be constructed using the 
proof of Theorem 1 of [20] as a guide. 

2.13 THEOREM. Suppose M is a sub space of a space X such that each x G M 
is in an open set U such that U C\ M is a set of interior condensation in X. Then M 
is a set of interior condensation in X, i.e., sets of interior condensation locally are 
sets of interior condensation globally. 

2.14 THEOREM. A subspace M of a space X is a set of interior condensation in X 
if and only if there exists an open primitive sequence ̂ f of M in X such that for 

aiiHe P R ( ^ ) , rw?»ç M. 
Proof. By Lemma 2.1 of [12] and Definition 2.12, there exists a n j f with 

the property described. On the other hand, if such an J^exists, apply Lemma 
2.3 of [12] to obtain a n j / satisfying the conditions of 2.12. 

2.15 THEOREM. If (An: n G N) is a sequence of sets of interior condensation in 
a space X, then DneNAn is a set of interior condensation in X. 

Proof. See 3.3. 

3. A key l e m m a . The lemma we prove here is basic to the proof of 4.1. The 
result needed for 4.1 is Corollary 3.2. Another application is 3.3. 

3.1. LEMMA. Suppose IV is a primitive sequence of M in X. Suppose that 
(fn'- n £ A7') is a sequence of functions such that for each n G N: 

(1) the domain of fn isWn and its range is the power set of X, 

(2) for each W ^Wn, Mr\p{W,Wn) C fn{W) Q p(W,Wn),and 

(3) for each W G Wn, there exists a primitive sequence n(S of fn{W) in W such 
that for all V G P R ( ^ ) , O { V,: j G N] Qfn(W). 

Then there exists a primitive sequence ̂  of M in X such that for all H G P R ( ^ ) 
there is a W G PR(T^) such that for each n G N, 

HnQ Wnand H {Hn: n G N) C p | {fn(Wn):n G N}. 
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If X is a space and the primitive sequences invoked in the above hypothesis are 
open in X, thenffl is also open in X. 

Proof. We introduce some notation: If (Au . . . , Aj) is a j-tuple of sets let 
a(Ah . . . , Aj) denote 0 {A,: 1 ^ i è j}. If each A{ G 2?u where 2?t is 
well-ordered, let ap(Au . . . , 4,-) denote 

a ( ^ ( 4 i , ^ i ) , . . . , ^ ( 4 J f ^ ) ) 

(in ap(Ah . . . , 4 , ) the appropriate 3?t's are contextually understood). For 
each W G ^ w , let (tf (W, n, i): i G N) denote a primitive sequence of fn(W) 
in W with the property of (3) of 3.1. Let n ^ N. Define ^ n as 

{(W l t. . . , W„): for alii £ n, ^ e ^ , a n d a £ ( W i , . . . , Wn) C\ M * 0}. 

Well-order ^n by the lexicographic order on W\ X . . . X IV n. For each 
iWu • • • , Wn) G SfB, let 

0 (Wlf . . . , Wn) = {(Wlin, . . . , Wn§1): Wtj G ^ (W„ i , j ) for 

1 è i,j S n and i + j = w + 1 such tha.tap(Witn, . . . , Wn,i) 

n M ^0}. 

Well-order each Qf (Wh . . . , Wn) by the lexicographic order on J f (Wu 1, ») 
X . . . X J f (WB, », 1). Let <sfn = {(A,B): A G ^ „ and B G ^ ( 4 ) } , again 
well-ordered lexicographically. 

The function a\ (fn is an injection on <a n. For suppose a (Ai, B\) = a(A2, B2), 
where Ak = (W,\ ... , Wn

k) and Bk = (WUn\ . . . , Wn/) for * = 1, 2. 
Then a(Aky Bk) 2 «£(4 , , Bj) for (*, j ) = (1, 2) and (*, j ) = (2, 1). Thus 
each Wi1 = WV and each W^1 = WV. 

For each n £ N we define J^re as the range of a| # n , well-ordered by H ^ H' 
if and only if a~\H) S OL~1(H'). H X £ M, there exists (A, B) G S\ such 
that x G a£C4, J5). For if x G M, there is, for each ife g «, a W* G ^Vk with 
x G ap(W^i, . . . , If») H ¥ . Thus, x G /*(W*) for all k ^ n. Hence there is a 
5 G ^ (Wu ... ,Wn) such that x G a £ ( 4 , 5 ) . Therefore « G a ( i , 5 ) G ^ n . 
If x e a ( i4 h 5 i ) , then a^(i4, 5 ) H «(A^ 5i) ^ 0. Hence (A, B) ^{AUBX). 
Thus x G £(«04, £ ) , X J . If H G ^ C , there exists (4 , B) G «f» such that 
H = a (4 , 5 ) . Since a^>(̂ 4, 5 ) ^ 0, condition (a) of 2.5 is satisfied. Note that: 

(*)p(a(A,B),Jffn)r\ M = ap(A,B) H M for all ( 4 , 5 ) G <f„. 
Suppose 

x G Mnp(Hyjen) H p(H',Jffn+1), where # = a((W l f . . . , W,), 
(W1<nj . . . , WnA)) and # ' = a((WY, . . . , WV,Wn+1), 

(Wi.n+i'f . . . , Wn+ltl')). 

By (*), IT/ = Wt for 1 g i £ n and W^ 3 ^ ,+ / for 1 g j , jfe g n and 
j + k = n + 1. Thus if' Ç if. Therefore J4?is a primitive sequence of M in X. 

Suppose H G P R ( J ^ ), where for each n G N, 

Hn = «((ÏTA . . . , WV»), (W1 ( / , . . . , I^w>1
w)) 

https://doi.org/10.4153/CJM-1975-115-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-115-1


PRIMITIVE BASES 1105 

and each Wtj
n G ^(W/1, i,j). Thus 

Mr\ p(wn\Wn) r\ p{wn+l^\Wn+l) ^0 
by the definition of 3^n+\. As was seen in the preceding paragraph, Wk

n = 
Wk

n+l for all 1 S k S n and n G N. Let Wn denote Wn
n. Then Wt

n = Wt for 
all i ^ n, and we have, for each w G TV, WiJ1 G ̂  (Wt, i, j) for 1 S i, j S n 
and i + j = n + 1. Moreover, H G P R ( ^ ) and (*) imply tha t 

PiWt^jtr (wt, ij)) r\ p(wiJ+l
n+\j? (wt, ij + i)) ^ 0. 

T h u s < ^ , / ' + ; - 1 : i G TV) G P R ( ( ^ (Wu i,j): j G TV)). Thus 

x e n{Hn:ne TV} 

implies t ha t 

x G H }W / z , / + ; - 1 : j G TV} C / ^ t F , ) for all i G TV. 

Therefore Pi {Hn: n G TV} Ç H { / w ( ^ ) - w G TV}. Since the elements of each 
J ^ n are finite intersections of elements of primitive sequences, the last s ta te
ment of the conclusion is valid. 

3.2. COROLLARY. Suppose X is a space andiV is an open primitive sequence 
of X such that for each n G TV and W G ^ w , p(W,^n) is a set of interior conden
sation in X. Then there exists an open primitive sequence J^f in X such that for 
each He PR(Jtf ) there is a W G P R ( ^ ) such that Hn Q Wn for all n G TV 
and Pi {Hn: n G TV} Ç pc(W). 

Proof. In the hypothesis of Lemma 3.1, let fn(W) = p(W, Wn) for all 
W G "JVn. By 2.14, e a c h / n ( W ) has an associated open primitive sequence in W. 
T h u s an open primitive s e q u e n c e d of X exists such tha t if H G PR(^f ), 
there is W G P R ( # 0 such tha t each Hn C Wn and 

H {Hn: ne TV} C fl {p(Wn,Wn): n t N] = pc(W). 

3.3. Proof of 2.15. Let M = H {An: n £ N}. For each w G TV l e t ^ = |X} 
considered as a well-ordered, one-element set. L e t / „ ( X ) = An for each n G TV. 
There exists an open primitive sequence of fn(X) in X by 2.14. By 3.1 there is 
an open primitive s e q u e n c e d of M in X satisfying the conclusions of 3.1. 
The only member of P R ( ^ ) is W where Wn = X for all n G TV. If # G 
P R C J f 7 ) , then 

O {#„: » G TV} ç n { / » W , ) : n G TV} = if . 

T h u s M is a set of interior condensation in X by 2.14. 

4. T h e m a i n t h e o r e m . 

4.1. T H E O R E M . A space is essentially T\ and has a base of countable order if and 
only if it has a primitive base and closed sets are sets of interior condensation 
locally. 
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Proof. Necessity. If X G SS, then X has a primitive base by 2.1 or 2.2. I t is 
easy to establish tha t closed sets are sets of interior condensation. 

Sufficiency. Let X satisfy the condition. Closed sets in X are sets of interior 
condensation by 2.12. Suppose x, y G X and x G {y}- Since {x} is a set of 
interior condensation, there exists a sequence se related to {x} = M a s in 2.11. 
There exists a decreasing representat ive A of J^/such tha t x G H {An: n G N). 
Since x G {j}, ;y G Pi {̂ 4n- n £ N}. T h u s 3/ G {x}. Therefore X is essentially 
7 \ . By Theorem 2.9, there exists an open primitive sequence ^ o f basic type 
for X. Suppose W G Wn. Then 

Hence £>(IT, ^ n ) is the intersection of an open set and a closed set. Since 
open sets are obviously sets of interior condensation, p(W,^Wn) is also, by 2.15. 
Therefore there exists an open primitive sequence J^oi X related to ^ a s in 
3.2. S u p p o s e d G P R ( ^ ) a n d x G D {Hn: n G N}. There exists W G P R C # 0 
such tha t Hn Ç Wn for all n G N and x G p c ( W ) . T n u s f ^ : n G iV} is a 
base a t x and, therefore {Hn: n £ N} is also. By 2.11, 1 ^ 1 

4.2. T H E O R E M . 4̂ s/>ace is essentially T\ and has a base of countable order if 
and only if it has a primitive sequence ift of basic type such that for all n ^ N and 
W G ̂ m P(W,Wn) is a set of interior condensation in W. 

Proof. This follows from 2.10 and the proof of 4 .1 . 

4.3. T H E O R E M . A space is developable if and only if it is essentially 7 \ , 6-
refinable, has a primitive base, and closed sets are sets of interior condensation 
locally. 

Proof. This follows from 4.1 and 1.2. 

4.4. T H E O R E M . A space is metrizable if and only if it is T2 paracompact, has a 
primitive base, and closed sets are sets of interior condensation locally. 

Proof. This follows from 4.1 and 1.1. 

In view of 4.2, it seems natural to ask whether a space having a primitive 
s e q u e n c e d of basic type has a base of countable order if for all W G PR ( ' # ' ) , 
pc(IT) is a set of interior condensation. T h e Michael line [6, p . 90] provides a 
counterexample, since singletons are GYs and the space has a primitive se
quence ^ o f basic type such tha t for all W G P R ( ' # ' ) , pc(W0 9^ 0 implies 
t ha t pc(W0 is a singleton. 

5. S e t s of in ter ior c o n d e n s a t i o n u n i f o r m l y . In this section we define 
uniform notions of a space having closed sets GYs or sets of interior condensa
tion in order to view a different aspect of the base of countable order-develop
able distinction. We also define primitive set of interior condensation to bring 
bring out a distinction from primitive base. Similar approaches may be made 
to other concepts as in the final note. 
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5.1. Definition. Suppose M is a set. If %f is a collection of sets we define 
<éM = [A G ^: AC\M) 9*0. 

5.2. Definition. If X is a space, and M Ç X, a G h-sequence for M in X is a 
sequence «^ of X-open covers of ikf such tha t if D is a representative of ^ , 
then n {Dn: n £ N] Q M. 

An SIC-sequence for M in X is a sequence J ^ related to M as in 2.12. 

We note tha t a set is a G§ in a space if and only if it has a GVsequence in 
the space. 

5.3. Definition. If X is a space, then closed sets are G^ sets uniformly in X if 
and only if there exists a sequence ^ of open covers of X such tha t for all 
closed M CI X the sequence (f@ n

M\ n G A7") is a G^-sequence for Af. 
Closed sets are sets of interior condensation uniformly in X if and only if there 

exists a monotonically contracting sequence s%? oi open covers of X such tha t 
for all closed M C X, (œ/n

M: n G N) is an SIC-sequence of M in X. (A mono
tonically contracting, [7; 22], s e q u e n c e ^ / is one such tha t x G A G ^ „ implies 
the existence of ,4 ' G J / W + I with x G ,4 ' Ç yl for all n G iV.) 

5.4. T H E O R E M . A space is developable if and only if closed sets are G§ sets 
uniformly in the space. 

Proof. The necessity may be proved by using a development ^ . Suppose @ 
is a sequence for a space X as in 5.3. If x G X is in an open set U, then M = 
X\U has a Gô-sequence < ^ n

M : w G N). For some n £ N, st(x, ^ „ ) Ç [/. 
Otherwise there is a representative G of (^ n

M : n G iV} such tha t x G H 
{Gw: 7z G A }̂ and thus x £ U. 

5.5. T H E O R E M , yl s£ace is essentially T\ and has a base of countable order if 
and only if closed sets are sets of interior condensation uniformly in the space. 

Proof. Similar to the proof of 5.4. 

5.6. Definition. If X is a space and M CI X, then M is a primitive set of 
interior condensation in X if and only if there is an open primitive s e q u e n c e d 
of M in X such tha t if W G P R ( ^ ) and p c ( l ^ ) ^ 0, then pi I Ww: n t N} Q 
M. 

5.7. Definition. Closed sets are primitive sets of interior condensation uniformly 
in a space X if and only if there exists an open primitive sequence J ^ o f X such 
tha t for all closed M C X, {^fn

M: n G N) is related to AI as J / is in 5.6. 

5.8. T H E O R E M . A space is essentially T\ and has a primitive base if and only if 
closed sets are primitive sets of condensation uniformly in the space. 

Proof. The necessity follows from the existence of a sequence for the space 
as in 2.9. Suppose there is a s e q u e n c e d for a space X as in 5.7. Suppose H G 
P R ( ^ ), pc(H) ^ 0, and x G C\ {Hn: n G N}. If U is open and x G £/, let 
M = X\U. \i HnC\M 9+0 for all n G iV, then i7 G P R ( ( ^ / : n G A r)). 
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Since pc(H) ^ 0, it follows that P\ {Hn: n Ç N] Ç. M, a contradiction. Thus 
some Hn Ç U. By 2.9, the proof is complete. 

Note. If we replace closed sets by points in the preceding discussion we 
obtain analogous characterizations of the concepts of G5-diagonal, diagonal a 
set of interior condensation [9], and diagonal a primitive set of interior conden
sation. Extensions may be made to non first countable analogues of developable 
spaces and spaces having base of countable order as well. We describe the 
foundations of a theory of primitive structure for non first countable spaces 
in [18]. 
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