Maximal sum-free sets in finite abelian groups

H.P. Yap

Maximal sum-free sets in elementary abelian 3-groups and groups $G = Z_3 \oplus Z_3 \oplus Z_p$ where p is a prime congruent to 1 modulo 3 are completely characterized.

Let G be an additive group. If S and T are non-empty subsets of G, we write $S \pm T$ for $\{s \pm t; s \in S, t \in T\}$ respectively, |S| for the cardinality of S and \overline{S} for the complement of S in G. We say that S is sum-free in G if S and S + S have no common element and that S is maximal sum-free in G if S is sum-free in G and $|S| \geq |T|$ for every T sum-free in G. We denote by $\lambda(G)$ the cardinality of a maximal sum-free set in G.

The numbers $\lambda(G)$ for abelian groups G were determined except when every prime divisor of |G| is congruent to 1 modulo 3. In this exceptional case,

 $|G|(m-1)/3m \le \lambda(G) \le (|G|-1)/3$

where *m* is the exponent of *G* [1]. If *G* is an elementary abelian *p*-group of order p^n , where p = 3k + 1, then $\lambda(G) = kp^{n-1}$ [3].

The structure of maximal sum-free sets in the following groups were completely characterized:

(i) G is an abelian group such that |G| has a prime divisor congruent to 2 modulo 3 [1, 5];

Received 4 November 1970.

217

- (ii) $G = Z_p$ where p is a prime congruent to 1 modulo 3 [6, 3];
- (iii) G (abelian and non-abelian) is of order 3p, where p is a prime congruent to 1 modulo 3 [7];
- (iv) G is an elementary abelian p-group where p = 3k + 1 [4];
- (v) in a recent letter to A.H. Rhemtulla, Anne Penfold Street mentioned that she is able to characterize maximal sum-free sets completely in $G = Z_{p^2}$ where p is a prime congruent to 1 modulo 3.

In this note, we shall completely characterize maximal sum-free sets in the following groups:

- (i) G is an elementary abelian 3-group;
- (ii) $G = Z_3 \oplus Z_3 \oplus Z_p$ where p is a prime congruent to 1 modulo 3.

We shall apply Theorem 4 of [1] and Theorem 1 of [7], which are restated respectively as Theorems 1 and 2 here, to prove Theorems 3 and 4.

THEOREM 1. Let G be a finite abelian group. Suppose |G| has no prime factor congruent to 2 modulo 3 but has 3 as a factor. If S is a maximal sum-free set in G, then S is a union of cosets of a subgroup H, of order |G|/3m (3m ||G|), of G, such that one of the following holds:

(i) |S+S| = 2|S| - |H|,

(*ii*) |S+S| = 2|S| and $S \cup (S+S) = G$.

THEOREM 2. Let S be a maximal sum-free set in $G = Z_{3p}$ such that S is not a coset of H, $H = \{0, 3, 6, ..., 3(p-1)\}$; then there exists an automorphism θ of G for which $S = S'\theta$ where $S' = \{p, p+1, ..., 2p-1\}$.

THEOREM 3. Let G be an elementary abelian 3-group. If S is a maximal sum-free set in G, then S is a coset of a subgroup H, of order |G|/3, of G.

THEOREM 4. Let S be a maximal sum-free set in $G = Z_3 \oplus Z_3 \oplus Z_p$. Then either S is a union of cosets of Z_p and S/Z_p is a maximal sum-free set in G/Z_p or there exists an automorphism ϕ of G such that $S = S'\phi$ where S' is a union of cosets of a subgroup K, of order 3, of G for which S'/K is a maximal sum-free set in G/K.

Theorem 4 together with Theorems 2 and 3 completely characterize maximal sum-free sets in $G = Z_3 \oplus Z_3 \oplus Z_p$.

Proof of Theorem 3. Let $|G| = 3^n$, $n \ge 2$.

If $x \in S$, then $-x = 2x \notin S$. Thus $-S \cap S = \emptyset$. Also $S \cap (S-S) = \psi$ and $-S \cap (S-S) = \psi$ imply that $|S-S| \leq 3^n - 2 \cdot 3^{n-1} = 3^{n-1}$. But $|S-S| \geq |S| = 3^{n-1}$. Hence $|S-S| = 3^{n-1}$.

By Kneser's Theorem [2, Theorem 1.5], there exists a subgroup H of G such that

 $S - S + H = S - S \text{ and } |S-S| \ge |S+H| + |-S+H| - |H| .$ It is clear that H is a proper subgroup of G.

Suppose that $|H| = 3^m$, $n-2 \ge m \ge 0$. Then $|S-S| \ge 2|S| - |H| > 3^{n-1}$ which is impossible. Consequently, S is a coset of a subgroup H, of order 3^{n-1} , of G.

Proof of Theorem 4. Let $H = H_0$ be a subgroup, of order 3p, of G. Let $x_1, x_2 \in G$ be such that $x_1 + x_2 = 0$, $2x_1 = x_2$ and $G = H_0 \cup H_1 \cup H_2$, where $H_i = x_i + H$.

Let $x_0 = 0$, $x_i + S_i = S \cap H_i$, i = 0, 1, 2. (This method is due to Rhemtulla and Street [3].)

If S is a coset of H, then there is nothing to prove. We assume that $S \neq H_1$ and $S_1 \neq \emptyset$. We know that $|S_0| \leq p$ and we assume that $|S_1| \geq |S_2|$.

Case 1. Suppose that $0 \leq |S_0| < p$.

We first consider the case that $|S_0| > 0$, $|S_2| < p$. From $(S_1-S_1) \cap S_0 = \emptyset$ and $(S_1-S_1) \cup S_0 \subseteq H$, we have $3p \ge |S_0| + |S_1-S_1|$.

By Kneser's Theorem, there exists a subgroup K of G such that $S_1 - S_1 + K = S_1 - S_1$ and $|S_1 - S_1| \ge |S_1 + K| + |-S_1 + K| - |K|$.

It is clear that K is a proper subgroup of H .

If
$$|K| = p^{j}$$
, $j = 0$ or 1, then
 $3p \ge |S_{0}| + |S_{1}| + |S_{1}+K| - |K|$
 $\ge |S_{0}| + |S_{1}| + \left(\frac{p+v}{p^{j}}\right)p^{j} - p^{j}$ $(|S_{1}| = p+v > p)$

where (x] denotes the smallest positive integer $\ge x$. Thus $3p \ge |S_0| + |S_1| + p > |S_0| + |S_1| + |S_2| = 3p$

which is impossible.

If |K| = 3, then

$$\begin{aligned} 3p &\geq |S_0| + 2\left(\frac{p+v}{3}\right)3 - 3 \qquad (v = 2p - |S_0| - |S_2|) \\ &= |S_0| + 2\left(k + (t+1)\right)3 - 3 \qquad (p = 3k+1, 3t < v+1 \le 3(t+1)) \\ &\geq 6p - |S_0| - 2|S_2| - 3 \\ &\geq 6p - 3(p-1) - 3 = 3p . \end{aligned}$$

Hence equality holds good for each of all the above steps. We then have

$$|S_0| = p - 1 = |S_2|$$
, $|S_1| = p + 2$,

and

$$S_1$$
, $S_0 = \overline{S_1 - S_1}$, $S_2 = \overline{S_1 + S_1}$

are unions of cosets of K in H. Applying Vosper's Theorem [2, Theorem 1.3] to $S_1/K + S_1/K$ in H/K, we can prove that $S_2 = \overline{S_1 + S_1}$.

Suppose that $S_0 = \cup (\alpha_i + K)$, $S_1 = \cup (\beta_i + K)$, $S_2 = \cup (\gamma_i + K)$, α_i , β_i , $\gamma_i \in H$. Then

$$S = \left(\bigcup \alpha_i \cup (x_1 + \bigcup \beta_i) \cup (x_2 + \bigcup \gamma_i) \right) + k$$

which is what we intend to prove.

For either the case $|S_0| = 0$ and $0 < |S_2| < p$ or the case $|S_2| \ge p$, using $(S_1+S_1) \cap S_2 = \emptyset$, $(S_1+S_1) \cup S_2 \subseteq H$ and applying arguments similar to that given above, we will get a contradiction.

Case 2. When $|S_0| = p$, S_0 is a maximal sum-free set in H. We now write $H = \{0, 1, 2, ..., 3p-1\}$.

If S_0 is a coset of $H' = \{0, 3, 6, ..., 3(p-1)\}$, then since $|S_1| \ge |S_2|$, we have $|S_1| \ge p$. If $|S_1| > p$, then $|S_0+S_1| \ge 2p$ which contradicts $\{S_0+S_1\} \cap S_1 = \emptyset$. Hence $|S_1| = p = |S_2|$.

By simple arguments, using $(S_0+S_1) \cap S_1 = \emptyset$, we can show that S_1 is a coset of H'. Similarly, S_2 is also a coset of H'.

Let
$$S_i = \alpha_i + H'$$
, $\alpha_i \in H$, $i = 0, 1, 2$. Then

$$S = (\alpha_0 + H') \cup (x_1 + \alpha_1 + H') \cup (x_2 + \alpha_2 + H')$$

$$= (\alpha_0 \cup (x_1 + \alpha_1) \cup (x_2 + \alpha_2)) + H'$$
,

which shows that $S_{\rm c}$ is a union of cosets of $Z_{\rm p}$ and $S/Z_{\rm p}$ is sum-free in ${\rm G}/{\rm Z}_{\rm p}$.

If S_0 is not a coset of H', then by Theorem 2, S_0 is isomorphic to $\{p, p+1, \ldots, 2p-1\}$ under the automorphism θ of H given in [7]. We now extend θ to an automorphism ϕ of G by means of the following mapping:

For each $x \in H$, we define

$$(x_i+x)\phi = x_i + x\theta$$
, $i = 0, 1, 2$.

Thus, up to isomorphism, we can write

$$S_{0} = \{p, p+1, \dots, 2p-1\}$$

Now, if $|S_1| > p$, then applying Kneser's Theorem to $S_1 - S_1$ in H, we will get a contradiction. Hence $|S_1| = |S_2| = p$.

Let $S_1 = \{s_1, s_2, \dots, s_p\}$, $0 \le s_1 < s_2 < \dots < s_p \le 3p-1$. We first consider the case that $s_p - s_1 > p - 1$.

Suppose that $s_{i+1} - s_i \leq p$ for every i = 1, 2, ..., p-1; then from $S_1 \subseteq \overline{S_0 + S_1}$, we will get a contradiction. Otherwise, for at most one i = 1, 2, ..., p-1, $s_{i+1} - s_i > p$, and again from $S_1 \subseteq \overline{S_0 + S_1}$, we get another contradiction.

We now consider the case that $s_p - s_1 = p - 1$. We have

 $S_1 = \{\alpha, \alpha+1, \ldots, \alpha+p-1\}, \quad 0 \le \alpha \le \beta .$ $S_2 = \{\beta, \beta+1, \ldots, \beta+p-1\}$

We can prove that $\alpha + \beta = 2p$ or $\alpha + \beta = 2p + 1$. The case that $\alpha + \beta = 2p + 1$ cannot occur. The case that $\alpha + \beta = 2p$ will yield $\alpha = 0$ or $\alpha = p$. The final results are

(i) $S_2 = S_1 = S_0$ and

(ii) $S_1 = \{0, 1, ..., p-1\}$, $S_2 = \{2p, 2p+1, ..., 3p-1\}$. The first case shows that S/Z_3 is a maximal sum-free set in G/Z_3

In the second case, if we write $H = \{0, 1, ..., 3p-1\}$ as $\{(0, 0, 0), (0, 0, 1), ..., (0, 2, p-1)\}$ and take $x_1 = (1, 0, 0)$, $x_2 = (2, 0, 0)$, then $S = \{(0, 1, 0), (1, 0, 0), (2, 2, 0)\} + K$, $K = \{(0, 0, 0), (0, 0, 1), ..., (0, 0, p-1)\}$.

The proof of Theorem 4 is now complete.

References

[1] Palahenedi Hewage Diananda and Hian Poh Yap, "Maximal sum-free sets of elements of finite groups", Proc. Japan Acad. 45 (1969), 1-5.

222

- [2] Henry B. Mann, "Addition theorems: The addition theorems of group theory and number theory", Interscience Tracts in Pure and Applied Mathematics, no. 18 (John Wiley, New York, London, Sydney, 1965).
- [3] A.H. Rhemtulla and Anne Penfold Street, "Maximal sum-free sets in finite abelian groups", Bull. Austral. Math. Soc. 2 (1970), 289-297.
- [4] A.H. Rhemtulla and Anne Penfold Street, "Maximal sumfree sets in elementary abelian p-groups", Canad. Math. Bull. (to appear).
- [5] H.P. Yap, "The number of maximal sum-free sets in C_p ", Nanta Math. 2 (1968), 68-71.
- [6] H.P. Yap, "Structure of maximal sum-free sets in C_p ", Acta Arith. 17 (1970), 29-35.
- [7] Hian Poh Yap, "Structure of maximal sum-free sets in groups of order 3p", Proc. Japan Acad. (to appear).

University of Alberta, Edmonton, Canada.