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Summary

The advancements made in molecular technology coupled with statistical methodology have led to

the successful detection and location of genomic regions (quantitative trait loci ; QTL) associated

with quantitative traits. Binary traits (e.g. susceptibility}resistance), while not quantitative in

nature, are equally important for the purpose of detecting and locating significant associations

with genomic regions. Existing interval regression methods used in binary trait analysis are

adapted from quantitative trait analysis and the tests for regression coefficients are tests of effect,

not detection. Additionally, estimates of recombination that fail to take into account varying

penetrance perform poorly when penetrance is incomplete. In this work a complete probability

model for binary trait data is developed allowing for unbiased estimation of both penetrance and

recombination between a genetic marker locus and a binary trait locus for backcross and F
#

experimental designs. The regression model is reparameterized allowing for tests of detection.

Extensive simulations were conducted to assess the performance of estimation and testing in the

proposed parameterization. The proposed parameterization was compared with interval regression

via simulation. The results indicate that our parameterization shows equivalent estimation

capabilities, requires less computational effort and works well with only a single marker.

1. Introduction

Statistical methods for mapping continuous traits

have advanced from methods that consider a single

marker and single trait (Wright, 1952; Me! rat, 1968;

Hammond & James, 1970; O’Donald, 1971 ; Fain,

1978; Weller, 1986; Beckman & Soller, 1988; Luo &

Kearsey, 1989; Luo & Woolliams, 1993) to methods

which map multiple quantitative trait loci (QTL)

using information from many markers (Jansen, 1992,

1993; Zeng, 1993, 1994). These likelihood interval

mapping methods have been extended to handle

epistatic interactions between genes (Kao, 1995).

Churchill & Doerge (1994) and Doerge & Churchill

(1996) have introduced permutation testing as a

mechanism for dealing with violations of assumptions.
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Haley & Knott (1992) and Martinez & Curnow (1992)

proposed regression-based methods that are easier to

implement and require less computational effort than

the likelihood interval mapping methods and have

been shown to be comparable to the likelihood

methods (Xu, 1996). For comprehensive reviews of

these statistical methods, as well as an overview of the

tissues involved in searching for genes, see Doerge et

al. (1997), Elston (1998) and Olson et al. (1999).

Binary traits (e.g. susceptibility}resistance), while

not quantitative in nature, are equally important for

the purpose of detecting and locating significant

associations with genomic regions. Much of the

complication in binary traits comes from their

seemingly simple descriptions (e.g., presence or ab-

sence), when in fact their underlying biological model

may be more complicated. One approach to the

analysis of binary trait data is to consider the trait as

a genetic marker (Paterson, 1998), and then map the

trait using genetic mapping methodology. Similarly,
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simple χ# tests (e.g. Wilcox, 1995) using 2¬2

associations have been used to test for associations

between a single marker and a binary trait. While

both these approaches provide information on the

association of a binary trait locus (BTL) near

previously mapped genetic markers, they do not

estimate the genetic distance between the marker and

BTL (recombination) and thus are unable to estimate

the proportion of individuals for an underlying

genotype that express the trait (penetrance).

Recombination for BTL has been estimated by

adapting QTL analysis. Hacket & Weller (1995) and

Xu & Atchley (1996) used a logistic regression

approach applied to ordinal or binary trait data.

Visscher et al. (1996) used a generalized linear model,

and Kruglyak & Lander (1995) proposed a non-

parametric approach based on a generalization of the

Wilcoxon rank test. Rebaı$ (1997) compared the

methods proposed by Hackett & Weller (1995) and

Kruglyak & Lander (1995) with the standard linear

regression interval mapping methods (Haley & Knott,

1992) for analysing BTL and reported that the linear

regression approach was robust against non-normality

and that the loss of power was not significant.

Visscher et al. (1996) reported similar results in their

comparison of generalized linear models and linear

regression in their analysis of BTL. The linear and

logistic approaches gave similar results in terms of

location (recombination) and power for effect, dem-

onstrating that the estimation of recombination

between binary trait loci and markers is possible using

the QTL (continuous) framework. Xu (1996) com-

pared the performance of regression and maximum

likelihood approaches and found that regression-

based approaches combined with permutation testing

work well. In addition to this work, much has been

done in human genetics, where looking at the

association of multiple factors with a single binary

outcome (disease status) is commonplace. Particularly

relevant to the model we propose is an approach

proposed by Thompson (1998) where the use of

segregation indicators is described.

The existing models for binary traits in experimental

populations define the hypothesis tests in terms of the

effect. In addition, much of the prior work on BTL

focuses on modelling an underlying threshold distri-

bution (Xu & Atchley, 1996; Xu, 1996). The threshold

model is an important quantitative genetic model ;

however, the underlying threshold distribution is

unobserved. What is observed is the cumulative

probability of the distribution from the threshold

point to the limit of the distribution function, or the

observed proportion of individuals with the trait.

Many different types of threshold models can give the

same value for the threshold, and in many cases, the

appropriate underlying threshold model is unknown.

Ideally, a complete methodological framework for

binary traits that allows detection of BTL and

estimation of both the recombination and the pen-

etrance between the BTL and the marker locus is

needed. This methodology should be expandable,

easily interpretable, easily implemented and accuracy

of estimates should not require estimation of the

threshold model.

In this work, we develop a probability model for a

binary trait locus that is based on classical genetic

theory. Implementation of the model using segregation

indicator variables (Thompson, 1998) is straight-

forward, and combined with regression techniques

can be used to detect associations between the marker

and the BTL even when penetrance is incomplete. The

standard tests of the regression coefficients are easily

interpreted using the probability model regardless of

the type of regression (linear or logistic) performed.

The power of the tests in both the linear and logistic

settings is examined using simulations and reported

for the backcross and F
#

experimental designs. The

addition of a second flanking marker is considered

and estimates of recombination and penetrance are

developed in both single and flanking marker cases.

Simulations were performed for the purpose of

evaluating the performance of these estimators and

comparing them to those from interval regression.

2. Methods

(i) A probability model

Using notation established by Doerge et al. (1997),

genetic markers will be represented by M and N and

binary trait loci (BTLs) denoted by Q. In the backcross

and F
#
designs, for diploid individuals (Fig. 1), there

are only two possible alleles for each marker and}or

BTL, and they will be denoted by M
"
, M

#
, and Q

"
, Q

#
.

Recombination, r
MQ

, is the probability that an

observable exchange of genetic material occurred

between the BTL (Q
"

or Q
#
) and the marker (M

"
or

M
#
). The amount of recombination is a measure of

association between the marker and the BTL. When

r
MQ

¯ 0±50, there is no association between the marker

and the BTL.

In the backcross design, for each individual there

are two possible marker types (MT), M
"
}M

"
and

M
"
}M

#
, and two BTL genotypes (GT), Q

"
}Q

"
and

Q
"
}Q

#
, giving a total of four possible combinations of

marker type and genotype. The number of marker

type and genotype combinations will be denoted by c

from this point forward. In the F
#
, there are three

marker types and three genotypes, giving a total of

nine possible combinations of marker type and

genotype (c¯ 9). The initiating parents are assumed

to be homozygous inbred lines differing in the binary

trait of interest, meaning that each distribution of the

trait for Parent
"

and Parent
#

is a different binomial

distribution (see Fig. 1) such that p
"
1 p

#
. In addition,
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Table 1. Joint and conditional probability distributions for a backcross

experimental population

MT P(MT ) GT P(GT rMT ) P(Y rGT ) P(Y,GT rMT ) P(Y,GT,MT )
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"
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"
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"
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"
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"
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"
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"
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#
(1®r
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) p

$
(1®r

MQ
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$
(1®r

MQ
)p

$

#

M1Q1/M2Q2 : Y CB(n3, p3)

F1

F2

mixture mixturemixture

Bc Bc

M1Q1/M1Q1 : Y CB(n1, p1) M2Q2/M2Q2 : Y CB(n2, p2)

Parent1 Parent2

Fig. 1. Trait distributions for backcross and F
#

design.

for clarity of further discussion and without loss of

generality, we assume p
"
! p

#
. The F

"
is assumed to

be distributed binomially with p
$
.

The binomial probabilities p
"
, p

#
and p

$
shown in

Fig. 1 represent the probability that a binary trait is

present given a specific BTL genotype (GT), or the

penetrance of the trait for the specific genotypes

Q
"
}Q

"
, Q

"
}Q

#
and Q

#
}Q

#
, respectively. A dominant

model is the special case where p
#
¯ p

$
, and the

recessive model is the special case where p
"
¯ p

$
.

Other genetic models can be expressed as com-

binations of the p
i

(i.e. the midparent model is

p
$
¯ (p

"
p

#
)}2. In this parameterization, the domi-

nant and recessive models are mathematical mirrors

of each other.

The joint probability of the genotypes, marker

types and the trait for specific experimental designs

can be expressed in terms of r
MQ

, p
"
, p

#
and p

$
. For the

joint and conditional probability distributions of the

backcross and the F
#
experimental designs see Tables

1 and 2.

(ii) Expected �alues

The joint probability of Y,GT,MT can be written as

follows:

P(Y,GT,MT )¯P(Y rGT,MT )P(GT,MT )

¯P(Y rGT )P(GT,MT )

¯P(Y rGT )P(GT rMT )P(MT )

where P(Y rGT,MT )¯P(Y rGT )¯ p
i
.

Given the joint probability of Y,GT,MT the

expected values (E(Y )) for individuals in a backcross

or F
#

population are as follows.

For the single marker, single BTL backcross model,

where the F
"

is crossed with Parent
"
,

E(Y )¯Y3
c

P(Y,GT,MT )

¯1

A

B

(1®r
MQ

)
p
"

2
r

MQ

p
$

2
r

MQ

p
"

2

(1®r
MQ

)
p
$

2

C

D

0

A

B

1®(1®r
MQ

)
p
"

2
1®r

MQ

p
#

2
1®r

MQ

p
"

2

1®(1®r
MQ

)
p
$

2

C

D

¯
p
"

2


p
$

2
,

and similarly for the reciprocal backcross the

E(Y )¯ p
#

#
p

$

#
.

In the F
#

design,

E(Y )¯Y3
c

P(Y,GT,MT )

¯
p
"

4


p
$

2


p
#

4
.

If Parent
"

and Parent
#

are extreme cases, such that

p
"
¯ 0 and p

#
¯1, then in the dominant model
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Table 2. Joint and conditional probability distributions for an F
#

experimental population

MT P(MT ) GT P(GT rMT ) P(Y rGT ) P(Y,GT rMT ) P(Y,GT, MT )
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"
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p
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p
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p
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Q
#
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#
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#

M
#
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p
"
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p
"
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p
"

%

Q
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MQ
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MQ
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$
2(r

MQ
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MQ
))p

$
2(r

MQ
(1®r

MQ
) p

$

%
)

Q
#
}Q

#
(1®r

MQ
)# p

#
(1®r

MQ
)#p

#
(1®r

MQ
)# p

#

%

(p
#
¯ p

$
),E(Y )¯ $

%
and in the recessive model

(p
"
¯ p

$
),E(Y )¯ "

%
.

(iii) Regression models

Now that the probability model for BTL has been

described in terms of its parameters (r
MQ

, p
"
, p

#
and

p
$
), it can be combined with regression techniques to

detect associations between a marker and the BTL. In

this framework, the test for marker and BTL as-

sociation is a test of the null hypotheses, r
MQ

¯ 0±50.

As previous work has focused on both linear and

logistic regression, in this work we examined the

interpretation of the tests of the regression coefficients

in both a linear and logistic regression model using the

probability model developed above (Tables 1, 2).

(a) Linear model

The linear regression model parameterized for a

backcross, single BTL, single marker model is written

as:

Y
i
¯β

!
β

"
X

i
ε

i
; i¯1,… , n,

where

Y
i
¯

1

2
3

4

1, Trait¯1

0, otherwise

X
i
¯

1

2
3

4

1, if MT¯M
"
}M

#

0, if MT¯M
"
}M

"
.

This representation using the X
i

as indicator

functions allows the parameters β
!

and β
"

in the

regression model to be expressed as

β
!
¯µ

M
"
/M

"

β
"
¯µ

M
"
/M

#

®µ
M

"
/M

"
.

However, as with any linear model the error terms

are assumed to be independent and normally distri-

buted with mean zero and constant variance σ#. While

this does not affect the estimation of the regression

coefficients (Searle, 1997), it can affect the distribution

of the test statistic for the test β
"
¯ 0. Therefore, the

distribution of the test statistic and the power of the

test for the regression parameters must be carefully

examined. In this paper, all P values were determined

using permutation theory (Churchill & Doerge, 1994;

Doerge & Churchill, 1996).

Using the conditional probabilities given in Table 1,

the difference between marker class means is expressed

as a function of r
MQ

, p
"

and p
$
, where

µ
M

"
/M

#

®µ
M

"
/M

"

¯ (1®2r
MQ

)(p
$
®p

"
).

In this case, the test of the regression coefficient β
"
¯ 0

is a test of r
MQ

¯ 0±50 and p
"
¯ p

$
. Assuming that

p
"
1 p

$
, this is a direct test of r

MQ
¯ 0±50.

Similarly, in an F
#
population the linear regression

model is written as:

Y
i
¯β

!
β

"
X

"i
β

#
X

#i
ε

i
; i¯1,… , n (1)

where

Y
i
¯

1

2
3

4

1, Trait¯1

0, otherwise

X
"i

¯
1

2
3

4

1, if MT¯M
"
}M

#

0, otherwise

X
#i

¯
1

2
3

4

1, if MT¯M
#
}M

#

0, otherwise.

Using the X
i
as specific indicator functions allows

the regression the parameters β
!
, β

"
and β

#
to be

expressed as

β
!
¯µ

M
"
/M

"

,

β
"
¯µ

M
"
/M

#

®µ
M

"
/M

"

,

β
#
¯µ

M
#
/M

#

®µ
M

"
/M

"

.

As with the backcross, the conditional probabilities

given in Table 2 for the F
#

are used to express the
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Table 3. Estimates of r
MQ

and p
$

for single marker backcross and F
#

populations

rW
MQ

pW
$

Backcross
p
"
−µ

M
"
/M

"

#p"
−µ

M
"
/M

#
−µ

M
"
/M

"

µ
M

"
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#

µ
M
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"
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"
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"
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p
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#
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M
"
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p
"
−p

#

"

#
µ

M
#
/M

#

µ
M

"
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#

"

#
µ

M
"
/M

"

®"

#
p
"
®"

#
p
#

Table 4. Expected trait distributions for binary traits in a backcross with two markers for linkage map MQN

MT P(MT ) GT P(GT rMT ) P(Y rGT ) P(Y,GT rMT ) P(Y,GT,MT )

M
"
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"

"

#
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"
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"
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"
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"
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"
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"
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"
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"
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"
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p
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p
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"
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p
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p
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"
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"
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"
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)(r
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"

Q
"
}Q

#

("−rMQ)("−rNQ)

"−rMN

p
$

("−rMQ)("−rNQ)

"−rMN

p
$

"

#
(1®r

MQ
)(1®r
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standard tests of the regression parameters β
"
¯ 0 and

β
#
¯ 0 in terms of r

MQ
, p

"
, p

#
and p

$
, where

µ
M

"
/M

#

®µ
M

"
/M

"

¯ (1®2r
MQ

)[r
MQ

(p
"
®2p

$
p

#
)

(p
$
®p

"
)]

µ
M

#
/M

#

®µ
M

"
/M

"

¯ (1®2r
MQ

)(p
#
®p

"
).

In this model, the test of the regression coefficient

β
"
¯ 0 is a test of r

MQ
¯ 0±50 and p

"
¯ p

#
¯ p

$
, and

β
#
¯ 0 is a test of r

MQ
¯ 0±50 and p

"
¯ p

#
. Assuming

that p
"
1 p

#
, both tests are a direct test of r

MQ
¯ 0±50.

The test of β
#

in the F
#

is conceptually equivalent to

the test of β
"

in the backcross.

(b) Logistic model

The logistic model has been suggested in binary trait

analysis. The logistic regression model is written as:

Y
i
¯π(X

i
)ε

i
; i¯1,… , n

where for a backcross, single BTL, single marker

model

π(X
i
)¯

exp(β
!
β

"
X

i
)

1exp(β
!
β

"
X

i
)
,

and X
i
is the marker class as defined in (1).

For each trait and marker status classification we

derived π(X
i
¯ 0) and π(X

i
¯1), giving rise to the log

odds ratio

β
"
¯ ln

A

B

π(X
i
¯1)

1®π(X
i
¯1)

C

D

5ln

A

B

π(X
i
¯ 0)

1®π(X
i
¯ 0)

C

D

(Hosmer & Lemeshow, 1989; Agresti, 1990). This

expression lends interpretability to the model , β
"
now

represents a comparative assessment of the odds

among individuals with the trait (Y¯1) and marker

genotype X¯1, compared with the odds among

individuals with the trait and marker genotype X¯ 0.

Applying the probability model derived above

(Table 1), the expected values of the log odds are

eβ
! ¯

A

B

p
"
®r

MQ
p
"
r

MQ
p
$

1®(p
"
®r

MQ
p
"
r

MQ
p
$
)

C

D

and

eβ
" ¯

A

B

r
MQ

p
"
p

$
®r

MQ
p
$

1®(r
MQ

p
"
p

$
®r

MQ
p
$
)

C

D

5eβ
!.

The logistic regression model for an F
#
, single BTL,

single marker model is written as:

π(X )¯
exp(β

!
β

"
X

"i
β

#
X

#i
)

1exp(β
!
β

"
X

"i
β

#
X

#i
)

where X
"i

and X
#i

are indicator variables as defined

in (1).
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As in the backcross, the expected log odds for

M
"
M

"
(eβ

!), M
"
M

#
(eβ

") and M
#
M

#
(eβ

#) are derived

from the conditional probabilities in Table 2 (see

Appendix).

The tests of the regression parameters in the logistic

model are tests of β
i
¯1 as they are a ratio of means,

compared with the linear regression which is a

difference between means. The tests in the logistic

regression have the same interpretation as the tests in

the linear regression.

(iv) Power

The power of linear and logistic regression coefficient

tests to detect BTL were directly compared. The tests

between the regression models were evaluated in

terms of their power to detect BTL under a variety of

genetic models in the backcross and the F
#

ex-

perimental designs. We computed P values via per-

mutation (Churchill & Doerge, 1994; Doerge &

Churchill, 1996) to ensure that the type I error was

valid and was comparable between the two regression

strategies. As mentioned previously, with our para-

meterization, the null hypothesis tests of the β
i
are the

same in the linear and logistic models. Therefore, we

considered the regression model with the higher power

of the tests to be the better method of implementation.

(v) Estimation of recombination and penetrance

Once a BTL is detected, the distance from the marker

to the BTLcan be estimated. Currently, recombination

can be estimated directly from the observed trait and

marker data. The unadjusted estimate is rW
MQ

¯ n
r
}n,

where n
r

is the number of individuals with the trait

and marker type that are discordant according to the

genetic model, and n is the total number of individuals

(Lynch & Walsh, 1998). This estimate does not allow

for reduced penetrance and implicitly assumes that

p
"
¯ 0 and p

#
¯1.

We derive moment estimators for recombination

that are adjusted for penetrance in both the backcross

and F
#

experimental designs assuming p
"

and}or p
#

are known. In the backcross, the moment estimators

are constructed using the equations for the marker

means in the backcross, where

µ
M

"
/M

"

¯ (1®r
MQ

)p
"
r

MQ
p
$

µ
M

"
/M

#

¯ r
MQ

p
"
(1®r

MQ
)p

$
.

The first equation was solved for r
MQ

giving the

estimate

r
MQ

¯
p
"
®µ

M
"
/M

"

p
"
®p

$

.

We then substituted this estimate of r
MQ

into the

second equation and solved for p
$
giving the estimate

p
$
¯µ

M
"
/M

#

µ
M

"
/M

"

®p
"
. We then substituted this

estimate back into the equation for r
MQ

, resulting in

the estimate

r
MQ

¯
p
"
®µ

M
"
/M

"

2p
"
®µ

M
"
/M

#

®µ
M

"
/M

"

.

Similarly, moments estimates for the F
#
experimental

design were constructed (Table 4).

When p
"
¯ 0 and p

$
¯1 in the backcross, the

adjusted estimate of r
MQ

reduces to the unadjusted

estimate. Estimates of p
$

are also important as they

give insight into the genetic model (Table 4). The

moment estimator for p
$
was derived assuming that p

"

and p
#

were known. The estimates of r
MQ

and p
$

depend upon p
"

and p
#
, and if p

"
and p

#
are known

exactly, then the moment estimators of r
MQ

and p
$
are

unbiased. However, in experimental situations the

precise values of p
"

and p
#

may not be known and,

therefore, we evaluated the sensitivity of the estimates

of r
MQ

and p
$

to misspecification of p
"

and p
#
.

(vi) Two markers

We now extend our parameterization to include a

second marker. For a two marker backcross design,

with a map MQN, the joint and conditional prob-

ability distributions can be described in terms r
MQ

,

r
NQ

, r
MN

, p
"
and p

$
. There are four observable marker

genotypes, and two unobservable BTL genotypes

within each marker type. The full joint and conditional

probability distributions are given in Table 3.

In order to derive moments estimators we assumed

r
MN

and p
"
were known. We then used the method of

moments, as described for the single marker case, to

derive moment estimators for r
MQ

, r
NQ

and p
$
. These

estimators are as follows:

pW
$
¯ (µ

M
#
N

"

µ
M

"
N

#

®µ
M

#
N

#

®µ
M

"
N

"

)

¬r
MN

µ
M

#
N

#

µ
M

"
N

"

®p
"
)

rW
MQ

¯
p
"
®(µ

M
"
N

#

®µ
M

"
N

"

)r
MN

®µ
M

"
N

"

p
$
®p

"

rW
NQ

¯
p
"
®(µ

M
#
N

"

®µ
M

"
N

"

)r
MN

®µ
M

"
N

"

p
$
®p

"

.

(vii) Comparison with inter�al regression

Interval regression has been described in detail by

Martinez & Curow (1992) for the backcross and by

Haley & Knott (1992) for the F
#
. Briefly, this approach

uses flanking markers to define the coefficients of the

regression as mean, additive or dominance effects. For

s steps along the interval between markers M and N

values of X are calculated according to the conditional

probability of a QTL in that location. In the backcross

design, at each position in the interval, the estimated

regression parameter β#
"

provides an estimate of the
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additive genetic effect a for a specific r
MQ

. Thus, the

test of the regression parameter β
"
¯ 0 in interval

regression is the test a¯ 0 for a specific r
MQ

. This is a

statistical test for an additive effect. Similarly, in the

F
#
, the tests of the regression coefficients in interval

regression are tests of additive and dominance effect.

The test β
"
¯ 0 is the test a¯ 0 and the test β

#
¯ 0 is

the test d¯ 0. The test of the entire model is a test of

ad¯ 0. Using our notation, the test ad¯ 0

corresponds to a test of p
$
®p

"
¯ 0.

The interval parameterization thus provides a

mechanism to test for effect using tests of the regression

parameters. In our parameterization, the regression

coefficients are tests for detection. Thus, the two

parameterizations have different null hypotheses for

the tests of the regression coefficients and are not

comparable in terms of power. However, the estimates

of r
MQ

and p
$
produced by both parameterizations are

comparable.

(viii) Simulations

Data were simulated for the single marker backcross,

two marker backcross, and single marker F
#

ex-

perimental frameworks for the cases given in Table 5.

There were a total of 680 combinations of parameters

simulated. For each combination of parameters, 1000

replicates of the simulation were performed. For each

replicate, the null hypothesis was rejected when the

empirical P value for that replicate was less than the

nominal alpha, 0±05. For each simulation (set of 1000

replicates), the power of the linear model was

compared with that of the logistic model using

McNemar’s test (Agresti, 1990). The power for each

test of a regression parameter was estimated as the

number of times the empirical P value for that

replicate was less than 0±05 divided by the number of

replicates.

For each replicate, recombination was estimated

using the unadjusted rW
MQ

¯ n
r
}n and adjusted esti-

mates, and p
$

was estimated (Table 4). The adjusted

estimates assumed p
"

and p
#

were known and the

sensitivity of the adjusted r
MQ

and p
$

estimates to

misspecification of p
"
and p

#
was examined by setting

p
"
and p

#
to incorrect values in the estimation of r

MQ

and p
$
. Incorrect values ranged across all possible

values of p
"

and p
#

consistent with the initial

assumption p
"
! p

#
.

Two marker backcross populations were simulated

for the cases given in Table 6. For each replicate, r
MQ

and p
$

were estimated using the moment estimators

derived from our single marker model, from our two

marker model, and using the interval regression

method. For the interval regression method, we

stepped through the interval from r
MQ

¯ 0±00 to

r
MQ

¯ rW
MN

using increments of 0±005. We selected

the value of r
MQ

in the interval from 0±00 to r
MN
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that produced the lowest value for the approximate

likelihood ratio test statistic

E

F

n n log
SSE

R

SSE
F

G

H

where SSE
R

is the sum of squared errors for the

reduced model, and SSE
F

is the sum of squared errors

for the full model.

3. Results

(i) Power

In the backcross, power for the test of β
"
was similar

in the linear and logistic regression models except

when the marker was close to the BTL (r
MQ

! 0±10),

the difference between the parental lines was small

((p
$
®p

"
)! 0±4) and the sample size was small. In

these cases, the linear model had significantly better

power than the logistic model (p% 0±05, McNemar’s

test). Similarly, in the F
#

the power for the logistic

model test of the β
#
was significantly lower than that

of the linear model (P% 0±05, McNemar’s test) under

similar conditions. Additionally, examining the power

curves for β
#
under different values of recombination

for these conditions revealed that power was not

monotonic for the logistic regression (Fig. 2).

Power also depends on the absolute difference in

the penetrance of the parental lines (p
#
®p

"
). As

mentioned in Section 2, we assumed that the pen-

etrance of the parental lines was different, which made

the tests of the β
i
simple tests of the recombination

between marker and trait. We found that the power of

the tests of the β
i
¯ 0 depended upon maximizing the

difference in the parental lines (Fig. 3). The larger the

difference between the parental lines, the higher the

power.

We can derive the relationship between the power

of the test and the difference between parental lines

by examining the expected values of β
#

in the

linear model. In the F
#

design, the E(β
#
)¯

(1®2r
MQ

)(p
#
®p

"
). When the parental lines are equal

(p
#
®p

"
¯ 0), the E(β

#
)¯ 0 and the power of the test

is the nominal alpha level specified. As the difference

between the parents increases, the expected value

moves further from zero for a fixed value of r
MQ

.

Correspondingly, the permuted power for the test of

β
#
from our simulations increased as the difference in

the parental lines increased (Fig. 3). Similarly, power

for the test of β
"

in the backcross decreased mono-

tonically as the difference (p
$
®p

"
) decreased. Our

simulations showed that as the difference in the means

between parental and F
"

lines increased, power

increased.

Power for tests on β
"
in the backcross and β

#
in the

F
#

in the linear regression framework increased as

linkage between marker and BTL increased, or as
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Fig. 2. Power of the test of β
"

in linear and logistic
models as a function of recombination.
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Fig. 3. Power in the linear model as a function of
recombination and difference between parental lines.

recombination between marker and BTL decreased

(Fig. 3). Thus, the closer a marker to the true BTL

location the higher the power for detecting the BTL.

Power also increased as sample size increased.

The power of the test of β
"
in the F

#
depends on the

relationship between the F
"

and the parental lines

which is described by the genetic model. However, if

we define our indicator variables differently than

what is shown in (1), the test of β
"

and the power of

the test of β
"
will be different. For example, if X

#i
¯1

when MT¯M
"
}M

"
instead of when MT¯M

#
}M

#
,

the E(β
"
)¯µ

M
"
/M

#

®µ
M

#
/M

#

¯ (1®2r
MQ

)[r
MQ

(p
"
®

2p
$
p

#
)(p

$
®p

#
)]. This demonstrates the import-

ance of careful specification of the indicator variables

and the impact of the specification on power for tests

of β
"

in the F
#
.

(ii) Estimates of r
MQ

and p
$

In the backcross, estimates of r
MQ

unadjusted for

penetrance (n
r
}n) are unbiased only when Parent

"
had

no individuals expressing the trait (p
"
¯ 0) and the F

"

0·0

0·1

0·2
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E
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Fig. 4. Estimation of recombination unadjusted for
incomplete penetrance compared with estimation of
recombination adjusted for incomplete penetrance.

had all individuals expressing the trait (p
$
¯1). As

penetrance parameters moved away from these ex-

treme values, the estimate of recombination using this

formulation became increasingly biased (Fig. 4). In

contrast, estimates of r
MQ

adjusted for penetrance

(Table 4) were unbiased.

In the F
#
, the adjusted r

MQ
estimates (Table 4) and

p
$
estimates were unbiased when p

"
and p

#
are specified

correctly as shown in a subset of the simulation runs

in Tables 7–10. As sample size decreased, the standard

errors of the estimates for r
MQ

and p
$

increased, and

as the difference between parental lines decreased

(p
#
®p

"
), the standard errors for the estimates of r

MQ

increased.

The estimates of both r
MQ

and p
$
were biased when

the values of p
"
and p

#
were misspecified. For estimates

of r
MQ

, if the penetrance of Parent
"
(p

"
) was specified

too low (further from p
#
), then estimates were biased

towards 0±50 while if p
"
is specified too high (closer to

p
#
), estimates were biased towards zero (Fig. 5a). If

misspecification was large, then estimates of r
MQ

were

sometimes greater than 0±50 or less than 0±00.

However, when r
MQ

¯ 0±50 the estimated value was

approximately 0±50 regardless of the misspecification

of p
"
. Results were similar for misspecification of p

#

(Fig. 5c). In both cases, misspecification of less than

approximately 20% resulted in estimates of r
MQ

reasonably close to the true value even for samples of

size 100. For estimates of p
$
, if p

"
was specified too low

(further from p
#
), then estimates were biased towards

p
#
, while if p

"
was specified too high (closer to p

#
),

estimates were biased towards p
"

(Fig. 5b). Results

were similar for misspecification of p
#

(Fig. 5d ).

(iii) Two markers

The estimates and the standard error of the estimates

of r
MQ

were not improved by expanding our para-
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Table 7. Estimates of recombination parameter (rW
MQ

) and penetrance

parameter (pW
$
) for data simulated for an F

#
, dominant model, (p

"
¯0,

and p
#
¯ p

$
), n¯100

p
"

p
#

p
$

r
MQ

p#
$
(se(pW

$
)) rW

MQ
(se(rW

MQ
))

0±00 1±00 1±00 0±10 0±9997 (0±001866) 0±1004 (0±001341)
0±20 0±9975 (0±002297) 0±1996 (0±001654)
0±30 0±997 (0±002549) 0±2996 (0±001938)
0±40 1±003 (0±002736) 0±4022 (0±002014)
0±50 0±9947 (0±002723) 0±501 (0±002004)

0±00 0±80 0±80 0±10 0±8004 (0±002671) 0±1007 (0±002112)
0±20 0±8013 (0±002893) 0±2048 (0±002427)
0±30 0±8012 (0±003007) 0±3045 (0±002732)
0±40 0±8067 (0±003154) 0±4015 (0±002793)
0±50 0±7958 (0±003125) 0±5036 (0±002743)

0±00 0±60 0±60 0±10 0±6014 (0±002915) 0±0927 (0±003113)
0±20 0±5945 (0±003076) 0±2084 (0±003378)
0±30 0±5935 (0±003112) 0±3008 (0±00358)
0±40 0±6008 (0±003163) 0±3949 (0±003675)
0±50 0±6004 (0±00318) 0±4954 (0±003864)

0±00 0±40 0±40 0±10 0±4004 (0±002844) 0±1043 (0±004436)
0±20 0±4041 (0±002839) 0±2063 (0±00488)
0±30 0±3965 (0±002938) 0±3057 (0±004895)
0±40 0±394 (0±002834) 0±4074 (0±005231)
0±50 0±3961 (0±002762) 0±4935 (0±005119)

Table 8. Estimates of recombination parameter (rW
MQ

) and penetrance

parameter (pW
$
) for data simulated for an F

#
, recessi�e model,

(p
"
¯ p

$
¯ 0), n¯100

p
"

p
#

p
$

r
MQ

pW
$
(se(pW

$
)) rW

MQ
(se(rW

MQ
))

0±00 1±00 0±00 0±10 0±002871 (0±001821) 0±09887 (0±001331)
0±20 ®0±003263 (0±002406) 0±1994 (0±001618)
0±30 ®0±001751 (0±002611) 0±3028 (0±001842)
0±40 2±354e-05 (0±002739) 0±4028 (0±001927)
0±50 ®0±00419 (0±002773) 0±5002 (0±001977)

0±00 0±80 0±00 0±10 0±001787 (0±001998) 0±09931 (0±00198)
0±20 0±002596 (0±002282) 0±1984 (0±00213)
0±30 0±003764 (0±002443) 0±2992 (0±002276)
0±40 0±002801 (0±00241) 0±4021 (0±002206)
0±50 0±001556 (0±002608) 0±5006 (0±002239)

0±00 0±60 0±00 0±10 ®0±0007081 (0±001866) 0±1016 (0±002641)
0±20 ®0±000394 (0±002061) 0±2029 (0±002688)
0±30 ®0±001148 (0±002142) 0±3007 (0±002785)
0±40 ®0±0007598 (0±002215) 0±3964 (0±00272)
0±50 ®9±109e-05 (0±002246) 0±4992 (0±002781)

0±00 0±40 0±00 0±10 ®0±0003342 (0±001709) 0±09977 (0±003703)
0±20 0±0002425 (0±001831) 0±1963 (0±003605)
0±30 ®0±0009838 (0±001816) 0±3004 (0±00343)
0±40 ®0±001232 (0±001905) 0±404 (0±003402)
0±50 0±0001936 (0±001873) 0±4976 (0±003295)

meterization to include the second marker (Table 11).

However, it is likely that additional markers will help

position the BTL to the left or right of the primary

marker due to the gain in available information

provided by these markers.

(iv) Comparison with inter�al regression

The estimates of r
MQ

and the standard errors of r
MQ

were similar between the interval regression and our

estimators for both the single and two marker
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Table 9. Estimates of recombination parameter (rW
MQ

) and penetrance

parameter (pW
$
) for data simulated for an F

#
, p

$
¯ p

"
+p

#

#
, n¯100

p
"

p
#

p
$

r
MQ

pW
$
(se(p#

$
)) rW

MQ
(se(rW

MQ
))

0±10 1±00 0±55 0±10 0±5519 (0±002689) 0±1007 (0±001667)
0±20 0±5507 (0±002972) 0±2014 (0±002064)
0±30 0±5449 (0±00315) 0±3021 (0±002391)
0±40 0±549 (0±003237) 0±3992 (0±002541)
0±50 0±5492 (0±003271) 0±5016 (0±002478)

0±10 0±80 0±45 0±10 0±4473 (0±002963) 0±1017 (0±002598)
0±20 0±4537 (0±003002) 0±2063 (0±002893)
0±30 0±4538 (0±003117) 0±2907 (0±003097)
0±40 0±4521 (0±003216) 0±3979 (0±003169)
0±50 0±4444 (0±003172) 0±497 (0±003235)

0±10 0±60 0±35 0±10 0±3496 (0±002865) 0±1006 (0±003822)
0±20 0±3482 (0±00291) 0±201 (0±004081)
0±30 0±3459 (0±002985) 0±2994 (0±004262)
0±40 0±3531 (0±003113) 0±3972 (0±004255)
0±50 0±35 (0±003052) 0±4958 (0±004339)

Table 10. Estimates of recombination parameter (rW
MQ

) and penetrance

parameter (pW
$
) for data simulated for an F

#
, p

"
¯ p

$
, n¯100

p
"

p
#

p
$

r
MQ

pW
$
(se(pW

$
)) rW

MQ
(se(rW

MQ
))

0±10 1±00 0±10 0±10 0±1009 (0±002401) 0±1022 (0±001785)
0±20 0±1005 (0±00265) 0±2008 (0±002067)
0±30 0±101 (0±002862) 0±2999 (0±002258)
0±40 0±09833 (0±002953) 0±4012 (0±002267)
0±50 0±09954 (0±00297) 0±4983 (0±002344)

0±10 0±80 0±10 0±10 0±1006 (0±00244) 0±09807 (0±00257)
0±20 0±1011 (0±002732) 0±2005 (0±002673)
0±30 0±0992 (0±00275) 0±2998 (0±00282)
0±40 0±09831 (0±002709) 0±395 (0±002878)
0±50 0±1007 (0±002945) 0±499 (0±003015)

0±10 0±60 0±10 0±10 0±105 (0±00241) 0±09658 (0±003651)
0±20 0±09976 (0±002629) 0±1952 (0±003741)
0±30 0±1021 (0±002674) 0±2951 (0±003782)
0±40 0±09402 (0±002611) 0±4038 (0±003753)
0±50 0±09876 (0±002642) 0±4991 (0±00376)

simulations (Table 11). Estimates of p
$

were also

comparable across all three approaches. When the

flanking markers were unlinked r
MN

¯ 0±50, the

interval regression tended to produced biased results.

4. Discussion and conclusions

We have described a simple parameterization that can

detect and localize BTL in plant and animal popu-

lations for backcross and F
#
experiments. The method

relies on simple linear regression combined with a

permutation algorithm that can be easily applied and

implemented in commercially available software such

as SAS or Splus with little effort.

In our analysis, using the logistic regression models,

the power of the logistic regression tests of the β
#

parameter in the F
#

and the β
"

parameter in the

backcross was not monotonic in all cases. In fact, the

power was low precisely when evidence for linkage

was the strongest, namely when r
MQ

was small and the

difference (p
#
®p

"
) was large. This failure occurred

due to a quasi-separation of points in the logit

function. When r
MQ

was small and the difference

(p
#
®p

"
) was large, there are very few individuals with

discordant marker trait pairs, resulting in difficulty

fitting the logit function. The test statistic in the

logistic regression is based upon a ratio of means,

while the test statistic in the linear model is based

upon a difference of means. Thus, when there are few
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Table 11. Comparison of estimates of r
MQ

and p
$

between the method of McIntyre et al. and inter�al regression

(n¯100, r
NQ

¯ 0±10)

p
"

p
$

r
MQ

McIntyre et al.’s method Interval regression

Single marker Two marker Two marker

rW
MQ

(se(rW
MQ

)) pW
$
(se(pW

$
)) rW

MQ
(se(rW

MQ
)) pW

$
(se(pW

$
)) rW

MQ
(se(rW

MQ
)) pW

$
(se(pW

$
))

0±00 1±00 0±20 0±197 (0±00148) 1±002 (0±0026) 0±197 (0±001374) 0±999 (0±0018) 0±198 (0±0013) 1±002 (0±0015)
0±30 0±298 (0±00162) 0±999 (0±0029) 0±299 (0±001536) 0±9987 (0±0019) 0±301 (0±0016) 1±010 (0±0035)
0±40 0±402 (0±00162) 0±996 (0±0031) 0±403 (0±001585) 0±9993 (0±0019) 0±402 (0±00158) 1±051 (0±0077)
0±50 0±501 (0±00162) 0±997 (0±0032) 0±501 (0±001581) 0±9989 (0±0020) 0±470 (0±00085) 1±035 (0±0100)

0±20 0±80 0±20 0±194 (0±00306) 0±800 (0±0030) 0±195 (0±003005) 0±8000 (0±0029) 0±202 (0±00162) 0±801 (0±0022)
0±30 0±291 (0±00299) 0±799 (0±0030) 0±293 (0±002871) 0±7994 (0±0027) 0±297 (0±00179) 0±807 (0±0026)
0±40 0±401 (0±00271) 0±806 (0±0032) 0±401 (0±002687) 0±8035 (0±0027) 0±396 (0±00171) 0±843 (0±0050)
0±50 0±499 (0±00271) 0±803 (0±0032) 0±499 (0±0027) 0±8012 (0±0027) 0±464 (0±001) 0±908 (0±0050)
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E
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Fig. 5. (a) The effect of misspecification of p
"

on the estimation of recombination. (b) The effect of misspecification of p
"

on the estimation of p
$
. (c) The effect of misspecification of p

#
on the estimation of recombination. (d ) The effect of

misspecification of p
#

on the estimation of p
$
.

discordant marker trait pairs in the linear model the

difference between the marker means is maximized

and the power of the test in the linear regression is

correspondingly high. In our simulations, we found

no cases where the power of the logistic model was

better than that of the linear model. In fact, the power

of the tests using the logistic model was no better and

may be worse than the tests in the linear model. On
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the basis of these results, our recommendation is to

use the linear model for detection of BTL with an

appropriate corresponding permutation algorithm to

determine the P value empirically.

The estimators we present are moments estimators

and are unbiased. However, they share a limitation

inherent in all moment estimators, as they are not

restricted to the parameter space in that the estimation

of the penetrance p
$

is not automatically 0% p
$
%1,

or rW
MQ

is not bounded in the interval 0% rW
MQ

% 0±50.

We do not present the joint estimation of all the p
i
,

instead we assume that p
"
and p

#
are known. We have

shown that misspecification of p
"
and p

#
does lead to

biased results, but that the impact is not large when

misspecification is less than 20%.

Our parameterization requires much less com-

putational effort than previously published methods

(Martinez & Curnow, 1992 ; Haley & Knott, 1992) as

no interval stepping is required. The estimates of

location r
MQ

are as accurate as the interval estimates

and we can use a single marker for estimates of

location, with no loss in accuracy (Table 11). Power is

not directly comparable between our methods and

other published methods (Martinez & Curnow, 1992 ;

Haley & Knott, 1992) since the null hypotheses for the

test statistics are different.

Based upon our parameterization, estimation of

underlying threshold distributions is not needed, nor

is any advance knowledge of the true genetic model.

An experiment based upon two inbred lines, known to

be different, can be conducted without the need for

extensive testing of the F
"

phenotype. The F
"

phenotype or penetrance (p
$
) can be estimated from

the backcross or F
#

progeny even without precise

knowledge of the penetrance of the parental lines.

Incorporating the estimation of the penetrance in the

F
"
expands the options available to the experimenter,

allowing for the dual purpose of detecting BTL and

identifying the genetic model in a single set of

measurements.

The method described is for a single gene and a

binary trait. The model parameterization applies

directly to categorical traits if the categorical trait is

modelled in pairs of outcomes. To expand the

parameterization to multiple genes requires a for-

mulation of the joint distribution of (Y,G,M) that

includes multiple genes. Once the joint distribution

has been expanded the expected values of the

regression coefficients can be determined and the

additional parameters estimated. It is important to

note that in this approach every additional gene locus

modelled requires an additional marker locus. This

ensures that the model will be identifiable. That is,

estimates for the additional recombination and pen-

etrance parameters will be possible. If the model is

expanded in this way, then the results of the current

work should generalize to multiple genes.

Appendix

The expected log odds equations for the logistic model

for the F
#

experimental design
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