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Abstract

Cryo-electron microscopy (cryo-EM) is a powerful tool for macromolecular to near-atomic resolution structure determination in the
biological sciences. The specimen is maintained in a near-native environment within a thin film of vitreous ice and imaged in a
transmission electron microscope. The images can then be processed by a number of computational methods to produce three-dimensional
information. Recent advances in sample preparation, imaging, and data processing have led to tremendous growth in the field of cryo-EM
by providing higher resolution structures and the ability to investigate macromolecules within the context of the cell. Here, we review
developments in sample preparation methods and substrates, detectors, phase plates, and cryo-correlative light and electron microscopy
that have contributed to this expansion. We also have included specific biological applications.
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Introduction

Cryo-electron microscopy (cryo-EM) technologies were pio-
neered in order to retain specimen hydration and reduce electron-
beam damage to the specimen during direct imaging and electron
diffraction in the transmission electron microscope (TEM)
(Taylor & Glaeser, 1974). Initial work focused on catalase crystals
preserved in a thin film of vitreous ice (Taylor & Glaeser, 1974).
Subsequently, suspensions of viruses and other samples were
vitrified and imaged, functionally extending cryo-EM to struc-
tural investigations of broad ranges of targets (Dubochet et al.,
1983; Lepault et al., 1983; McDowall et al., 1983; Adrian et al.,
1984). Most aqueous samples are prepared for cryo-EM or cryo-
electron tomography (cryo-ET) by first applying a small aliquot of
a suspension to an electron microscopy (EM) grid, blotting the
grid to near dryness, and then rapidly plunge-freezing it in liquid
ethane or liquid propane cooled to cryogenic temperatures. This

method effectively preserves the biological sample in a thin layer
of vitreous, non-crystalline ice in a near native state (Lepault et al.,
1983; Dubochet et al., 1988). Continued developments to speci-
men preservation equipment and methods by research groups
and EM manufacturers have improved the quality and reprodu-
cibility of the cryo-EM grids prepared.

The cryo-preserved specimens are then loaded into grid-
holders, e.g. cryo-holders, which maintain the specimen at close
to liquid nitrogen temperatures in order to minimize the de-
vitrification or warming of the specimen. There have been many
improvements made to these holders since their introduction in
the late 1970s. Many of the cryo-holders available may be used in
standard side-entry microscopes. In order to preserve specimen
integrity and to facilitate high-throughput data collection, EM
companies began to design and produce instruments with “multi-
specimen” cartridge-style systems in which 3–12 individual spe-
cimens can be loaded into the column of the microscope.
Simultaneously, improvements to overall microscope stability, the
use of field emission electron sources, computer control, and
the automation of standard functions enabled the beginning of
the “resolution revolution in cryo-EM” (Kuhlbrandt, 2014), by
facilitating the acquisition of high quality EM data both on film
and charge coupled device (CCD) cameras via automated rou-
tines (Hewat & Neumann, 2002; Stagg et al., 2006).

Samples prepared for single particle analysis (SPA) cryo-EM
are typically purified homogeneous proteins, macromolecules, or
viruses. Ideally, the sample is vitrified with particles in random
orientations within a uniform layer of ice. After imaging, the
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particles are identified, aligned and classified, and reconstructed
to produce a three-dimensional (3D) map (Cheng et al., 2015).
Heterogeneous samples, such as pleomorphic viruses, bacteria, or
mammalian cells are more readily studied using cryo-ET, in
which a collection of images of a vitrified single feature on the
grid is acquired at various tilts, producing a tilt series. The images
of the tilt series are then computationally back-projected to
generate a 3D reconstruction, or tomogram, of the sample
(Oikonomou & Jensen, 2017). Homogenous components within
the tomogram may be extracted and further analyzed using sub-
tomogram averaging (Wan & Briggs, 2016).

Recent advances in sample preparation, imaging, and data
processing have led to a dramatic expansion of cryo-EM in
structural biology (Cheng et al., 2015; Nogales, 2015). The
workflow for structure determination by cryo-EM is outlined in
Figure 1. Sample optimization is achieved by one of several
freezing steps. Vitrification of a thin film sample for SPA cryo-
EM or cryo-ET is accomplished by plunge freezing. Larger sample
volumes, including confluent cell layers and tissue, may be
vitrified using pressure by high pressure freezing (Dahl &
Staehelin, 1989; Dubochet, 1995; Studer et al., 2008) or self-
pressurized rapid freezing (Leunissen & Yi, 2009; Han et al.,
2012b; Grabenbauer et al., 2014). The sample may be further
processed after vitrification by thinning [cryo-focused ion beam
milling (cryo-FIB) or cryo-sectioning] or examined by cryo-
correlative light and electron microscopy (cryo-CLEM) before
cryo-ET imaging and image processing. In this review, we discuss

some of the recent advances at various steps of this workflow,
which we have used to improve imaging of biological specimens.
These include the use of new substrates and methods for sample
preparation, phase plates and direct electron detectors for cryo-
EM image acquisition, and the application of cryo-CLEM, which
combines spatiotemporal information about the sample from
fluorescence light microscopy with structural information from
cryo-EM. There have, of course, been many other developments
in techniques and data processing that are described elsewhere
(Bai et al., 2015; Binshtein & Ohi, 2015; Fernandez-Leiro &
Scheres, 2016; Frank, 2017; Murata & Wolf, 2018).

Substrates and Specimen Preparation

One of the essential components of high-quality, high-resolution
cryo-EM is reproducible and robust sample preparation. Cryo-
EM samples are typically applied to an EM grid consisting of an
amorphous holey carbon film supported by a metal mesh. The
grid is then blotted to remove excess liquid and plunge-frozen in a
liquid cryogen (“plunge freezing” in Fig. 1), suspending the
sample in a layer of vitreous ice. This process preserves the close-
to-native-state structure of the hydrated specimen, but can have
low throughput and be unpredictable in terms of ice thickness
and particle distribution. Additionally, it has been shown that
irradiation in the EM leads to deformation of the amorphous
carbon, causing sample movement and hence blurred images
(Glaeser et al., 2011; Brilot et al., 2012; Russo & Passmore, 2016b).

Figure 1. Cryo-electron microscopy (cryo-EM) workflow. Schematic illustration of options for cryo-EM sample preparation, imaging, and data processing. Solid gray box
indicates methods typically used for single particle analysis; dashed gray box indicates methods typically used for cryo-electron tomography (cryo-ET); dotted gray box
indicates methods typically used for conventional EM sectioning. LM, light microscopy; HPF, high pressure freezing; SPRF, self-pressurized rapid freezing; FIB, focused ion
beam; CLEM, correlated light and electron microscopy.
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Recently, several new sample purification methods, substrates,
and grid preparation systems have been developed to optimize
performance during imaging, including affinity capture systems,
gold grids, and advanced vitrification devices.

Cryo-EM single particle reconstructions are based on averaging
projections of thousands of identical particles in random orienta-
tions (Guo & Jiang, 2014; Cheng et al., 2015; Doerr, 2015; Frank,
2017). Homogeneity of the sample is therefore extremely important
although such purification can be challenging. Cross-linking has
been used to stabilize many heterogeneous samples for cryo-EM,
such as the proteasome (Lasker et al., 2012), spliceosome (Agafo-
nov et al., 2016; Wan et al., 2016; Bertram et al., 2017), and
membrane complexes (Fiedorczuk et al., 2016; Kosinski et al.,
2016). These studies combined cryo-EM with cross-linking mass
spectrometry, which provides even further detail about residues
that are in close proximity (Schmidt & Urlaub, 2017). An addi-
tional method for reducing heterogeneity, called GraFix, uses a
weak chemical fixation during density gradient centrifugation to
provide conformational stability and purify the sample, leading to a
more homogenous population (Kastner et al., 2008; Stark, 2010).

Another concern is preferred orientations of the particles on the
grid. Because the sample is confined to a thin layer of vitreous ice, it
can interact with both the grid support and the air-water interfaces,
leading to a bias in binding and therefore nonisotropic sampling of
particle orientations (Stark, 2010). Noble et al. have recently shown
that ~90% of particles on a typical cryo-EM grid prepared for SPA
adsorb to the air–water interfaces, potentially causing preferred
particle orientations, conformational changes in the protein, or
protein denaturation (Noble et al., 2018). The use of continuous
carbon support films to improve particle distribution may provide
particular particle orientations, but it may also lead to even more
significant orientation problems (Thompson et al., 2016). Self-
assembled monolayers (Meyerson et al., 2014), poly-L-lysine
(Chowdhury et al., 2015), and detergents (Zhang et al., 2011;
Lyumkis et al., 2013), have all been used to reduce preferred
orientation, but tend to be sample specific (Tan et al., 2017). The
preferred orientation problem may also be addressed at the ima-
ging level, by tilting the specimen during data collection (Tan et al.,
2017). Better sampling in Fourier space can be achieved by tilting.
However, at high tilts, there is a loss of high-spatial frequency
information. Tilting creates a defocus gradient that must be
accounted for and corrected. In addition, the ice thickness is
increased relative to the electron beam, reducing contrast in the
images (Tan et al., 2017).

Single particle cryo-EM of membrane proteins tends to be
challenging because the proteins must be extracted from the
membrane and solubilized in detergents, which may affect protein
structure and function and reduce image contrast (Linke, 2009;
Baker et al., 2015; Efremov et al., 2017). Amphipathic polymers
called amphipols are a potential alternative to detergents. These
are milder surfactants used to noncovalently bind the trans-
membrane portion of the protein, improving membrane protein
solubility without affecting the contrast of the images. Amphipols
have been used in the determination of several membrane protein
structures (Flötenmeyer et al., 2007; Althoff et al., 2011; Cvetkov
et al., 2011; Cao et al., 2013; Liao et al., 2013; Lu et al., 2014a;
Wilkes et al., 2017). Another method of preparing membrane
proteins for cryo-EM is the use of lipid nanodiscs (Frauenfeld
et al., 2011; Efremov et al., 2015; Frauenfeld et al., 2016a;
Gao et al., 2016; Gatsogiannis et al., 2016; Matthies et al.,
2016; Shen et al., 2016; Jin et al., 2017). Nanodiscs consist of
scaffold proteins surrounding a small lipid bilayer in which the

protein of interest is reconstituted. This maintains a near native
environment for the protein and provides additional particle size,
which may be helpful for particle selection, although hetero-
geneity of the nanodisc may be a concern (Baker et al., 2015;
Efremov et al., 2017).

Styrene maleic acid lipid particles (SMALPs) are an alternative
to nanodiscs that do not require reconstitution of membrane
proteins or detergents at any stage (Hardy et al., 2016). Styrene
maleic acid (SMA) is an amphipathic co-polymer of alternating
hydrophobic styrene and hydrophilic maleic acid units, which
allows interaction with the membrane and provides solubility for
the membrane protein. SMA is able to surround membrane
proteins in their native lipids, producing native nanodisc
SMALPs, which can then be purified and imaged (Hardy et al.,
2016; Parmar et al., 2018). The structure of alternative complex III
(ACIII) was recently solved to 3.4 Å using SMA nanodiscs (Sun
et al., 2018). Yet another method for investigating membrane
protein structure uses saposins in complex with lipids and the
protein of interest (Salipro, saposin–lipid–protein) (Frauenfeld
et al., 2016b; Lyons et al., 2017). Although the process requires the
membrane protein to be solubilized in detergent, reconstitution
into the Salipro complex is fast and the saposin scaffold can adapt
to the size of the transmembrane region of the protein, providing
a well-defined complex (Lyons et al., 2017).

Affinity grids are a new substrate designed to selectively
adsorb particles on the EM grid by applying specific affinity
between substrate and sample, allowing purification steps to be
combined with grid preparation. The grid has a lipid monolayer
containing Ni-nitrilotriacetic acid (Ni-NTA) lipids that can
recruit polyhistidine tagged (His-tagged) proteins from cell
extracts, reducing the required amount of protein and time for
purification (Kelly et al., 2008). We have utilized affinity grids
with His-tagged Protein A and anti-Env polyclonal antibody to
study HIV CD84 virus-like particles (VLPs), resulting in less
background and better control of particle density, as shown in
Figure 2 (Kiss et al., 2014). An additional affinity capture method
uses 2-dimensional (2D) streptavidin crystals on a lipid mono-
layer as a nanosupport applied to the EM grid (Wang et al., 2008).
Biotinylated samples may then bind the streptavidin, improving
particle concentration and distribution and reducing preferred
particle orientations and the structural consequences of particles
binding the carbon film or colliding with the air-water interface of
the sample (Wang et al., 2008; Han et al., 2012a, 2016).

Further developments of the affinity grid include the use of a
NTA-polyethylene glycol (PEG) based coating, which combines the
anti-fouling properties of brush conformation methox-
ypolyethylene glycol (methoxy-PEG) with NTA ligands on flexible
PEG spacers to prevent preferred orientation of the bound His-
tagged proteins (Benjamin et al., 2016). Another example is a
functionalized carbon film with covalently bound Ni-NTA, Protein
G, or oligonucleotides to selectively recruit macromolecular com-
plexes (Llaguno et al., 2014). In a simplified affinity grid method,
called cryo-solid phase immune electron microscopy (SPIEM),
antibodies or Protein A are applied directly to grids, eliminating the
need to first apply a lipid monolayer (Yu et al., 2014, 2016b).

The use of the affinity capture system with silicon nitride (SiN)
membrane support films has also shown promising improvements
for sample preparation. The hydrophobicity of SiN supports
interactions with the lipid tails of the Ni-NTA lipid monolayer,
allowing for effective sample capture on the grid. Additionally, the
membranes are flat, durable, and can be consistently manufactured,
addressing the delicate and inconsistent nature of amorphous
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carbon supports (Tanner et al., 2013). Affinity grids combine
purification steps with grid preparation, significantly reducing the
time required to produce samples for cryo-EM imaging, and can be
used for structure determination at high resolution. Yu et al. have
recently used the method to determine the structure of a low
concentration virus at 2.6Å resolution (Yu et al., 2016a).

Traditional lacey, Quantifoil (Quantifoil Micro Tools, Jena,
Germany), or C-flat (Protochips, Inc., Morrisville, NC, USA) EM
grids are made of a metal scaffold (e.g., copper, nickel, or gold)
and an amorphous carbon support with holes of various sizes,
shapes, and distributions over which the sample is suspended in
vitreous ice. Irradiation of amorphous carbon in the EM causes it
to bend, however, leading to movement of the sample, often
referred to as beam-induced motion, and therefore blurry images.
Since the linear thermal expansion coefficient is much lower for
carbon than for the metal support, the carbon film may also
pucker at cryo-temperatures (Booy & Pawley, 1993). This can
lead to poor imaging and the loss of information at high spatial
frequencies. Several alternative substrates have been developed to
address these deformations. Titanium–silicon metal glass films, a
nanocrystalline silicon carbide substrate called Cryomesh (Proto-
Chips, Inc.), and hydrogen-plasma treated graphene all decrease
beam-induced motion, but do not completely eliminate it (Rhi-
now & Kuhlbrandt, 2008; Yoshioka et al., 2010; Russo & Pass-
more, 2014a). Ultrastable gold substrates, which consist of a gold
foil across a gold mesh grid, are one of the most promising
solutions. By using the same material for the support and grid,
differential thermal contraction, and therefore puckering during
cooling, is prevented and the high conductivity of gold nearly
eliminates beam-induced motion, significantly improving image
quality (Russo & Passmore, 2014b, 2016a, 2016b).

3D-DNA origami sample supports aim to address many of the
current concerns for grid preparation. The sample particles are
bound within a hollow support made up of double stranded DNA
helices. This helps to control particle orientation, protects parti-
cles from the force of blotting with filter paper and from the air–
liquid interface, and improves ice thickness consistency. The
method was shown to be successful for the DNA binding protein
p53, but will require more rigidity to precisely control particle
orientation and will need to expand to be more widely applicable
to various types of samples (Martin et al., 2016).

Protein scaffolds are also being used to determine the structures
of monomeric proteins that would otherwise be too small for cryo-
EM. Coscia et al. have designed a self-assembled symmetric protein
scaffold with a small protein genetically fused, producing a large,
rigid, and symmetric particle that is more amenable to cryo-EM,
and solved the structure at subnanometer resolution (Coscia et al.,
2016). Liu et al. have achieved near atomic resolution of a small
protein called DARPin, which is rigidly fused to a self-assembled
symmetric protein cage through terminal helices. The amino acid
sequence of DARPin can be altered to tightly bind other small
proteins, making it widely applicable (Liu et al., 2018).

Cryo-EM grid ice should ideally be only slightly thicker than the
sample. Excess ice thickness should be avoided because it allows the
particles within an image to be at different focal heights and
contributes to noise in the images (Glaeser et al., 2016). Conven-
tional blotting with filter paper often leads to inconsistent ice
thickness and sample degradation due to the blotting force and it
exposes the particles to an air–water interface of the sample. To
address these problems, a “self-blotting” grid has been developed to
generate reproducibly thin films of ice without the use of a filter
paper blotting step (Razinkov et al., 2016; Wei et al., 2018). An
ammonium persulfate and sodium hydroxide solution is applied to
copper grids, supporting the growth of Cu(OH)2 nanowires on the
copper grid bars. The nanowires draw up excess liquid when the
sample is applied to the grid, resulting in a thinly spread film of
liquid on the grid that is then plunge frozen without the require-
ment of a blotting step. The self-blotting grids are used in con-
junction with a newly designed freezing apparatus called the
Spotiton (Jain et al., 2012; Dandey et al., 2018). This device uses a
piezo controlled electric inkjet dispense head to deposit small
volumes of sample at defined locations on the grid, which is then
plunge frozen. Use of the self-blotting grid with the Spotiton results
in thin films of uniform ice and the process is almost entirely
automated, increasing the reproducibility and throughput of cryo-
EM grid preparation (Jain et al., 2012; Razinkov et al., 2016;
Dandey et al., 2018; Wei et al., 2018).

Another blotless freezing system called the cryoWriter allows
real-time monitoring of the water thickness prior to vitrification
(Arnold et al., 2017). A microcapillary is used to deposit a small
sample volume (3–20 nanoliters) onto the grid. Depending on the
volume applied, excess sample can either be recovered using the

Figure 2. Affinity grid designed to selectively capture virus-like particles (VLPs). Cryo-electron microscopy images of HIV CD84 VLPs applied to an untreated grid (a) and a 20%
Ni-NTA cryo-affinity grid with His-tagged Protein A and anti-Env polyclonal antibody (b). Use of the affinity capture method leads to increased VLP concentration and improved
particle distribution on the grid. See Kiss et al. (2014) for experimental detail. Scale bar is 1 μm.
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microcapillary or allowed to evaporate. The sample film is eval-
uated using a laser beam and photodetector and once the
appropriate thickness is reached, the grid is plunge frozen. This
system prevents the potentially damaging effects of filter paper
blotting and uses significantly smaller volumes, allowing the
investigation of low abundance samples.

Methods for time resolved imaging, to capture transient states
of biological molecules, by mixing reaction components immedi-
ately before blotting have also seen recent improvements. This was
initially achieved by applying one reaction component to the EM
grid in the conventional pipetting and blotting manner to achieve a
thin film, then spraying another component onto the film and
rapidly freezing (Berriman & Unwin, 1994; Unwin, 1995; Walker
et al., 1995; Walker et al., 1999; Berriman & Rosenthal, 2012;
Unwin & Fujiyoshi, 2012). The reaction only proceeds where the
components mix, however, potentially leading to heterogeneity in
the sample across the grid. This problem was addressed by cou-
pling a micromixer with a microsprayer, allowing external homo-
genous mixing of the reactants before spraying onto an EM grid
and plunge freezing (Lu et al., 2009; Shaikh et al., 2014; Lu et al.,
2014b). While this method allows the capture of dynamic processes
for cryo-EM imaging, variability in ice thickness and coverage of
the grid limits the regions suitable for data collection. The more
recent development, by Feng et al., of a polydimethylsiloxane-based
microsprayer allows the control of ice thickness through sprayer
pressure and distance from the grid, and has the potential to
provide time-resolved sample preparation by mixing reactants in a
channel for specified amounts of time (Feng et al., 2017).

DIRECT ELECTRON DETECTORS

Low electron doses are necessary for the imaging of biological
specimens in order to limit radiation damage of the sample. Cryo-
EM images are therefore inherently noisy. Additionally, beam-
induced motion of the sample leads to blurriness in the images.
Both of these issues have been significantly improved by the
development of direct electron detectors.

Several types of sensors may be used for the detection of elec-
trons and the performance of the detector is extremely important
for achieving high quality data. Detectors can be described by the
detective quantum efficiency (DQE), a measure of signal produced
from the sample and noise contributed to the image by the
detector. A detector that contributes no noise to the image would
have a DQE of 1.

Photographic film has historically been used to record cryo-
EM images due to its large imaging area and high resolution. Its
DQE is ~0.3–0.35 at half Nyquist frequency (McMullan et al.,
2009a, 2016). The use of film can be labor intensive and time
consuming, however, as it requires development and scanning
into a digital format (Faruqi & Henderson, 2007; Binshtein &
Ohi, 2015; Thompson et al., 2016). CCD cameras provide a much
more automated mode of imaging, allowing for images to be
immediately evaluated and for large data sets to be collected
quickly. As the electrons hit the detector, a scintillator is used to
induce the emission of photons which then hit the CCD. The
photons are converted to electrical signals and an electrical charge
accumulates. The charge is transferred between neighboring
pixels and read out to form a digitized image (Faruqi, 1998;
Sander et al., 2005; Thompson et al., 2016). The scintillator of a
CCD camera produces electron and photon scattering, however,
contributing additional noise to the images and leading to a DQE

of ~0.07–0.1 at half Nyquist frequency, significantly inferior to
that of photographic film (McMullan et al., 2009a, 2016).

Complementary metal-oxide semiconductor (CMOS) detec-
tors are a digital alternative to CCD cameras that immediately
convert charge to voltage within each pixel, so they can be
operated at a high frame rate (Janesick & Putnam, 2003; Cheng
et al., 2015; Faruqi et al., 2015). High frame rates provide the
ability to fractionate the electron dose of an exposure over mul-
tiple frames. This allows the optimal use of electron dose in the
image because one can compensate for the loss of high spatial
frequency information as the dose accumulates. Frames can then
be aligned before summing to correct for beam-induced motion
and specimen drift in the image (McMullan et al., 2014).

CMOS-based direct detection devices (DDDs) have radiation
hardened sensors that allow electrons to be recorded directly,
rather than through a scintillator (McMullan et al., 2009b;
Guerrini et al., 2011; Milazzo et al., 2011). This, along with back-
thinning, which decreases backscattering of electrons, results in a
considerable reduction of noise in the image compared with the
noise from electron and photon scattering generated in the
scintillator and fiber optics of a CCD (McMullan et al., 2009c).
There are several types of DDDs that can be operated in various
modes. In integration mode, charge is collected in each pixel, then
integrated and read out. The DQE at half Nyquist in integration
mode is ~0.4–0.6 (McMullan et al., 2016). In counting mode, the
signal from each electron event is recorded and weighted the
same, which reduces read noise and variability in electron signal.
Operating in counting mode while using a high frame rate allows
even higher DQEs to be achievable (Li et al., 2013a, 2013b). Some
cameras may additionally be operated in what is called “super-
resolution” mode, in which the electron events are sub-localized
within the pixel, surpassing the Nyquist frequency limit (Li et al.,
2013a, 2013b; Chiu et al., 2015).

The effects of motion correction can be seen in the image of
coliphage BA14 collected on a Direct Electron DE-20 (Direct
Electron, LP, San Diego, CA, USA) shown in Figure 3. The image
was acquired at 12 frames per second with an exposure time of 5 s
and then summed (Fig. 3a) or motion-corrected using scripts
from Direct Electron, LP and summed (Fig. 3b). Blurring is sig-
nificantly reduced by motion correction as shown in the images
and power spectra. The ability to combine a high DQE with
automation and the implementation of dose compensation and
motion correction have led to a dramatic increase in the quality of
cryo-EM data and the number of near-atomic to atomic resolu-
tion structures being determined (Lu et al., 2014a; Parent et al.,
2014; Voorhees et al., 2014; Bartesaghi et al., 2015; Hesketh et al.,
2015; von der Ecken et al., 2015; Merk et al., 2016).

Despite the improvements in DQE and signal-to-noise ratio
provided by direct electron detectors, low contrast in cryo-EM
images can still be problematic, particularly for small samples.
Additional contrast enhancement, such as through the use of
energy filters or phase plates, can be particularly useful in
these cases.

PHASE PLATES

The contrast of unstained biological materials is inherently weak
under low-electron dose cryo-EM imaging conditions. Contrast
can be improved by defocusing of the objective lens, although this
results in a reduction of the high spatial frequency components of
the image, or with the use of an energy filter, which removes
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inelastically scattered electrons thereby improving the signal-to-
noise ratio (Langmore & Smith, 1992; Schroder, 1992). Another
strategy for addressing low contrast in cryo-EM images is the use
of phase plates. We have used two types of phase plates, the thin
carbon-film Zernike-style phase plate and the hole-free carbon-
film phase plate (HFPP), or Volta phase plate (VPP), although
there are additional styles, such as electrostatic (Huang et al.,
2006; Cambie et al., 2007; Majorovits et al., 2007; Schultheiss
et al., 2010; Walter et al., 2012; Frindt et al., 2014) and magnetic
phase plates (Edgcombe et al., 2012; Blackburn & Loudon, 2014).

Zernike phase contrast (ZPC) cryo-EM uses a thin carbon film
with a small hole, produced by a focused ion beam (FIB), placed
in the back focal plane (Danev & Nagayama, 2008; Nagayama &
Danev, 2008; Murata et al., 2010; Schroder, 2015). Unscattered
electrons pass through the hole while the scattered electrons go
through the carbon film, shifting the phase of the unscattered
electrons relative to the scattered electrons by π/2. This changes
the contrast transfer function from a sine function to a cosine
function (Nagayama, 2005) and significantly improves the con-
trast at low spatial frequencies. The images are acquired in focus,
eliminating the loss in resolution due to defocusing. The higher
contrast provided by phase plates improves image alignment,
making it possible for fewer particles to be averaged to produce
high resolution structures by SPA (Danev & Nagayama, 2008),
and providing excellent results for cryo-ET (Danev et al., 2010;
Murata et al., 2010; Guerrero-Ferreira et al., 2011; Fukuda &
Nagayama, 2012; Dai et al., 2013). The use of ZPC cryo-EM can
be challenging, however, due to a short lifespan, charging, diffi-
culty keeping the phase plate aligned, and fringing artifacts in the
images (Danev & Nagayama, 2001, 2010, 2011; Danev et al., 2009;
Fukuda et al., 2009; Nagayama, 2011). Figure 4 and Supplemen-
tary Movie 1 illustrate the contrast provided by the Zernike-style
phase plate in a tomogram of a Caulobacter crescentus cell
infected with bacteriophage ϕCbK, as well as the fringing
artifacts.

HFPP (or VPP) cryo-EM uses a homogenous carbon film in
the back focal plane. Localized irradiation of the carbon film with
the electron beam leads to a negative Volta potential, creating a
phase shift at the position of the beam and increased contrast in
the images (Danev et al., 2014). This form of phase plate has been
shown to be more stable for data collection and does not intro-
duce strong fringing artifacts (Danev & Nagayama, 2001, 2008,

2011; Danev et al., 2014; Danev & Baumeister, 2016; Khoshouei
et al., 2016). It has recently been used to resolve extraordinary
in situ detail via cryo-ET (Asano et al., 2015; Fukuda et al., 2015;
Chlanda et al., 2016; Mahamid et al., 2016; Sharp et al., 2016;
Khoshouei et al., 2017a) and to solve several high-resolution
structures via SPA (Chua et al., 2016; Khoshouei et al., 2016,
2017b; Danev & Baumeister, 2017; ). More recently, however, it
has been possible to implement a slight defocus with this style of
phase plate due to improvements in reconstruction software
(Rohou & Grigorieff, 2015). This lessens the requirement for
accuracy in focusing thus increasing the ease of use and the speed
of data collection (Danev et al., 2017; Liang et al., 2017; Khoshouei
et al., 2017b). Processing of defocused VPP data has been shown
to be either equivalent or more robust than that of defocus phase
contrast cryo-EM or in-focus VPP data, by enabling the genera-
tion of 3D reconstructions using fewer particles (von Loeffelholz
et al., 2018). The use of phase plates continues to present practical
challenges, however, and is generally limited to samples that are
difficult to visualize without them. In Figure 5, we show 2D
projection images of reovirus serotype 1 Lang (T1L) particles
collected using HFPP and a slight defocus. The increased contrast
allows the viral attachment fibers and released genome to be
clearly resolved, without extreme fringing artifacts. Although both
ZPC cryo-EM and HFPP cryo-EM provide significantly improved
image contrast, the reduced fringing and relative ease of use of
HFPP compared to ZPC phase plates will likely make them more
widely applicable.

Cryo-CLEM

Correlative light and electron microscopy (CLEM or cryo-CLEM)
is a technique that combines the spatiotemporal physiological
information gained from fluorescence microscopy with the ever-
higher resolution of structures from cryo-EM. The technique was
developed in response to the absence of methods to unobtrusively
label internal cell contents for cryo-EM and has been extremely
useful for cellular cryo-ET studies in which localization of cellular
components can be difficult in the EM. The fluorescence imaging
can be done live or following vitrification of the cells to capture
structures in their near-native state (“LM imaging” and “cryo-
CLEM imaging,” respectively, in Fig. 1) (Briegel et al., 2010). This

Figure 3. Motion correction of data recorded on a Direct Electron DE-20 direct electron detection device significantly improves image quality. Two-dimensional (2D) projection
cryo-electron microscopy image of coliphage BA14 particles before (a) and after (b) motion correction using Direct Electron, LP scripts and the corresponding power spectra
(insets). The image was recorded at a frame rate of 12 frames per second with an exposure time of 5 s. Scale bar is 50 nm.
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is made possible by the introduction of cryo-cooled stages for the
inverted or upright light microscope as well as the integrated light
and EM (Sartori et al., 2007; Schwartz et al., 2007; Agronskaia et al.,
2008; van Driel et al., 2009). Several advantages of cryo-fluorescence

microscopy (cryo-fLM) include the absence of morphology-altering
fixation, longer fluorophor lifespan (Moerner & Orrit, 1999;
Schwartz et al., 2007; Le Gros et al., 2009), as well as a large field of
view (Rigort et al., 2012; Bykov et al., 2016). This allows regions of
interest to be identified quickly without subjecting the sample to a
lengthy screening process in the EM, therefore preventing
unnecessary irradiation of the sample before imaging. Relocating
the region of interest in the EM is facilitated by the use of special
finder-style EM grids or commercially available fiducials such as
FluoSpheres or TetraSpeck beads (100–200 nm) that are both
fluorescent and electron dense (Schellenberger et al., 2014; Schorb
& Briggs, 2014). Marker-free alignment methods are also possible,
as demonstrated by Anderson et al., in which the centers of the
holes in the sample support are used for localization (Anderson
et al., 2018).

Samples must be relatively thin in order to be penetrable by
the electron beam (less than 1 μm) (Al-Amoudi et al., 2004), but
must be even thinner for reliable 3D tomographic reconstruction
(~250 nm). This is ideal for cryo-CLEM imaging of viruses
(Schorb & Briggs, 2014), bacterial cells (Koning et al., 2014; Daley
et al., 2016), or the thinnest regions of mammalian cells (van Driel
et al., 2009; Zhang, 2013; Schellenberger et al., 2014; Carter et al.,
2018). Additional techniques, such as FIB milling to produce thin
lamella (Heymann et al., 2006; Marko et al., 2007; Rigort et al.,
2010; Mahamid et al., 2015, 2016; Arnold et al., 2016; Chaikeeratisak
et al., 2017), or cryo-ultramicrotomy (Al-Amoudi et al., 2004;
Bouchet-Marquis & Fakan, 2009; Chlanda & Sachse, 2014; Kolovou
et al., 2017), however, are required to access the interior of vitrified
mammalian cells.

CLEM has been used to visualize the process of virus entry and
exit from mammalian cells with great success. Using live-cell
fluorescent imaging, cryo-fLM, and cryo-ET, Jun et al. has directly
observed pseudo-typed HIV-1 virions with GFP-tagged HIV-1
Vpr interacting with HeLa cells at different time points after

Figure 4. Zernike phase plate imaging of a phage-lysed bacterial cell provides contrast, revealing internal features. Cryo-electron tomography slices of ϕCbK phage-lysed
Caulobacter crescentus cell using ZPC at zero defocus. a: A top slice of the tomogram illustrating the hexagonal surface layer (SL), (b) a central slice revealing newly assembled
phages within the lysing cell, and (c) a central slice showing an assembled phage capsid in the process of genome packaging. Fringing artifacts are evident, particularly at the
edge of the cell. d: Corresponding three-dimensional segmentation SL, green; OM, outer membrane, gold; IM, inner membrane, red; and ϕCbK, magenta. Scale bar is 200 nm.

Figure 5. Hole-free phase plate (HFPP) imaging provides enhanced contrast without
strong fringing artifacts. Cryo-electron microscopy images of reovirus T1L particles
using HFPP slightly underfocus. a,b: Reovirus T1L particles displaying attachment
fibers as indicated by white arrowheads. The black arrow points to a released viral
genome in b. Scale bar is 50 nm.
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infection (Jun et al., 2011). Ibiricu et al. used live-cell fluorescence
microscopy followed by cryo-ET to identify time points and
location of GFP-labeled herpes simplex virus undergoing axonal
transport in primary neurons cultured directly on TEM grids
(Ibiricu et al., 2011). To visualize virus after release, Strauss et al.
used CLEM procedures to determine the arrangement of
mCherry-Gag labeled HIV-1 particles anchored to cell plasma
membranes via EGFP-tagged tetherin, a host cellular restriction
factor that inhibits enveloped virus release, which can be seen in
Figure 6 (Strauss et al., 2016). Hampton et al. further investigated
these tethered particles using cryo-CLEM, as shown in Figure 7
(Hampton et al., 2017).

The latest improvements address many of the challenges
associated with cryo-CLEM, such as contamination from
atmospheric moisture during grid transfer steps, maintaining
proper cryogenic temperatures during cryo-fLM imaging, and
accurately correlating cryo-fLM and cryo-EM data. Schorb et al.
have developed a system that optimizes grid transfer, stage
stability, microscope optics, and software, establishing a
comprehensive cryo-CLEM workflow (Schorb et al., 2017).
Another system by Li et al. uses a high-vacuum chamber on the
fluorescent microscope stage, decreasing contamination of the
sample and allowing the objective lens to remain at room
temperature. It has additionally been adapted to use a cryo-EM
holder, reducing the number of grid transfer steps (Li et al., 2018).

Future developments in CLEM will expand the use of cryo-super-
resolution microscopy to localize specific proteins, further brid-
ging the gap in resolution between light and electron microscopy
(Chang et al., 2014; Kaufmann et al., 2014, 2016; Liu et al., 2015;
Wolf et al., 2016).

CONCLUSIONS AND OUTLOOK

Since its development, cryo-EM has played an important role in
structural biology and is contributing more and more with recent
advances. New developments are broadening the cryo-EM spec-
trum from whole cells to peptides, allowing more biological
questions of greater complexity to be answered and there is still
room for improvement.

The timing and capturing of rare and specific events on the
macromolecular and cellular levels is now possible using micro-
sprayers and CLEM, respectively, for time-resolved imaging.
Reproducibility in the sample preparation and grid preparation
processes should continue to improve as grid-based purification
methods and the development of vitrification devices such as the
Spotiton and cryoWriter mature and expand. Beam-induced
motion is being addressed both by the grid substrate and through
the use of correction algorithms that utilize the high-frame rate of
direct electron detectors.

Figure 6. Correlative light and electron microscopy imaging of transfected mammalian cells provides multi-scale information. HT1080 cells grown on a gold London Finder grid
and transfected with EGFP-tetherin (green) and mCherry-Gag (red) were imaged by live cell fluorescence microscopy (a and b), then plunge frozen and imaged by cryo-electron
mincroscopy montaging (c and d), and cryo-electron tomography (e and f). The mCherry-Gag (red) signal in a and b corresponds to electron density of a thin cellular extension
in c and d. The black arrowheads in e and f indicate a tether attaching two virus-like particles. Dashed boxes correspond to the enlarged image in the next panel. Adapted from
Strauss et al. (2016). Scale bar: (a and b) 25 μm, (c) 10 μm, (d) 500 nm, (e) 100 nm, and (f) 50 nm.
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Advances in electron detection over the past several years have
provided remarkable improvements for cryo-EM data collection
and quality. Further increasing frame rates, the use of counting
mode on all systems, and increased pixel sizes will provide even
higher DQEs and super resolution mode should allow direct
electron detectors to be used beyond Nyquist frequency
(McMullan et al., 2016).

While phase plates have shown extraordinary promise for
cryo-EM, there are still improvements that can be made. Usage is
generally limited to those with expertise (Danev & Nagayama,
2008; Glaeser et al., 2013; Subramaniam et al., 2016) and takes a
considerable amount of time, so workflow development will be
incredibly important for more widespread implementation.
Higher reproducibility in the manufacture of phase plates and
methods for evaluating phase plate quality during use will also
prove to be useful. Phase plates should allow increasingly higher
resolution structural work, particularly for small samples, and for
entire data sets to be collected more quickly since fewer images
will be required.

As CLEM continues to develop, labeling strategies that are
retained between live cell and cryo-EM imaging will allow more
and more complex biological questions to be addressed and
simultaneously fluorescent and electron-dense markers will aid in
more precise correlation between light and electron microscopy.
Combining cryo-FIB milling of cryo-samples with cryo-CLEM will
provide a method for thicker specimens to be investigated and
improvements to sample stability between steps of the workflow
will help the process become more user-friendly.

The recent developments in cryo-EM imaging, along with
improvements in image processing, have allowed tremendous
growth in the field over the last few years. We expect this
expansion to continue, with cryo-EM providing structures to
higher resolutions and answers to increasingly intricate biological
questions.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1431927618012382
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