Maximal sum-free sets in finite abelian groups

H. P. Yap

Maximal sum-free sets in elementary abelian 3-groups and groups $G=Z_{3} \oplus Z_{3} \oplus Z_{p}$ where p is a prime congruent to 1 modulo 3 are completely characterized.

Let G be an additive group. If S and T are non-empty subsets of G, we write $S \pm T$ for $\{s \pm t ; s \in S, t \in T\}$ respectively, $|S|$ for the cardinality of S and \bar{S} for the complement of S in G. We say that S is sum-free in G if S and $S+S$ have no common element and that S is maximal sum-free in G if S is sum-free in G and $|S| \geq|T|$ for every T sum-free in G. We denote by $\lambda(G)$ the cardinality of a maximal sum-free set in G.

The numbers $\lambda(G)$ for abelian groups G were determined except when every prime divisor of $|G|$ is congruent to 1 modulo 3 . In this exceptional case,

$$
|G|(m-1) / 3 m \leq \lambda(G) \leq(|G|-1) / 3
$$

where m is the exponent of G [1]. If G is an elementary abelian p-group of order p^{n}, where $p=3 k+1$, then $\lambda(G)=k p^{n-1} \quad$ [3].

The structure of maximal sum-free sets in the following groups were completely characterized:
(i) G is an abelian group such that $|G|$ has a prime divisor congruent to 2 modulo $3[1,5]$;

Received 4 November 1970.
(ii) $G=Z_{p}$ where p is a prime congruent to 1 modulo 3 $[6,3]$;
(iii) G (abelian and non-abelian) is of order $3 p$, where p is a prime congruent to 1 modulo 3 [7];
(iv) G is an elementary abelian p-group where $p=3 k+1 \quad[4]$;
(v) in a recent letter to A.H. Rhemtulla, Anne Penfold Street mentioned that she is able to characterize maximal sum-free sets completely in $G=Z_{p^{2}}$ where p is a prime congruent to 1 modulo 3 .

In this note, we shall completely characterize maximal sum-free sets in the following groups:
(i) G is an elementary abelian 3-group;
(ii) $G=z_{3} \oplus z_{3} \oplus z_{p}$ where p is a prime congruent to l modulo 3.

We shall apply Theorem 4 of [1] and Theorem 1 of [7], which are restated respectively as Theorems 1 and 2 here, to prove Theorems 3 and 4.

THEOREM 1. Let G be a finite abelian group. Suppose $|G|$ has no prime factor congment to 2 modulo 3 but has 3 as a factor. If S is a maximal sum-free set in G, then S is a union of cosets of a subgroup H, of order $|G| / 3 m(3 m| | G \mid)$, of G, such that one of the following holds:
(i) $|S+S|=2|S|-|H|$,
(ii) $|S+S|=2|S|$ and $S \cup(S+S)=G$.

THEOREM 2. Let S be a maximal sum-free set in $G=Z_{3 p}$ such that S is not a coset of $H, H=\{0,3,6, \ldots, 3(p-1)\}$; then there exists on automorphism θ of G for which $S=S^{\prime} \theta$ where $S^{\prime}=\{p, p+1, \ldots, 2 p-1\}$.

THEOREM 3. Let G be an elementary abelian 3-group. If S is a maximal sum-free set in G, then S is a coset of a subgroup H, of order $|G| / 3$, of G.

THEOREM 4. Let S be a maximal sum-free set in $G=Z_{3} \oplus Z_{3} \oplus Z_{p}$. Then either S is a union of cosets of Z_{p} and S / Z_{p} is a maximal sum-free set in G / Z_{p} or there exists an automorphism ϕ of G such that $S=S^{\prime} \phi$ where S^{\prime} is a union of cosets of a subgroup K, of order 3 , of G for which S^{\prime} / K is a maximal sum-free set in G / K.

Theorem 4 together with Theorems 2 and 3 completely characterize maximal sum-free sets in $G=Z_{3} \oplus Z_{3} \oplus Z_{p}$.

Proof of Theorem 3. Let $|G|=3^{n}, n \geq 2$.
If $x \in S$, then $-x=2 x \notin S$. Thus $-S \cap S=\emptyset$. Also $S \cap(S-S)=\psi$ and $-S \cap(S-S)=\phi$ imply that $|S-S| \leq 3^{n}-2 \cdot 3^{n-1}=3^{n-1}$. But $|S-S| \geq|S|=3^{n-1}$. Hence $|S-S|=3^{n-1}$.

By Kneser's Theorem [2, Theorem 1.5], there exists a subgroup H of G such that

$$
S-S+H=S-S \text { and }|S-S| \geq|S+H|+|-S+H|-|H|
$$

It is clear that H is a proper subgroup of G.
Suppose that $|H|=.3^{m}, n-2 \geq m \geq 0$. Then
$|S-S| \geq 2|S|-|H|>3^{n-1}$ which is impossible. Consequently, S is a coset of a subgroup H, of order 3^{n-1}, of G.

Proof of Theorem 4. Let $H=H_{0}$ be a subgroup, of order $3 p$, of G. Let $x_{1}, x_{2} \in G$ be such that $x_{1}+x_{2}=0,2 x_{1}=x_{2}$ and $G=H_{0} \cup H_{1} \cup H_{2}$, where $H_{i}=x_{i}+H$.

Let $x_{0}=0, x_{i}+S_{i}=S \cap H_{i}, \quad i=0,1,2$. (This method is due to Rhemtulla and Street [3].)

If S is a coset of H, then there is nothing to prove. We assume that $S \neq H_{1}$ and $S_{1} \neq \emptyset$, We know that $\left|S_{0}\right| \leq p$ and we assume that $\left|S_{1}\right| \geq\left|S_{2}\right|$.

Case 1. Suppose that $0 \leq\left|S_{0}\right|<p$.

We first consider the case that $\left|S_{0}\right|>0,\left|S_{2}\right|<p$. From $\left(S_{1}-S_{1}\right) \cap S_{0}=\varnothing$ and $\left(S_{1}-S_{1}\right) \cup S_{0} \subseteq H$, we have $3 p \geq\left|S_{0}\right|+\left|S_{1}-S_{1}\right|$.

By Kneser's Theorem, there exists a subgroup K of G such that $S_{1}-S_{1}+K=S_{1}-S_{1}$. and $\left|S_{1}-S_{1}\right| \geq\left|S_{1}+K\right|+\left|-S_{1}+K\right|-|K|$.

It is clear that K is a proper subgroup of H.
If $|K|=p^{j}, j=0$ or 1 , then

$$
\begin{aligned}
3 p & \geq\left|S_{0}\right|+\left|S_{1}\right|+\left|S_{1}+K\right|-|K| \\
& \geq\left|S_{0}\right|+\left|S_{1}\right|+\left[\frac{p+v}{p}\right] p^{j}-p^{j} \quad\left(\left|S_{1}\right|=p+v>p\right)
\end{aligned}
$$

where (x] denotes the smallest positive integer $\geq x$. Thus

$$
3 p \geq\left|S_{0}\right|+\left|S_{1}\right|+p>\left|S_{0}\right|+\left|S_{1}\right|+\left|S_{2}\right|=3 p
$$

which is impossible.

$$
\begin{aligned}
& \text { If }|K|=3 \text {, then } \\
& 3 p \geq\left|s_{0}\right|+2\left(\frac{p+v}{3}\right] 3-3 \quad\left(v=2 p-\left|s_{0}\right|-\left|s_{2}\right|\right) \\
& =\left|S_{0}\right|+2(k+(t+1)) 3-3 \quad(p=3 k+1,3 t<v+1 \leq 3(t+1)) \\
& \geq 6 p-\left|S_{0}\right|-2\left|S_{2}\right|-3 \\
& \geq 6 p-3(p-1)-3=3 p \text {. }
\end{aligned}
$$

Hence equality holds good for each of all the above steps. We then have

$$
\left|S_{0}\right|=p-1=\left|S_{2}\right|, \quad\left|S_{1}\right|=p+2,
$$

and

$$
S_{1}, \quad S_{0}=\overline{S_{1}-S_{1}}, \quad S_{2}=\overline{S_{1}+S_{1}}
$$

are unions of cosets of K in H. Applying Vosper's Theorem [2, Theorem 1.3] to $S_{1} / K+S_{1} / K$ in H / K, we can prove that $S_{2}=\overline{S_{1}+S_{1}}$.

Suppose that $S_{0}=U\left(\alpha_{i}+K\right), S_{1}=U\left(\beta_{i}+K\right), S_{2}=U\left(\gamma_{i}+K\right)$,
$\alpha_{i}, \beta_{i}, \gamma_{i} \in H$. Then

$$
S=\left\{u \alpha_{i} \cup\left(x_{1}+\cup \beta_{i}\right) \cup\left(x_{2}+\cup \gamma_{i}\right)\right\}+K
$$

which is what we intend to prove.
For either the case $\left|S_{0}\right|=0$ and $0<\left|S_{2}\right|<p$ or the case $\left|S_{2}\right| \geq p$, using $\left(S_{1}+S_{1}\right) \cap S_{2}=\emptyset,\left(S_{1}+S_{1}\right) \cup S_{2} \subseteq H$ and applying arguments similar to that given above, we will get a contradiction.

Case 2. When $\left|S_{0}\right|=p, S_{0}$ is a maximal sum-free set in H. We now write $H=\{0,1,2, \ldots, 3 p-1\}$.

If S_{0} is a coset of $H^{\prime}=\{0,3,6, \ldots, 3(p-1)\}$, then since $\left|S_{1}\right| \geq\left|S_{2}\right|$, we have $\left|S_{1}\right| \geq p$. If $\left|S_{1}\right|>p$, then $\left|S_{0}+S_{1}\right| \geq 2 p$ which contradicts $\left(S_{0}+S_{1}\right) \cap S_{1}=\emptyset$. Hence $\left|S_{1}\right|=p=\left|S_{2}\right|$.

By simple arguments, using $\left(S_{0}+S_{1}\right) \cap S_{1}=\varnothing$, we can show that S_{1} is a coset of H^{\prime}. Similarly, S_{2} is also a coset of H^{\prime}.

Let $S_{i}=\alpha_{i}+H^{\prime}, \quad \alpha_{i} \in H, i=0,1,2$. Then

$$
\begin{aligned}
S & =\left(\alpha_{0}+H^{\prime}\right) \cup\left(x_{1}+\alpha_{1}+H^{\prime}\right) \cup\left(x_{2}+\alpha_{2}+H^{\prime}\right) \\
& =\left(\alpha_{0} \cup\left(x_{1}+\alpha_{1}\right) \cup\left(x_{2}+\alpha_{2}\right)\right)+H^{\prime}
\end{aligned}
$$

which shows that S is a union of cosets of Z_{p} and S / Z_{p} is sum-free in G / Z_{p}.

If S_{0} is not a coset of H^{\prime}, then by Theorem 2, S_{0} is isomorphic to $\{p, p+1, \ldots, 2 p-1\}$ under the automorphism θ of H given in [7]. We now extend θ to an automorphism ϕ of G by means of the following mapping:

For each $x \in H$, we define

$$
\left(x_{i}+x\right) \phi=x_{i}+x \theta, \quad i=0,1,2
$$

Thus, up to isomorphism, we can write

$$
S_{0}=\{p, p+1, \ldots, 2 p-1\}
$$

Now, if $\left|S_{1}\right|>p$, then applying Kneser's Theorem to $S_{1}-S_{1}$ in H, we will get a contradiction. Hence $\left|S_{1}\right|=\left|S_{2}\right|=p$.

Let $S_{1}=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}, 0 \leq s_{1}<s_{2}<\ldots<s_{p} \leq 3 p-1$.
We first consider the case that $s_{p}-s_{1}>p-1$.
Suppose that $s_{i+1}-s_{i} \leq p$ for every $i=1,2, \ldots, p-1$; then from $S_{1} \subseteq \overline{S_{0}+S_{1}}$, we will get a contradiction. Otherwise, for at most one $i=1,2, \ldots, p-1, s_{i+1}-s_{i}>p$, and again from $S_{1} \subseteq \overline{S_{0}+S_{1}}$, we get another contradiction.

We now consider the case that $s_{p}-s_{1}=p-1$. We have

$$
\begin{aligned}
& S_{1}=\{\alpha, \alpha+1, \ldots, \alpha+p-1\} \\
& S_{2}=\{\beta, \beta+1, \ldots, \beta+p-1\}
\end{aligned}, 0 \leq \alpha \leq \beta .
$$

We can prove that $\alpha+\beta=2 p$ or $\alpha+\beta=2 p+1$.
The case that $\alpha+\beta=2 p+1$ cannot occur.
The case that $\alpha+\beta=2 p$ will yield $\alpha=0$ or $\alpha=p$.
The final results are
(i) $S_{2}=S_{1}=S_{0}$ and
(ii) $S_{1}=\{0,1, \ldots, p-1\}, S_{2}=\{2 p, 2 p+1, \ldots, 3 p-1\}$.

The first case shows that S / Z_{3} is a maximal sum-free set in G / Z_{3}
In the second case, if we write $H=\{0,1, \ldots, 3 p-1\}$ as $\{(0,0,0),(0,0,1), \ldots,(0,2, p-1)\}$ and take $x_{1}=(1,0,0)$, $x_{2}=(2,0,0)$, then $S=\{(0,1,0),(1,0,0),(2,2,0)\}+K$, $K=\{(0,0,0),(0,0,1), \ldots,(0,0, p-1)\}$.

The proof of Theorem 4 is now complete.

References

[1] Palahenedi Hewage Diananda and Hian Poh Yap, "Maximal sum-free sets of elements of finite groups", Proc. Japan Acad. 45 (1969), 1-5.
[2] Henry B. Mann, "Addition theorems: The addition theorems of group theory and number theory", Interscience Tracts in Pure and Applied Mathematics, no. 18 (John Wiley, New York, London, Sydney, 1965).
[3] A.H. Rhemtulla and Anne Penfold Street, "Maximal sum-free sets in finite abelian groups", Bull. Austral. Math. Soc. 2 (1970), 289-297.
[4] A.H. Rhemtulla and Anne Penfold Street, "Maximal sumfree sets in elementary abelian p-groups", Canad. Math. Bull. (to appear).
[5] H.P. Yap, "The number of maximal sum-free sets in C_{p} ", Nanta Math. 2 (1968), 68-71.
[6] H.P. Yap, "Structure of maximal sum-free sets in C_{p} ", Acta Arith. 17 (1970), 29-35.
[7] Hian Poh Yap, "Structure of maximal sum-free sets in groups of order $3 p^{\prime \prime}$, Proc. Japan Acad. (to appear).

University of Alberta,
Edmonton,
Canada.

