INDEX

All entries implicitly refer to the Magellanic Clouds only. For galactic or (other) extragalactic topics see galactic- and extragalactic-.

Abundances
gas 301, 333, 348, 353, 366, 382, 405, 415
radial gradient 361
(for stars and clusters see metallicity...)
Adiabatic expansion 300, 315
AGB 80, 196
AGB stars (see stars...)
Age 72, 99, 101, 103, 383, 391
of universe 12
Associations (OB-) 89, 93, 105, 385, 391
Asymptotic giant branch (see AGB...)

Binaries (see stars...)
Black hole 241, 301, 305
Bridge region 82, 103, 131, 411
Bubbles 89, 302
Carbon burning 367
Carbon production 196
Carbon stars (see stars...)
Carina (η) 245
Cataclismic variables (see stars...)
Centroids (see distribution...)
Cepheids (see stars...)
Chemical composition (see abundances...)
Chemical evolution, history 19, 75, 107, 409
Close encounter LMC-SMC 113, 121, 410

Clusters 1, 7, 13, 25-67, 71, 93, 172, 187
age 9, 29, 31, 43, 45, 47, 55, 64, 81, 189
age-ellipticity relation 5
age-metallicity relation 7, 17, 95
extinction in front of formation 5, 7, 12, 66, 71, 411
hydrogen line strengths 15
integrated colors 1, 53
integrated spectra 13, 31, 53, 55, 57, 410
intermediate age 31, 199
kinematics 10, 107
mass-luminosity ratio 29
metallicity 10, 31, 33, 41, 43, 45, 47, 64
old 47, 75
open 10

419
Clusters (continued)
 photometric classification 13
 RR Lyrae 7, 37, 39
 spatial distribution (see distribution...)
 young 33, 35, 411

CO molecule (see interstellar...)
Collision Galaxy-MCs 103, 133
Core-helium burning 31, 217
Core rotation 206
Corona: There is confusion about the use and meaning of the words halo
 and corona (stars, gas, location, mass; see remark on page 375);
 in this index stars are under halo, gas is under corona.
Corona, galactic (see galactic...)
Corona
 gaseous 375, 407
 massive dark component 111
Cosmic rays 313

Dark clouds 322
De Jager limit 151
Distance
 modulus, scale 192
 from Cepheids 165, 229
 from Novae 211
 from RR Lyrae 210
 from supergiants 145
Distribution of
 gas 115, 125, 137, 319, 375, 395
 globular clusters 112, 128
 Novae 213
 planetary nebulae 113, 129, 231
 RR Lyrae 213
 supergiants 137
30 Doradus 105, 137, 245, 255–261, 263, 286,
 297, 321, 344, 382, 411, 417
Dredge up mechanism 196
Dust (see interstellar...)
Dust shell 198

Electronography 41, 99
Ellipticity 1, 9, 27, 29
Emission nebulae (see HII regions...)
Enrichment of ISM 370
Evolutionary history (see history...)
Evolutionary tracks 68
Extinction (see interstellar...)
Extinction (atmospheric) 414
Extragalactic:
 blue compact galaxies 361
 Draco dwarf 39
Extragalactic (continued)
 IC 1613
 IZ18, 36
 irregulars
 M31
 M33
 M83
 M101
 NGC 1613
 3109
 4027
 4618/25
 5128
 6822

Fe II emission
Field stars
Flattening of clusters (see ellipticity...)
of Magellanic systems

Galactic:
 chemical evolution
 corona (see gaseous... or mass...)
 fountain
 gaseous corona
 (globular) clusters
 halo stars
 high velocity clouds
 massive dark component (see remark with corona)
 OB supergiants
 RR Lyrae

Gas (see interstellar...)
 dynamics
 Gas-to-dust ratio
 Global properties (see large scale...)
 Graphite
 Gravitational potential
 GRISM survey

Hα flux
HII regions

Halo
 (see remark with corona)
 population
 Heating, dynamical
 Heating-cooling balance
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>1, 67, 107, 134, 358</td>
</tr>
<tr>
<td>evolutionary</td>
<td>1, 67, 107, 134, 358</td>
</tr>
<tr>
<td>of star formation</td>
<td>18, 79, 185</td>
</tr>
<tr>
<td>Horizontal branch</td>
<td>18, 41, 43, 45, 47, 80, 99</td>
</tr>
<tr>
<td>Hubble-Sandage variables (see stars: S Dor...)</td>
<td></td>
</tr>
<tr>
<td>Hydrodynamic treatment LMC-SMC</td>
<td>411</td>
</tr>
<tr>
<td>Infrared space observations</td>
<td>324, 412</td>
</tr>
<tr>
<td>Initial mass function</td>
<td>67, 79, 329</td>
</tr>
<tr>
<td>Instability strip</td>
<td>227, 229</td>
</tr>
<tr>
<td>Inter Cloud region (see bridge region...)</td>
<td></td>
</tr>
<tr>
<td>Interacting galaxies</td>
<td>107</td>
</tr>
<tr>
<td>Intergalactic gas clouds</td>
<td>133</td>
</tr>
<tr>
<td>Interstellar</td>
<td></td>
</tr>
<tr>
<td>absorption lines</td>
<td>53, 55, 116, 129, 319, 375, 407</td>
</tr>
<tr>
<td>abundances (see abundances...)</td>
<td>286, 319, 333, 341, 389, 403, 412</td>
</tr>
<tr>
<td>dust</td>
<td>5, 59, 105, 255, 263, 296, 321, 333, 341, 403, 405</td>
</tr>
<tr>
<td>extinction</td>
<td></td>
</tr>
<tr>
<td>total-to-selective (R)</td>
<td>333, 341</td>
</tr>
<tr>
<td>gas</td>
<td>72, 125, 139, 141, 375, 395, 415</td>
</tr>
<tr>
<td>molecules</td>
<td>319, 397</td>
</tr>
<tr>
<td>CO</td>
<td>246, 325, 397, 399, 401</td>
</tr>
<tr>
<td>hydrogen</td>
<td>319, 405</td>
</tr>
<tr>
<td>phases of ISM</td>
<td>393, 415</td>
</tr>
<tr>
<td>Ionizing photons (see Lyman continuum...)</td>
<td></td>
</tr>
<tr>
<td>Isochrones</td>
<td>45, 84</td>
</tr>
<tr>
<td>K stars (see stars...)</td>
<td>76, 107, 115, 125, 137</td>
</tr>
<tr>
<td>Kinematics</td>
<td></td>
</tr>
<tr>
<td>Large scale properties</td>
<td>67, 125, 335, 379, 395</td>
</tr>
<tr>
<td>LMC X (see X-ray sources...)</td>
<td></td>
</tr>
<tr>
<td>Local Group galaxies</td>
<td>134</td>
</tr>
<tr>
<td>Long-period variables (see stars...)</td>
<td></td>
</tr>
<tr>
<td>Luminosity function</td>
<td>76, 97, 105</td>
</tr>
<tr>
<td>Lyman continuum photons</td>
<td>69, 365, 387</td>
</tr>
<tr>
<td>M stars (see stars...)</td>
<td></td>
</tr>
<tr>
<td>Magellanic Stream</td>
<td>111, 115, 125, 139, 141, 375</td>
</tr>
<tr>
<td>distance of</td>
<td>116, 141</td>
</tr>
<tr>
<td>stars in</td>
<td>103, 116</td>
</tr>
<tr>
<td>Magellanic type galaxies</td>
<td>2, 107, 411</td>
</tr>
<tr>
<td>Maser</td>
<td>246, 320, 325, 397</td>
</tr>
<tr>
<td>Mass loss</td>
<td>31, 35, 59, 151, 199, 229, 239, 385</td>
</tr>
<tr>
<td>Mass transfer</td>
<td>202</td>
</tr>
<tr>
<td>Merger of galaxies</td>
<td>134</td>
</tr>
<tr>
<td>Metallicity</td>
<td></td>
</tr>
<tr>
<td>of the MCs</td>
<td>91, 95, 409, 414</td>
</tr>
<tr>
<td>of clusters (see clusters...)</td>
<td></td>
</tr>
<tr>
<td>of Cepheids</td>
<td>157, 223, 225, 229</td>
</tr>
</tbody>
</table>
Metallicity (continued)

- of RR Lyrae
- Mini Magellanic Cloud (MMC) 209, 217
- Mira stars (see stars...)
- Mixing 128
- MMC (see mini...)
- Molecules (see interstellar...)

n-body simulations
- Neutron star 27, 295, 417

NGC (new data only)

<table>
<thead>
<tr>
<th>Number</th>
<th>Metallicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>57</td>
</tr>
<tr>
<td>330</td>
<td>57, 59</td>
</tr>
<tr>
<td>339</td>
<td>37</td>
</tr>
<tr>
<td>416</td>
<td>37</td>
</tr>
<tr>
<td>1466</td>
<td>47</td>
</tr>
<tr>
<td>1783</td>
<td>31</td>
</tr>
<tr>
<td>1786</td>
<td>37, 57</td>
</tr>
<tr>
<td>1806</td>
<td>29</td>
</tr>
<tr>
<td>1818</td>
<td>29, 33, 55</td>
</tr>
<tr>
<td>1866</td>
<td>33, 55</td>
</tr>
<tr>
<td>1868</td>
<td>31</td>
</tr>
<tr>
<td>1962-70</td>
<td>35</td>
</tr>
<tr>
<td>1978</td>
<td>31</td>
</tr>
<tr>
<td>2004</td>
<td>55</td>
</tr>
<tr>
<td>2019</td>
<td>37</td>
</tr>
<tr>
<td>2070</td>
<td>(see 30 Dor)</td>
</tr>
</tbody>
</table>

Nitrogen

- enrichment 2100 55, 59
- enrichment by Novae 2121 31, 37
- production 2136 33
- Novae 2155 37
- 2157 33
- 2203 47
- 2209 31
- 2210 37, 47
- 2214 33
- 2231 31
- 2257 39, 47
- Hodge 11 37, 41, 43, 47
- Kron 3 45
- LW4 47
- 3603 250, 257, 261, 265
- 6530 59

Nuclear burning (explosive)
- 281, 367
- 212, 361
- 359

Nucleosynthesis
- 207, 359, 417

OB (see associations... or stars...)
- OH/IR stars (see stars...)

Orbit LMC-SMC 111, 115, 131, 410

P Cygni profiles
- 150, 233, 235-239, 266
- 227

Period changes

- Period-luminosity relation (see P-L-C...)
- Planetary nebulae 231, 354, 363
- (see also distribution...)

P-L-C, P-L relation 157, 191, 202, 217, 221, 229

Polarization 347, 403

Pulsar 301, 305

dispersion measure 379
Index

Pulsation mass 174
Quasar 284, 375
R136 66, 151, 245, 255-262, 263, 375, 382
Radio continuum 283, 313, 389
Red variables (see stars...)
Reddening (see interstellar extinction...)
Reddening from Cepheids 167, 229, 334
Relaxation time 25, 27, 55
Ring nebulae 89, 376
Rotation curve LMC 110, 112, 377, 395
RR Lyrae (see stars... and clusters...)
Shell (gas) 35, 89, 385, 391
Shell burning 65
Shock waves 274, 393, 403
SMC depth 221
SMC remnant (RSMC) 129
SMC X (see X-ray sources...)
SNR (see supernova...)
Solar neighbourhood 68, 83, 105, 321, 372
Spatial distribution (see distribution...)
Spectral classification 145
s-process 177

Stars

AGB 171, 217
binaries 202, 305, 412
carbon 14, 71, 172, 184, 195, 217
cataclismic variables 302, 417
Cepheid 71, 157, 205, 219-229
K 206, 225
LPV 171, 206
M 80, 172, 185, 198, 217
Mira 202, 217, 219
O-B 35, 59, 70, 233, 237, 239, 264, 342
OH/IR 181
red giants 183, 195
red variables 171, 190, 217, 219
RR Lyrae 64, 207, 411, 414
S 186, 198
S Dor 145, 237
supergiants 145, 243, 414
red, M 68, 79, 145, 246
luminous 145, 201
blue to red ratio 155
WR (WN, WC) 153, 237, 245, 266

Star counts 25, 29, 55, 79, 97, 103
INDEX

Starformation rate (SFR) 18, 67, 79, 91, 413
 propagation 67, 197
 stochastic 71, 89
 Supergiants (see stars...) 72, 93, 95, 313, 327
 Supermassive stars 263
 (see also R136...) 263
 Supernova rate 70, 327, 354, 379
 Supernova remnant (SNR) 246, 271, 286, 293, 315, 416
 identifying procedure 271

Tarantula nebula (see 30 Doradus...) 115, 125
 Tidal interaction 295

UV observations (far-) 7, 53-59, 70, 91, 105, 233, 336, 341, 355, 375, 405, 407, 415

Warp 128
 Wind, stellar 235, 237, 385, 415
 WR stars (see stars...) 241, 246, 272, 286, 293, 305, 315
 X-ray sources 317, 416

https://doi.org/10.1017/S007418090004064X Published online by Cambridge University Press