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Summary

Protecting tropical forests from deforestation is important for mitigating both biodiversity
loss and anthropogenic climate change. In Amazonia, a common approach to protected area
(PA) impact studies has been to investigate differences among broad PA categories, such as
strictly protected, sustainable use and indigenous areas, yet these may be insufficient for the
management of PAs at local scales. We used a matching method to compare impacts and
carbon emissions avoided during 2011–2016 of individual PAs in the state of Acre
(Brazil). Although most PAs had a positive impact and effectively prevented forest loss,
we observed substantial variation among them in terms of impacts, pressures and emissions
during our study period. The impacts varied from 3.6% avoided to 15.6% induced forest loss
compared to expected levels of deforestation estimated for each PA using the matching
method. All but a few PAs helped avoid substantial amounts of emissions. Our results empha-
size the need for more PA impact studies that compare multiple PAs at the individual level in
Amazonia and beyond.

Introduction

Most forest conversion to other land uses takes place in the tropical domain where intact forests
still exist, particularly Central and South America, sub-Saharan Africa and South and South-
East Asia (MacDicken et al. 2015, FAO 2016). These remaining forests not only harbour the
majority of terrestrial species (FAO 2016), but they are also an important reservoir of seques-
tered carbon (Saatchi et al. 2011) and provider of indispensable provisioning, regulating, sup-
porting and cultural ecosystem services for humanity (IPBES 2019). Hence, protecting tropical
forests is important formitigating both biodiversity loss and anthropogenic climate change, with
several co-benefits (Goetz et al. 2015, Nogueira et al. 2018).

The future of tropical forests remains uncertain due to manifold incentives to convert them
to other land uses, particularly through the expansion of transport infrastructure, settlements,
markets, cattle ranching and cultivation (Geist & Lambin 2002, Araújo et al. 2017, Nogueira
et al. 2018). In the Brazilian Amazonia, the rate of deforestation increased after 2012 (INPE
2018, 2021), when the country altered its Forest Code, which regulates land use and the man-
agement of private properties (Federal Law 12.727; see Soares-Filho et al. 2014). Since then, the
rate of deforestation has continued to increase in Brazil, fed by economic recessions and political
changes (Watts 2016, BBC 2017, Escobar 2019, Menton et al. 2021).

The rising rates of deforestation increase the importance of existing protected areas (PAs) in
Brazil, which in turn heightens the relevance of knowing how well PAs prevent deforestation
(Ferreira et al 2005, Veríssimo et al. 2011, Cabral et al. 2018). Not all PAs are equal, and their
specific spatial and environmental contexts, such as the agricultural suitability of the land or the
accessibility of the forests, need to be considered when their effectiveness in preventing forest
loss (hereafter referred to as ‘impact’; use of terminology according to Pressey et al. 2015) is
evaluated (Joppa & Pfaff 2011, Nolte et al. 2013, Eklund et al. 2016). This can be done through
the use of matching methods, which estimate PA impact while accounting for effects of con-
founding landscape variables (Andam et al. 2008, Gaveau et al. 2009). These methods compare
the fraction of forested area lost within a PA to the fraction lost in similar non-PAs (the expected
deforestation ‘pressure’), and the resulting impact estimates reflect how the existence of the PA,
and not the confounding landscape variables, has helped to retain forest cover.

Until recently, PA impact studies have primarily focused either on the overall average impact
of protection at national to global scales (Joppa & Pfaff 2011, Heino et al. 2015) or on the com-
parative impact of broad PA categories (e.g., Soares-Filho et al. 2010, Nolte et al. 2013, Pfaff et al.
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2014, Schleicher et al. 2017). For research comparing the impact of
multiple PAs in the Brazilian Amazonia, the norm has so far been
comparisons of aggregated impacts and pressures between broad
PA categories, specifically strictly protected, sustainable use and
indigenous areas, among which significant differences have gener-
ally been found (e.g., Soares-Filho et al. 2010, Nolte et al. 2013, Pfaff
et al. 2014, Schleicher et al. 2017).

However, recent studies from China (Zhao et al. 2019),
Indonesia (Shah & Baylis 2015) and Eastern Europe (Butsic
et al. 2017) have demonstrated that considerable heterogeneity
exists within broad protection categories; the broad generalizations
may even bemisleading for conservation decisions at the local scale
(Shah & Baylis 2015, Butsic et al. 2017). There is a distinct need to
complement such generalized findings in the Brazilian Amazonia
by estimating and comparing the impacts of multiple individual
PAs, thus providing comparative individual-level impact estimates
(Zhao et al. 2019).

Addressing this gap is the focus of this paper. In the state of
Acre, we ask whether the heterogeneity observed in other parts
of the world can be observed in the Brazilian Amazonia.
Specifically, we ask whether the impacts (avoided deforestation)
and pressures (level of deforestation expected in the absence of
protection) differ significantly from each other between broad pro-
tection categories and compare this to the variation at the level of
individual PAs. In addition, we also ask about the quantity of car-
bon emissions each PA avoided during the study period. Our
hypothesis is that there will be differences between broad protec-
tion categories, but we also expect to find substantial and impor-
tant variation between individual PAs within each category.

Methods

Study area

The state of Acre is situated in the westernmost part of the
Brazilian Amazonia, and it has established an extensive PA net-
work to protect its highly biodiverse forests (Fig. 1) (Jenkins et al.
2015). Approximately 46% (75 497 km2) of Acre is dedicated to
PAs (Government of Acre 2017; see Section 1 in Appendix S1
(available online) for more details of the study area).

Data

To enable comparisons with earlier studies, we followed the
common approach of grouping PAs into three broad categories:
(1) strictly PAs, which include state and national biological sta-
tions, national and state parks, ecological stations and biological
reserves; (2) sustainable use areas, which include state and national
forests, extractive reserves and sustainable development reserves;
and (3) indigenous areas (for details, see Nolte et al. 2013). The
remaining areas (two Environmental Protection Areas and two
Areas of Relevant Ecological Interest), which had been excluded
in earlier studies, were categorized as ‘other’ to determine whether
the remaining areas differed from the rest when grouped.

We excluded small overlaps between PAs that seemed to
represent inaccuracies in the mapped polygon borders.
However, some overlapping areas were so large that they likely
correspond to cases where an area was protected under two man-
agement categories. We combined the largest overlapping areas
(>20 km2 in size, to enable sufficient sampling) into a group of
their own, referred to as ‘overlapping protection’ or simply
‘overlap’, to account for their contribution in the analyses.

To avoid sampling areas that did not have forests at the start of
the study period, we defined forested areas based on forest cover
values in the 2010 Vegetation Continuous Fields (VCF) collection,
which indicated the percentage of forest cover at 250-m resolution
for the year 2010 (DiMiceli et al. 2011).We defined pixels with 45%
forest cover as forest and pixels below this threshold as non-forest.
We obtained a deforestation dataset spanning the years from 2011
to 2016 by combining annual PRODES deforestation polygons
(INPE 2017).

Following earlier studies (Joppa & Pfaff 2011, Nolte et al. 2013,
Eklund et al. 2016), we used covariates to ensure that comparisons
were made between environmentally similar areas (Table 1 &
Section 2.2 in Appendix S1), controlling for potential confounding
factors such as travel time (i.e., access) to regional markets (utiliz-
ing code provided by Weiss et al. 2018) and agricultural suitability
of the land (Laurance et al. 2002). The travel time calculation con-
sidered the distances to roads, rivers and major cities (over 10 000
people), among other relevant considerations (for details, see
Appendix S1). The spatial analyses were performed with QGIS
(v3.2.3-Bonn) and the travel times were calculated in R
(R Studio, version 1.1.453).

Matching

We used a matching method (Eklund et al. 2016) to compare indi-
vidual PAs to environmentally similar non-PAs. To get the datasets
needed for matching, we took random samples of points from
within the forested areas of each PA and from within the forested
areas of the non-PA of Acre, equal to 10% of the forested pixels in
each area. Sampling of each PA and the non-PAs was repeated 10
times to control for potential effects of the random sample on our
results and to gain a measure of uncertainty. We ran the matching
process separately for each of the 10 repeats and aggregated the
resulting 10 impact estimates for each PA. The total number of
sample points over all repeats for all PAs was 2 739 400 points,
counting both protected and non-protected points (see Section
2.3 in Appendix S1 for details). For additional details and a visu-
alization of the approach, see Flowchart S1, Appendix S1, and
Eklund et al. (2016). We used the R package sp (Pebesma &
Bivand 2005) for the random sampling. We performed the match-
ing process using Taito supercluster, which enabled parallel com-
putation with 256 cores (computational resources available for
research from CSC – IT Center for Science, Finland).

Avoided deforestation and carbon emissions

Using the impact estimates and the number of forested pixels in
each PA, we calculated estimates of avoided deforestation in hec-
tares. The 95% confidence intervals of the impact estimates were
used to calculate the confidence range for the hectare estimates.
Following this, we calculated a mean carbon density per hectare
for each PA using a biomass layer obtained from Rödig et al.
(2017) with the assumption that the carbon content of the biomass
is 47.1% (the observed mean carbon fraction for tropical angio-
sperms; Thomas & Martin 2012).

We calculated the avoided CO2 emissions for each PA bymulti-
plying the carbon density of each PA by the estimated area of forest
loss that each PA had avoided and then multiplying the result by
0.9, which we assumed to be the fraction of biomass converted into
CO2 following deforestation (Houghton et al. 2000, Numata et al.
2011). We used the coefficient of variation for the biomass esti-
mates provided by Rödig et al. (2017) together with the lower
and upper 95% confidence interval values of the estimated hectares
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of avoided deforestation to calculate low and high estimates for the
avoided carbon emissions (for more details of the emissions calcu-
lations, see Section 2.6 in Appendix S1).

Results

Overall, a comparison of forest loss within all PAs and their
matched areas indicated that there was less deforestation per unit
area within Acre’s PAs than in the non-protected control areas
(Wilcoxon signed rank test, V= 55, p< 0.001). The average PA
impact, calculated across all PAs and overlaps, was 0.4% (standard
deviation 2.4).

The broad PA categories did not differ from each other signifi-
cantly in their impact estimates (Kruskal–Wallis rank sum test,
χ2= 0.54, df = 4, p= 0.97). Although most individual PAs had a
positive impact in terms of avoiding deforestation (Fig. 2 &
Table S2), there was substantial variation among them. The impact
estimates for individual PAs ranged from avoided deforestation of
3.6% of the forested area (PA 14, Environmental Protection Area in
category ‘other’) to induced deforestation of 15.6% of the forested
area (PA 5, Area of Relevant Ecological Interest in category
‘other’), compared to the levels of deforestation expected via
matching (Fig. 2 & Table S2). The results for the indigenous areas
varied from –0.1% induced to 3.0% avoided deforestation, with an
overall average of 0.6% avoided deforestation (Figs 2 & S1 & Table
S1). Out of all PAs, two had a negative impact, which means that

deforestation was estimated to have been induced rather than
avoided as a result of their protection status (PAs 5 and 22;
Fig. 2). Of the nine overlaps we included, in all but one case the
overlaps were between an indigenous area and a PA in another cat-
egory. Substantial variation and no clear patterns existed in the
overlap category.

Although all PAs faced deforestation pressures, there was
great variation among individual PAs in terms of the amount
of pressure (Fig. S2 & Table S2). Seven PAs and two areas with
overlapping protection were situated in areas with negative con-
founding effects, which means that the covariates indicated that
they confronted a higher than average pressure to be deforested.
The seven PAs were ARIE Seringal Nova Esperança (PA 5), APA
Igarapé São Francisco (PA 29), APA Lago do Amapá (PA 14),
INDIG Cabeceira do Rio Acre (PA 6), RESEX Chico Mendes
(PA 10), INDIG Arara do Rio Amônia (PA 8) and ARIE
Japiim-Pentecoste (PA 31), ordered from highest to lowest
threat.

In terms of deforestation pressure, the estimates for the broad
PA categories did not differ from each other significantly
(Kruskal–Wallis rank sum test, χ2= 0.45, df= 2, p= 0.80).
However, PAs in the category ‘other’ faced higher pressures than
the other three categories (Fig. S2 & Table S2). Pressures were par-
ticularly high for PAs 14 and 29, the two Environmental Protection
Areas (APA), and for PA 5, which is an Area of Relevant Ecological
Interest (ARIE) (Fig. S2 & Table S2).

Fig. 1. Protected areas (PAs) in the state of Acre, Brazil. The areas with overlapping protection were analysed independently and have an ampersand in between the PA numbers.
See Table S1 for PA names and additional information.
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On the basis of the impact estimates, we calculated that the PAs
of Acre avoided a total of c. 46 600 ha (41 956–51 187 ha) of
deforestation during the study period (Table S3), corresponding
to 5800 kilotonnes (5024–6644 kilotonnes) of avoided carbon
emissions (Fig. 3 & Table S3). PAs 10 (1923 kilotonnes) and
1 (597 kilotonnes) avoided the most emissions on average.
Great variation existed among PAs in each broad category, with
larger PAs generally avoiding more emissions within each category
(Fig. 3 & Table S3).

Discussion

Our results for the state of Acre in Amazonia showed great hetero-
geneity at the level of individual PAs, which corroborated findings
from other parts of the world (Shah & Baylis 2015, Butsic et al.
2017, Zhao et al. 2019). Our results showed similar pressures
and impacts for each broad PA category during our study period
(2011–2016), contrary to what was expected on the basis of earlier
studies (e.g., Soares-Filho et al. 2010, Nolte et al. 2013, Pfaff et al.
2014). The reason why PAs in the category ‘other’ faced substan-
tially higher pressures than PAs in the other three broad categories
can be explained by their location, as all PAs in the ‘other’ category
are within the general deforestation front area (WWF 2015,
Pacheco et al. 2021), and all except PA 5 are also located near major
cities. Importantly, our results reveal that all but a few PAs had
helped to avoid substantial amounts of emissions.

It is worth considering some of the limitations of our study. Our
definition of forests as pixels with 45% or above forest cover in the
VCF dataset and non-forests as pixels below this threshold was
arbitrary. A different threshold may yield different results because
when the threshold is lowered, the potential to omit existing for-
ests, which may have experienced deforestation, declines.
However, the trade-off is that simultaneously the risk of sampling
non-forest areas that cannot experience deforestation grows (see
Section 2.1 in Appendix S1). Future studies could look into alter-
native forest cover rasters and optimal thresholds for different geo-
graphical areas, particularly since the VCF data are not available
annually.

We did not consider displacement of forest conversion (i.e.,
leakage). Out-to-out leakage, meaning deforestation performed
by illegal land grabbers who have no attachment to place
(Azevedo-Ramos et al. 2020), was not considered because match-
ing cannot reliably detect it. In-to-out leakage, or spillover, was not
considered either, because previous research has found little to no
support for the phenomenon (Soares-Filho et al. 2010, Carranza
et al. 2014, Lui & Coomes 2016). In fact, PAs may sometimes
reduce deforestation in their vicinity (Soares-Filho et al. 2010).
If so, then our impact results may be considered somewhat
conservative, and the potential reduction of deforestation near
PAs may have contributed some additional emission reductions.
Moreover, by preventing edge-related forest degradation that
may occur with deforestation, the PAs may have prevented as
much as 10% more carbon emissions than what we estimated,
although this number remains uncertain (Numata et al. 2010,
Nogueira et al. 2018). We also did not account for belowground
biomass due to a lack of reliable data for high-biomass forests
(Mokany et al. 2006). Our estimate will also be more conservative
if the carbon content of biomass turns out to be higher than the
estimate we used.

In addition, while the lack or presence of deforestation is a clear
representation of PA impact, it should not be considered as the sole
determinant of it; PAs can be effective along other dimensions as
well. Forests may be degraded, for example, by selective logging or
by unsustainable levels of hunting, which can result in an ‘empty
forest’ (Redford 1992, Benítez-López et al. 2019). Decline in spe-
cies diversity induced by hunting can have repercussions on the
ecosystem functions and services that the forests provide, affecting
both the composition of the forests and their carbon density (Lewis
et al. 2015).

Given that evidence suggests an increasing rate of PA down-
grading, downsizing and degazettement in Brazil (Bernard et al.
2014), we should avoid giving the impression that the type of
PA does not matter at all, which could be falsely used to support
PA downgrading. There are real differences between the various
protection types in terms of how much human activity, in particu-
lar land-use change, is allowed within the PAs (Nolte et al. 2013).

Table 1. Datasets used in this study. Resolutions are rounded.

Variable Description Resolution Source

Protected areas Protected area polygons for Brazil – UNEP-WCMC & IUCN (2018), the World
Database on Protected Areas (WDPA)

Deforestation PRODES dataset based on Landsat imagery. Years 2011–2016
combined

250 m Brazilian Institute for Space Research
(Instituto Nacional de Pesquisas
Espaciais; INPE 2017).

Deforestation front Polygons of the deforestation fronts in the Amazon – WWF (2015)
Baseline forest cover Percentage tree cover in 2010. VCF dataset 250 m Global Land Cover Facility, University of

Maryland (DiMiceli et al. 2011)
Covariates
Elevation SRTM 90 m Digital Elevation Data 90 m Jarvis et al. (2008)
Slope Calculated from the elevation data 90 m –
Floodable areas GlobCover dataset. Year 2009 300 m European Space Agency GlobCover Portal

(ESA, 2010).
Precipitation Annual precipitation data 1 km CHELSA Bioclim Annual precipitation (Bio

12) dataset (Karger et al. 2017)
Distance to forest edge Raster surface with shortest Euclidean distances to forest edge.

Calculated with the baseline forest cover (VCF), OSM roads and
OSM rivers layers

250 m Individual datasets from:
OSM products downloaded in February
2018 with QuickOSM plugin in QGIS. VCF
as above

Travel time/accessibility Raster surface with fastest travel times to urban areas with >10
000 people. Calculated with the latest available data

1 km Calculated using the approach and code
of Weiss et al. (2018)

OSM = OpenStreetMap; SRTM = Shuttle Radar Topography Mission; VCF = Vegetation Continuous Fields.
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Even though our data did not show differences in impact between
broad protection categories, such could still exist. Previous studies
have reported differences in aggregated impacts and pressures for
the broad categories in the entire Brazilian Amazonia (Soares-
Filho et al. 2010, Nolte et al. 2013), the Brazilian Cerrado

(Carranza et al. 2014), the Peruvian Amazonia (Schleicher et al.
2017) and the state of Acre (Pfaff et al. 2014).

Pfaff et al. (2014) compared the broad PA categories in Acre and
found that only sustainable use areas had a significant impact when
compared to matched unprotected lands, in both 2000–2004 and
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2004–2008 (2.65% and 1.71% of avoided forest loss, respectively).
These authors concluded that ‘clearing prevented by sustainable
use areas is higher, since their locations feature higher threat’.
The impact was lower for the latter period since deforestation pres-
sures had also decreased (Pfaff et al. 2014).

Our results differ from the results of Pfaff et al. (2014) in three
key respects. Firstly, we found all broad PA categories to have sig-
nificantly positive impacts as well as pressures. Secondly, we found
that the broad PA categories did not differ from each other because
the pressures were uniform. During our study period (2011–2016),
the amount of deforestation in Acre was lower, on average, than
during either one of the periods considered by Pfaff et al.
(2014), although the deforestation rate in our study period was ris-
ing from year to year, instead of declining as in Pfaff et al.’s study
periods (INPE 2021). It may be that as the more accessible areas
have been gradually deforested, the deforestation pressures have
become more uniform for each broad PA category in Acre.
Thirdly, our results indicate that it is more important to consider
and compare the impacts of individual PAs than broad PA catego-
ries, particularly at the state level, given the small number of PAs in
each category and the huge potential for heterogeneity that exists
among individual PAs within each category. This is especially true
for reducing emissions from deforestation and forest degradation
(REDDþ).

The following case examples demonstrate how the impact esti-
mate of a PA is always dependent on the spatiotemporal context.
According to our results, deforestation was induced in two PAs
during our study period, rather than being reduced. PA 5
(Seringal Nova Esperança, an Area of Relevant Ecological
Interest) had the largest negative confounding effect out of all
PAs, indicating high pressure, and the PA experienced a very high
fraction of deforestation, equivalent to 15.6% of its forested area.
Previous research has explained how shortcomings in manage-
ment, together with a lack of recognition by the inhabitants, has
produced socio-environmental conflicts and negative outcomes
for the forests within the PA (Lemos Abreu 2015). Although a large
portion of the area has now been lost, the remaining forests might
still be highly valuable ecologically, and thus resolving the socio-
environmental conflicts should receive immediate attention from
all relevant stakeholders. PA 22 (indigenous territory of the
Jaminawa and Arara of the Bagé river) also seemed to have induced
deforestation, even though the confounding effect for PA 22 indi-
cated lower than average pressures. This can be explained by the
fact that PA 22 is a relatively remote and small indigenous area
with low expected deforestation, and therefore even the 22.47 ha
of deforestation that seems to have been induced (Table S3) was
enough to result in a slightly negative impact estimate.

Examples of PAs that had high impact estimates include PAs 14
and 10. PA 14 is the small Lago do Amapá Environmental
Protection Area near Acre’s capital city, Rio Branco, and it was
estimated to have prevented c. 36 ha of deforestation (equivalent
to 3.6% of its forested area). However, PA 14 cannot be considered
as particularly ‘successful’, given the amount of deforestation it has
experienced over the years, with practically no visible difference to
surrounding areas. Similarly, PA 10, the Chico Mendes Extractive
Reserve, had amuch higher impact than other sustainable use areas
at 1.8%, but the impact estimate does not tell the whole story due to
the high pressures in the surrounding areas. PA 10 also experi-
enced the largest losses of forest cover and carbon, in absolute
terms, out of all considered PAs due to a combination of impact
level, size and pressures. The large negative confounding effects
for PAs 14 and 10 (Fig. S2 & Table S2) indicate that both were

under high pressures, which tested their impactfulness, allowing
for high estimated impacts. This demonstrates how impact does
not necessarily equate to success and a lack of threat.

Addressing the specific reasons why some PAs do well while
others do not and examining what could explain the variation
in impacts within protection categories are beyond the scope of this
paper, but our findings present pertinent opportunities for future
research. As our results demonstrate, remote sensing research can
be used to identify potential study subjects for on-the-ground
research at the local level to clarify what are the ingredients of a
successful PA.

When interpreting the findings for indigenous lands, it is good
to remember that these lands were established for the people, not
the forests, yet forests are clearly protected by them. Our results
showed that 81% of the indigenous areas experienced some defor-
estation during the study period (range 0.01–0.28% of forested
area) compared with 67% of the strict and sustainable use catego-
ries combined (range 0.01–20.74% of forested area). The variation
in impact we found between indigenous areas was also noted by
Nolte et al. (2013), who found indigenous lands to be the most
effective category in high-pressure locations in Brazil, and we con-
cur with their reasoning that deforestation in indigenous areas may
be driven more by internal processes than by external pressures.
Future studies could investigate the reasons why deforestation
rates are generally lower but more common in indigenous areas
than in other broad PA categories and whether there are qualitative
differences in the pressures and their long-term outcomes.

As with impacts and pressures, our results showed great varia-
tion for avoided carbon emissions, which were nonetheless clearly
influenced by the size of the PA within all broad protection catego-
ries. This is because even a small percentage of avoided forest loss
can mean substantial differences in terms of hectares and avoided
carbon emissions when the total area of the PA is large. The larger
the forest, the more emissions it can help avoid. This is why PAs 10
and 1 – the two largest in size – also avoided the most emissions.

Conclusions

Our analyses emphasize the importance of focusing on the vari-
ability at the level of individual PAs so as not to discount the
heterogeneity, complexity and context specificity of conservation.
When impact estimates at the level of individual PAs are available
and can be compared, resource use and management practices can
be optimized to achieve conservation goals (Shah & Baylis 2015,
Butsic et al. 2017, Zhao et al. 2019). Our results emphasize the
importance of comparative individual-level impact estimates for
PAs to help guide the conservation of tropical forests for
Amazonia and for the other deforestation front areas around
the globe.
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